The Set of Completely Positive Maps and its Geometric Properties

Kourosh Nourouzi
Department of Mathematics, K.N.T. University of Technology, P.O. Box 16315-1618, Tehran, Iran.
E-mail:nourouzi@kntu.ac.ir

March 5, 2004

Abstract

Let C is a closed convex set in a topological vector space (X, τ). An element $\omega \in C$ is said to be an exposed point if there exists a τ-continuous linear functional f on X such that $\operatorname{Re} f(x)<\operatorname{Re} f(\omega)$ for all $x \in C \backslash$ $\{\omega\}$. For a unital C^{*}-algebra A and complex Hilbert space H, extremal structure of the set of all completely positive linear maps $C P(A, H)$ of A into $B(H)$, where $B(H)$ denotes the C^{*}-algebra of all bounded linear operators on H was determined several years ago by Arveson [Acta Math. 123 (1969), 141-224]. In this note we study geometric structure of these sets in terms of exposed points.

