Transfer Operators for Hecke Triangle Groups

F. Strömberg,
joint work with T. Mühlenbruch and D. Mayer

DNA Seminar, Uppsala University, 2006-09-04

What is Known for the Modular Group

Maass waveforms

What is Known for the Modular Group

Maass waveforms

What is Known for the Modular Group

Geodesic Flow on $S(\Gamma \backslash \mathcal{H})$		Closed geodesics on $\Gamma \backslash \mathcal{H}$
\downarrow		\downarrow
Cross section \& Return Map		Continued Fractions
\downarrow	\leftarrow	\downarrow Interval Map \downarrow
Reduction Theory		
Transfer Operator	\longrightarrow	Functional Equation
\downarrow (Dynamics or Reduction)		\downarrow (Bruggeman-Lewis-Zagier)
Selberg Zeta Function		Cohomology
\downarrow STF(implicit)	\downarrow (explicit)	

Maass waveforms

Current Status

Our aim is to

- Generalize everything from $\operatorname{PSL}(2, \mathbb{Z})(q=3)$ to Hecke Triangle Groups $G_{q}, q \neq 3$.

Current Status

- Good candidate for Continued Fractions and Reduction.
- A Transfer Operator related to the Selberg Zeta Function.
- Partial results for Functional Equations and cohomology.
- We have yet to:
- Find an explicit crossection and first return map.
- Prove uniqueness of identified orbits for $q \neq 3$.
- Connect Maass forms explicit to this representation of the cohomology for $q \neq 3$.

Hecke Triangle Groups

Let $q \geq 3$ and

$$
\lambda=\lambda_{q}=2 \cos \left(\frac{\pi}{q}\right)
$$

$$
\begin{gathered}
S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \\
T=\left(\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right) . \\
G_{q}=\langle S, T\rangle, \\
S^{2}=(S T)^{q}=l d
\end{gathered}
$$

Geodesics on $G_{q} \backslash \mathcal{H}$

- $\gamma=$ lift of γ^{*} on $G_{q} \backslash \mathcal{H}$
- γ^{*} closed $\Leftrightarrow \gamma_{ \pm}$pair of hyp. fixpts. of G_{q}.
- $\gamma_{+}=$attracting
- $\gamma_{-}=$repelling
- End points coded by Continued Fractions

Continued Fractions

Continued Fractions

The classical "+", Gauss, or simple CF

For $x \in \mathbb{R}$:

$$
x=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}, a_{j} \in \mathbb{Z}, a_{j} \geq 0, j>0 .
$$

- Used by Artin (code modular billiard flow), Mayer (transfer operator), etc.
- A slight problem: $z \rightarrow \frac{1}{z}$ has determinant -1 in $\operatorname{PGL}(2, \mathbb{R})$.
- A major problem: The generalization to $q>3$ gives a bad (non trace-class) Transfer operator.

General λ (or $\left.G_{q}\right)$-Continued Fractions.

Definitions

We identify a sequence of integers, $\left\{a_{j}\right\}_{j \geq 0}$, with

$$
x=T^{a_{0}} S T^{a_{1}} S T^{a_{2}} \cdots(0)=a_{0} \lambda-\frac{1}{a_{1} \lambda-\frac{1}{\ddots}} \in \mathbb{R},
$$

and say that it is a

- non-regular (formal) CF, $\left[\left[a_{0} ; a_{1}, a_{2}, \ldots\right]\right]_{\lambda} \in \mathcal{A}$ in general.
- regular CF, $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]_{\lambda} \in \mathcal{A}_{\text {Reg }}$, if it is generated by some function or satisfies some "regularity conditions" (e.g. avoids certain "forbidden blocks").

Repetitions in a CF are denoted by powers (finite) or bars (infinite).

Nearest λ-multiple Fractions

- From now on, consider the Nearest λ-CF (Hurwitz for $q=3$ and Nakada for $q>3$).
- Write $\lambda=\lambda_{q}$ and let $(x)=\left\lfloor\frac{x}{\lambda}+\frac{1}{2}\right\rfloor$ be the nearest λ-multiple of x.

Example

Here $\lambda_{3}=1, \lambda_{4}=\sqrt{2}, \lambda_{5}=\frac{1+\sqrt{5}}{2}, \lambda_{6}=\sqrt{3}$, etc.

- $1=[1]_{3}=[1 ; \overline{2}]_{4}=[1 ; 1]_{5}=[1 ; \overline{1,2}]_{6}=[1 ; 1,1]_{7}=\cdots$

Note that finite/eventually periodic CFs correspond to parabolic/hyperbolic points (i.e. rational/quadratic irrational for $q=3$, much harder to characterize for $q>3$, i.e. cusps $=\mathbb{Q}(\lambda)$ only for $q=3$ and 5).

Continued Fractions

The Generating Map

Definition (Generating Map)

Let $I_{q}=\left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right]$. The $\operatorname{map} f_{q}: I_{: q} \rightarrow I_{q}$ defined by

$$
f_{q}(x)=\frac{-1}{x}-\left(\frac{-1}{x}\right) \lambda, x \in I_{q}
$$

is a generating map for the nearest λ-multiple CF.
If $x=\left[0 ; a_{1} a_{2} \ldots\right]_{\lambda}$ then $\left\{a_{n}\right\}$ is obtained by setting $x_{1}=x$ and then recursively for $n \geq 1$:

$$
\begin{aligned}
a_{n} & =\left(\frac{-1}{x_{n}}\right) \\
x_{n+1} & =f_{q}\left(x_{n}\right)=\frac{-1}{x_{n}}-a_{n} \lambda .
\end{aligned}
$$

Continued Fractions

Action by f_{q}

The map f_{q} acts by a left-shift on regular λ-CF's inside I_{q}, i.e. if $x=\left[0 ; a_{1}, a_{2}, \ldots\right] \in \mathcal{A}_{\text {Reg }}$, then

$$
\begin{aligned}
f_{q}(x) & =T^{-a_{1}} S x=\frac{-1}{x}-a_{1} \lambda=\left[0 ; a_{2}, a_{3}, \ldots\right] \\
f_{q}^{k}(x) & =\left[0 ; a_{k+1}, a_{k+2}, \ldots\right], k \geq 2 .
\end{aligned}
$$

We extend the map f_{q} by setting $f_{q}(x)=x-(x) \lambda$ for $x \notin I_{q}$.

Definition

For $x \in \mathbb{R}$ we denote the f_{q}-orbit of x inside I_{q} by

$$
\mathcal{O}(x)=\left\{f_{q}^{k}(x)\right\}, \begin{cases}k \geq 0, & x \in I_{q}, \\ k \geq 1, & x \notin I_{q} .\end{cases}
$$

Continued Fractions

Examples of Generating Maps

Nearest λ-mult. $f_{q}, q=4$

Nearest λ-mult. $f_{q}, q=5$

Black boxes $=$ partition of unique set of inverses, orbit of $\pm \frac{\lambda}{2}$. Markov partition $=\left\{\mathcal{I}_{n}\right\}_{n \in \mathbb{Z}}, \mathcal{I}_{n}=\left\{x \in I_{q} \left\lvert\, f_{q}(x)=\frac{-1}{x}-n \lambda\right.\right\}$.

Continued Fractions

Properties of Nearest λ-multiple CF

- If $A \in G_{q}$ is hyperbolic it is equivalent to $S T^{a_{1}} S T^{a_{2}} \ldots S T^{a_{1}}$ with fixedpoints x, \bar{x} s.t.

$$
\begin{aligned}
& \text { - } x=\left[0 ; \overline{a_{1}, a_{2}, \ldots, a_{l}}\right] \in \mathcal{A}_{\text {Reg }} \text { and } \\
& \text { - } \frac{1}{\bar{x}}=\left[\left[0 ; \overline{a_{l}, a_{l-1}, \ldots, a_{1}}\right]\right] \in \mathcal{A} .
\end{aligned}
$$

Theorem (Conjecture for $q>3$, Theorem for $q=3$)

If $x=\left[0 ; \overline{a_{1}, a_{2}, \ldots, a_{l}}\right] \sim_{G_{q}} y=\left[0 ; \overline{b_{1}, b_{2}, \ldots, b_{k}}\right] \in \mathcal{A}_{\text {Reg }}$ either $\mathcal{O}(x)=\mathcal{O}(y)$, or $\mathcal{O}(x)=\mathcal{O}(R)$ and $\mathcal{O}(y)=\mathcal{O}(-R)$ (or vice versa) where $\frac{\lambda}{2}<R \leq 1$ is given by

$$
R= \begin{cases}\frac{-1+\sqrt{5}}{2}=[1 ; 3], & q=3, \\ {\left[1 ; \overline{1^{h}, 2,1^{h-1}, 2}\right],} & q=2 h+3 \geq 5, \text { odd }, \\ 1=\left[1 ; 1^{h-1}, 2\right], & q=2 h+2, \text { even } .\end{cases}
$$

Reduction Theory

There exist a domain $\Omega=\cup J_{i} \times K_{i}$ with the following properties:

- Any closed geodesic in \mathcal{H} is
$G_{q^{-}}$equivalent to a

$$
\begin{aligned}
& \gamma \sim\left(\gamma_{+}, \gamma_{-}\right) \text {with } \\
& \left(\gamma_{+}, \gamma_{-}^{-1}\right) \in \Omega .
\end{aligned}
$$

- The endpoints of the J_{i} coincide with $\mathcal{O}\left(\pm \frac{\lambda}{2}\right)$.
- The endpoints of the K_{i} (heights) coincide with $\mathcal{O}(\pm R)$.
- $\left|\gamma_{-}\right| \geq \frac{1}{R} \geq 1$.

The domain Ω.

Nearest λ_{q}-multiple fractions $q=5, \lambda=\frac{1}{2}(1+\sqrt{5})$

Reduction of Geodesics

Definition

The set of Reduced Geodesics

$$
\begin{aligned}
\mathcal{X}_{\text {Red }} & =\left\{\gamma \text { closed geodesic of } G_{q} \left\lvert\, \gamma \sim\left(\gamma_{+}, \frac{1}{\gamma_{-}}\right) \in \Omega\right.\right\} \\
& \simeq\left\{\left[0 ; \overline{\left.\left.a_{1}, a_{2}, \ldots, a_{1}\right] \text { regular } \mid I \geq 1\right\}}\right.\right.
\end{aligned}
$$

- f_{q} maps any closed geodesic γ (eventually) into $\mathcal{X}_{\text {Red }}$, and
- $f_{q}\left(\mathcal{X}_{\text {Red }}\right) \subseteq \mathcal{X}_{\text {Red }}$.
- $\mathcal{X}_{\text {Red }}$ falls into f_{q}-equivalence classes, $\mathcal{O}(\gamma)$, and up to $\mathcal{O}\left(\gamma_{ \pm r}\right)(r=\lambda-R)$ these are also G_{q}-equivalence classes.
- Let $\mathcal{Y}_{\text {Red }}=f_{q} \backslash \mathcal{X}_{\text {Red }}$ and $\mathcal{Y}_{\text {Red }}^{*}=G_{q} \backslash \mathcal{X}_{\text {Red }}$.

The Transfer Operator for the Interval Map

Transfer Operator for f_{q}

The Transfer (Generalized Perron-Frobenius) Operator

 for the interval map $f_{q}: I_{q} \rightarrow I_{q}$ is defined as$$
\mathcal{L}_{\beta} f(x)=\sum_{y \in f_{q}^{-1}(x)}\left|\frac{d f_{q}^{-1}(x)}{d x}\right|^{\beta} f(y) .
$$

Example: The Perron-Frobenius operator \mathcal{L}_{1}
If μ_{q} is the invariant density for f_{q} then

$$
\begin{aligned}
\mathcal{L}_{1} \mu_{q} & =\mu_{q}, \text { and } \\
\mathcal{L}_{1}^{\prime} f & \rightarrow \mu_{q} \text { exponentially as } I \rightarrow \infty
\end{aligned}
$$

for almost all f (in some Banach space with sup norm).

The Principal Series Representation

The principal series representation π_{s}

For $A=\left(\begin{array}{lll}a & b \\ c & d\end{array}\right) \in P G L(2, \mathbb{R}), s \in \mathbb{C}$ and f defined in a nbhd of \mathbb{R}

$$
\pi_{s}(A) f(z)=\left((c z+d)^{2}\right)^{-s} f\left(\frac{a z+b}{c z+d}\right) .
$$

Let D be a disk and consider the B-Space (with sup norm)

$$
\mathcal{B}(D)=\{f \mid f \text { analytic in } D \text { and cont. in } \bar{D}\} .
$$

If A is hyperbolic with norm $\mathcal{N}(A)$ and $A(\bar{D}) \subset D$ then $\pi_{s}(A)$ is nuclear (Grothendieck) and has trace (easy exercise)

$$
\operatorname{Tr}\left[\pi_{s}(A)\right]=\frac{\mathcal{N}(A)^{-s}}{1-\mathcal{N}(A)^{-1}}
$$

The Transfer Operator for f_{q}

For $x=\left[0 ; a_{1}, a_{2} \ldots\right] \in \mathcal{A}_{\text {Reg }}$ and $\Re \beta>\frac{1}{2}$

$$
\mathcal{L}_{\beta} f(x)=\sum_{n . x \in \mathcal{A}_{\mathrm{Reg}}} \pi_{\beta}\left(S T^{n}\right) f(x)
$$

We sum over $n \in \mathbb{Z}$ s.t $n . x:=\left[0 ; n, a_{1}, a_{2} \ldots\right] \in \mathcal{A}_{\text {Reg }}$ and

$$
\mathcal{L}_{\beta}^{\prime} f(x)=\sum_{\left(n_{1} \ldots n_{l}\right) \cdot x \in \mathcal{A}_{\text {Reg }}} \pi_{\beta}\left(S T^{n_{1}} S T^{n_{2}} \ldots S T^{n_{l}}\right) f(x)
$$

Reduction Theory $\Rightarrow A_{\vec{n}}=S T^{n_{1}} \ldots S T^{n_{l}}$ is hyperbolic and
$A_{\vec{n}} \sim\left[0 ; \overline{n_{1}, \ldots, n_{l}}\right] \sim \gamma \in \mathcal{X}_{\text {Red }}!$

- Let D be a disk based on $I=\left[-\frac{1}{R}, \frac{1}{R}\right] \supset I_{q}$. Then D is invariant for all $A_{\vec{n}}$ appearing in the $\mathcal{L}_{\beta}^{\eta}$!
- We will work on products of the Banach space, $\mathcal{B}(D)$.

The Trace of \mathcal{L}_{β} and Connection with Selberg Zeta Function

Trace and Fredholm Determinant of \mathcal{L}_{β}

For $\Re \beta>\frac{1}{2}$, the operator $\mathcal{L}_{\beta}^{\prime}$ is nuclear of order zero, and

- has trace

$$
\begin{aligned}
\operatorname{Tr} \mathcal{L}_{\beta}^{\prime} & =\sum_{\left[0 ; n_{1} \ldots \ldots n_{2}\right] \in \mathcal{A}_{\text {Reg }}} \operatorname{Tr} \pi_{\beta}\left(S T^{n_{1}} S T^{n_{2}} \ldots S T^{n_{l}}\right) \\
& =\sum_{\{\gamma\} \in \mathcal{Y}_{\text {Red }},(\gamma)=1} \frac{\mathcal{N}(\gamma)^{-\beta}}{1-\mathcal{N}(\gamma)^{-1}}
\end{aligned}
$$

- and Fredholm determinant given by

$$
- \text { Log } \operatorname{det}\left(1-\mathcal{L}_{\beta}\right)=\sum_{l=1}^{\infty}{ }_{l}^{1} \operatorname{Tr} \mathcal{L}_{\beta}^{\prime}=\sum_{l=1}^{\infty} \frac{1}{l} \sum_{\{\gamma\} \in \mathcal{Y}_{\text {Red }, ~},(\gamma)=1} \frac{\mathcal{N}(\gamma)^{-\beta}}{1-\mathcal{N}(\gamma)^{-1}}
$$

Here $I(\gamma)=l$ if $\gamma \sim\left[0 ; \overline{a_{1} a_{2} \ldots a_{l}}\right] \in \mathcal{A}_{\text {Reg }}$ and
$\mathcal{N}(\gamma)=\mathcal{N}\left(S T^{a_{1}} \ldots S T^{a_{l}}\right)$.

The Selberg Zeta function for G_{q}

For $\Re s>1$ trivial manipulations yield:

$$
\begin{aligned}
-\log Z(s) & =-\log \left[\prod_{\left\{\gamma_{0}\right\} \in \text { Prim. Hyp. } k=0} \prod_{k=0}^{\infty}\left(1-\mathcal{N}\left(\gamma_{0}\right)^{-s-k}\right)\right] \\
& \vdots \\
& =\sum_{l=1}^{\infty} \frac{1}{l} \sum_{\{\gamma\} \in \mathcal{Y}_{\text {Red }^{*}, l(\gamma)=l}} \frac{\mathcal{N}(\gamma)^{-s}}{1-\mathcal{N}(\gamma)^{-1}}
\end{aligned}
$$

Connecting $\log Z(s)$ and $\operatorname{det}\left(1-\mathcal{L}_{\beta}\right)$

- $\mathcal{L}_{S} \sim$ sum over $\mathcal{Y}_{\text {Red }}$ (f_{q}-equivalence classes)
- $Z(s) \sim$ sum of $\mathcal{Y}_{\text {Red }}^{*}$ (G_{q}-equivalence classes), hence

$$
\begin{aligned}
-\log Z(s) & =\sum_{l=1}^{\infty} \frac{1}{l}\left(\operatorname{Tr} \mathcal{L}_{s}^{l}-\operatorname{Tr} \mathcal{K}_{s}^{l}\right) \\
& =-\log \operatorname{det}\left(1-\mathcal{L}_{s}\right)+\log \operatorname{det}\left(1-\mathcal{K}_{s}\right)
\end{aligned}
$$

where \mathcal{K}_{s} correspond to $\mathcal{Y}_{\text {Red }} \backslash \mathcal{Y}_{\text {Red }}^{*}$.

The Trace of \mathcal{L}_{β} and Connection with Selberg Zeta Function

The Auxillary Operator \mathcal{K}_{β}

If γ_{r} is the hyperbolic fixing $r=-R+\lambda$ we conjecture (know for $q=3$) that

$$
\mathcal{K}_{\beta}=\pi_{\beta}\left(\gamma_{-r}\right) .
$$

Theorem

$\operatorname{det}\left(1-\mathcal{K}_{\beta}\right)$ has no poles and only simple zeros at - $\beta_{n, k}=-n+\frac{2 \pi i k}{\ln \left(\gamma_{r}^{\prime}(-r)\right)}, n \geq 0, k \in \mathbb{Z}$.

The zeros of $\operatorname{det}\left(1-\mathcal{K}_{\beta}\right)$ are thus known explicitly!

The Trace of \mathcal{L}_{β} and Connection with Selberg Zeta Function

The "Main Theorem" of the Transfer operator method

Theorem

For $\beta \in \mathbb{C}$

$$
\operatorname{det}\left(1-\mathcal{L}_{\beta}\right)=Z(\beta) \operatorname{det}\left(1-\mathcal{K}_{\beta}\right)
$$

where (conjecturally for $q>3$) $\mathcal{K}_{\beta}=\pi_{\beta}\left(\gamma_{-r}\right)$.

Proof.

(1) For $\Re \beta>1$ this follows from the above simple calculations.
(2) Writing \mathcal{L}_{β} in terms of Hurwitz Zeta functions gives a meromorphic continuation.
(3) This gives us the desired identity in the rest of \mathbb{C}.
[Incidentally this also proves the meromorphic continuation of $Z(\beta)$.]

Implications

Corollary

- \mathcal{L}_{β} has eigenvalue 1 if and only if $Z(\beta)=0$ for $\beta \neq \beta_{n, k}$.
- \mathcal{L}_{β} has unbounded eigenvalues as $\beta \rightarrow \beta_{0} \in \mathbb{C}$ only if $Z(\beta)$ has a pole at $\beta=\beta_{0}$.
- At $\beta=0,-1,-2, \ldots \mathcal{L}_{\beta}$ has eigenvalue 1 of the same order as the zero of $Z(\beta)+1$.

What about eigenvalue 1 ?

- What can we deduce about the poles and eigenvalue $=1$ of \mathcal{L}_{β} ?
- $\beta=1$ corresponding to the invariant measure gives a simple eigenvalue 1.
- We can see the poles at all $\beta \in \frac{1}{2},-\frac{1}{2},-\frac{3}{2}, \ldots$ to the correct order (=1) (theoretically for $q=3$).
- At the negative integers it is possible to compute the correct order of eigenvalue 1 either manually (the first few) or with computer aid (a few more) by finding correct dimension of spaces of eigenfunctions (polynomials) ($q=3,4,5,6,7$).
- Unfortunately, except for the contribution from \mathcal{K}_{β} we can not say much about $\beta \notin \mathbb{R}$, e.g. especially $\Re \beta=\frac{1}{2}$ (Maass forms) and for $q=3 \Re \beta=\frac{1}{4}$ (Riemann zeros).

Comparison Of Comp. Methods (Maass forms)

Automorphy (standard)

- Real Analytic Theory.
- Fourier S. = Fast conv.
- K-Bessel
- Heuristic tests depend continuously on $R \in \mathbb{R}$.
- Solve $A_{R} \vec{X}=\vec{X}$.
- Rigorous methods by Booker-StrömbergssonVenkatesh.

Transfer Operator

- Holomorphic Theory.
- Power S. = Slow conv.
- Riemann ζ.
- λ_{β} depends analytically on $\beta \in \mathbb{C}$.
- Solve $A_{\beta} \vec{X}=\lambda_{\beta} \vec{X}$ (and try to find $\lambda_{\beta}=1$).
- Argument principle (in absence of poles of φ) and norm estimates.

Numerical Verifications

The following were verified:

- For $q \in\{3,4,5,6,7\}$ all Laplace-eigenvalues up to $\rho=14$ ($\lambda=\frac{1}{4}+i \rho$) given by the Automorphy method to the predicted accuracy.
- For $q=3,80$ digits of the first R as given by Booker-Strömbergsson-Venkatesh.
- The Zeros ρ of the scattering matrix (here scalar) gives $1-\rho$ as zeros of $Z(s)$ and:
- For $q=3: 2 \beta=\frac{1}{2}+i \rho$ with $\frac{1}{2}+i \rho$ the first few zeros of Riemann Zeta Function (from Odlyzkos tables). (The first two to 105 digits).
- For $q=5$ The first 7 values of ρ (zeros of $\varphi(s)$) in Helen Avelins work to her stated accuraccy (14-15 digits).

Extensions: Consider Selberg Zeta Functions

- Finite-index subgroups of $\Gamma \subset G_{q}$,

$$
Z_{\Gamma}(s)=\prod_{\gamma \in \operatorname{Prim} . \mathrm{Hyp} .} \prod_{k \geq 0}\left(1-\chi_{\Gamma}(\gamma) \mathcal{N}(\gamma)^{-s-k}\right),
$$

where χ_{Γ} is induced by the trivial rep. of $\Gamma \subset G_{q}$, and

- $\operatorname{PSL}(2, \mathbb{Z})$ with non-trivial Multiplier v,

$$
z_{v, k}(s)=\prod_{\gamma \in \operatorname{Prim.Hyp} . k \geq 0} \prod_{k \geq}\left(1-v(\gamma) \mathcal{N}(\gamma)^{-s-k}\right) .
$$

- The corr. transfer operators are obtained by replacing $\pi_{s}(\gamma)$ with

$$
\pi_{s}^{\Gamma}(\gamma)=\chi_{\Gamma}(\gamma) \pi_{s}(\gamma) \text {, and } \pi_{s}^{v, k}(\gamma)=v(\gamma) \pi_{s}(\gamma) \text {, resp. }
$$

Extensions: Worked Out

- Numerically, characters and multipliers lead to Lerch Zeta Functions,

$$
L(\lambda, s, z)=\sum_{n=0}^{\infty} \frac{e(n \lambda)}{(z+n)^{s}}
$$

- For rational weights λ is rational and L is a sum of Hurwitz Zeta functions.
- Explicit expressions have been worked out for
- $\Gamma_{0}(p) \subset P S L(2, \mathbb{Z}), p$ prime, and
- $\operatorname{PSL}(2, \mathbb{Z})$ with v_{η} and rational weight k.
- Some of these cases have also been tested numerically, e.g $\Gamma_{0}(p)$ for $p \leq 31$ and $\operatorname{PSL}(2, \mathbb{Z})$ with weight $k=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{10}$.

Movie

An Animation of Eigenvalues λ_{β} for $q=5, \beta=\frac{1}{2}+i \rho$.

Explicit computations of \mathcal{L}_{β} by Example

Explicit Form of \mathcal{L}_{β} is needed for

- Numerical computations.
- Meromorphic continuation.

The explicit form of $\mathcal{L}_{\beta} f(x)$ depends on x.
We representing f as f_{k} in J_{k} and let \mathcal{L}_{β} act on a product of Banach-spaces

$$
\left(\mathcal{L}_{\beta} f(x)\right)_{i}=\sum_{j=1}^{H} \sum_{n \in \mathcal{I}_{i j}} \pi_{\beta}\left(S T^{n}\right) f_{j}(x)
$$

Example of Explicit Representation

Example: Let $q=3$ then the dimension is 2 and
$R=\frac{-1+\sqrt{5}}{2}=[1 ; \overline{3}]$
Recall the definition of $\pi_{\beta}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) f(z)=(c z+d)^{-2 \beta} f\left(\frac{a z+b}{c z+f}\right)$.

$$
\mathcal{L}_{\beta} \vec{f}=\left(\begin{array}{cc}
\sum_{n=3}^{\infty} \pi_{\beta}\left(S T^{n}\right) & \sum_{n=-2}^{-\infty} \pi_{\beta}\left(S T^{n}\right) \\
\sum_{n=2}^{\infty} \pi_{\beta}\left(S T^{n}\right) & \sum_{n=-3}^{-\infty} \pi_{\beta}\left(S T^{n}\right)
\end{array}\right)\binom{f_{1}}{f_{2}}
$$

- The building blocks are always of the type $\sum \pi_{\beta}\left(S T^{n}\right)$!
- Using a simple example we will demonstrate the meromorphic continuation to $\Re \beta>-\frac{N}{2}$.

Explicit computations of \mathcal{L}_{β} by Example

Continuation of Example

Example: Continued

Let $N \geq 1$ consider one of the "primitive" operators, e.g.
$\tilde{\mathcal{L}_{\beta}}=\left(\mathcal{L}_{\beta}\right)_{11}$:

$$
\begin{aligned}
\tilde{\mathcal{L}}_{\beta} f & =\sum_{n=3}^{\infty} \pi_{\beta}\left(S T^{n}\right) f=\sum_{n=3}^{\infty}\left(\frac{1}{z+n}\right)^{2 \beta} f\left(\frac{-1}{z+n}\right) \\
& =\sum_{n=3}^{\infty}\left(\frac{1}{z+n}\right)^{2 \beta}\left[\sum_{k=0}^{N} a_{k}\left(\frac{-1}{z+n}\right)^{k}+O\left(\left(\frac{1}{z+n}\right)^{N+1}\right)\right] \\
& =O(1) \sum_{n=3}^{\infty}\left(\frac{1}{z+n}\right)^{2 \beta+N+1}+\sum_{k=0}^{N} a_{k}(-1)^{k} \sum_{n=3}^{\infty}\left(\frac{1}{z+n}\right)^{2 \beta+k} \\
& =\tilde{\mathcal{L}}_{\beta}^{(N)} f+\tilde{\mathcal{A}}_{\beta}^{(N)} f .
\end{aligned}
$$

Continuation of Example

Example: Continued

Note that the Hurwitz Zeta function is

$$
\zeta(s, z)=\sum_{n=1}^{\infty} \frac{1}{(z+n)^{s}}, \Re s>1
$$

and it has a meromorphic continuation to \mathbb{C} with a simple pole at $s=1$ and residue 1 .
By analytic continuation we also have a power series expansion

$$
\zeta(s, z+1)=\sum_{n=0}^{\infty} \frac{(s)_{n}(-1)^{n} \zeta(s+n)}{n!} z^{n} .
$$

Continuation of Example

Example: Continued

$$
\tilde{\mathcal{L}}_{\beta}^{(N)} f(z)=O(1) \zeta(2 \beta+N+1, z+3)
$$

- is analytic in $\Re \beta>-\frac{N}{2}$,
- annihilates polynomials of deg. $\leq N$.

$$
\tilde{\mathcal{A}}_{\beta}{ }^{(N)} f=\sum_{k=0}^{N} \frac{f^{(k)}(0)}{k!}(-1)^{k} \zeta(2 \beta+k, z+3)
$$

- is of finite rank, and
- has simple poles at $\beta_{k}=\frac{1-k}{2}, k=0,1,2, \ldots, N$.

One can show that all poles of \mathcal{L}_{β} arise like this.

Continuation of Example

Example: Numerical implementation for $q=3$

Project \mathcal{L}_{β} onto the subspace of polynomials of degree $\leq N$, the degree N polynomial approximation of $\mathcal{A}_{\beta}^{(N)}$ using the PS of $\zeta(2 \beta+k, z+3)$:
$\tilde{\mathcal{A}}_{\beta}{ }^{(N)} f(z)=\sum_{n=0}^{N} z^{n} \sum_{k=0}^{N} a_{k}\left[\frac{(-1)^{n+k}(2 \beta+k)_{n} \zeta(2 \beta+k+n, 3)}{n!}\right]$
and we can represent this operator by a $N \times N$-matrix. Analytic functions have convergent Power series and hence \mathcal{B} can be approximated by spaces of polynomials, P_{N} and

$$
\mathcal{A}_{\beta}^{(N)}=\mathcal{L}_{\beta \mid P_{N}} \rightarrow \mathcal{L}_{\beta} .
$$

