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What is Known for the Modular Group

Geodesic Flow on S (I'\'H) Closed geodesics on N'\'H
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!
Transfer Operator — Functional Equation
| (Dynamics or Reduction) | (Bruggeman-Lewis-Zagier)
Selberg Zeta Function Cohomology
|STF(implicit) | (explicit)

Maass waveforms



Introduction

Current Status

Our aim is to

@ Generalize everything from PSL(2,7Z) (q = 3) to Hecke
Triangle Groups Gg, q # 3.

Current Status

@ Good candidate for Continued Fractions and Reduction.
@ A Transfer Operator related to the Selberg Zeta Function.
@ Partial results for Functional Equations and cohomology.
@ We have yet to:

e Find an explicit crossection and first return map.

e Prove uniqueness of identified orbits for g # 3.

e Connect Maass forms explicit to this representation of the
cohomology for g # 3.
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Hecke Triangle Groups

Let g > 3 and
A= \g=2c0S (g)

Gq - <S7 T) ’
S2 = (ST)7 = Id

v
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Introduction

Geodesics on Gg\'H

@ v =lift of v* on Gy\'H |

@ ~* closed < ~. pair of I
hyp. fixpts. of Gg.

@ ~, = attracting |

@ v_ =repelling

@ End points coded by
Continued Fractions

v-032 v = [0=23]
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Continued Fractions

Continued Fractions

The classical “+”, Gauss, or simple CF

For x € R:

X = [ap; a1, 8p,...] = a +

,a €7Z,a>0,j>0.
a + ! !

1
ar+---

@ Used by Artin (code modular billiard flow), Mayer (transfer
operator), etc.

@ A slight problem: z — 1 has determinant —1 in PGL(2,R).

@ A major problem: The generalization to g > 3 gives a bad
(non trace-class) Transfer operator.
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Continued Fractions

General A (or Gg)-Continued Fractions.

We identify a sequence of integers, {aj}j>o, with

x=T®ST#ST%...(0) = ap\ — €R,

31)\—L

and say that it is a

@ non-regular (formal) CF, [[ag; a1, @, . . .]], € Ain general.

@ regular CF, [ag; ay, @, . . .], € ARreg, if it is generated by
some function or satisfies some “regularity conditions” (e.g.
avoids certain “forbidden blocks”).

Repetitions in a CF are denoted by powers (finite) or bars
(infinite).
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Continued Fractions

Nearest \-multiple Fractions

@ From now on, consider the Nearest A\-CF (Hurwitz for
g = 3 and Nakada for g > 3).

@ Write A = A and let (x) = | £ + } | be the nearest
A-multiple of x.

Example
Here A3 = 1, Ag = v2, ds = 155 \g = /3, etc.

o 1=[1]; = [1;ﬂ4: [1;1]5 = [1;1,2]6: (11,1, =---
Note that finite/eventually periodic CFs correspond to
parabolic/hyperbolic points (i.e. rational/quadratic irrational for
g = 3, much harder to characterize for ¢ > 3, i.e. cusps=Q (\)
only for g = 3 and 5).
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Continued Fractions

The Generating Map

Definition (Generating Map)
Let Iy = [—%,3]. The map fy : Lq — Iy defined by

fq(x):_1—<_x1>>\ x € I

X

is a generating map for the nearest \-multiple CF.
If x =[0;a1az...], then {an} is obtained by setting x; = x and
then recursively for n > 1:
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Continued Fractions

Action by f,

The map fy acts by a left-shift on regular A\-CF’s inside /g, i.e. if
x =[0;a1,ap,...] € Areg, then

—1
fa(x) = T_a1SX:7—.31)\:[0;82,83,...],
f5(x) = [0 aks1, 82, ], k> 2.

We extend the map f; by setting fy (x) = x — (x) A for x & 1.

Definition

For x € R we denote the fy-orbit of x inside /, by

 (w k>0, x€ly,
O(X)—{fq(X)},{kZL oy
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Continued Fractions

Examples of Generating Maps

Nearest A-mult. =4
1 2 3456 f,w.q—a - 12 3458 W T
07 1T T 08 7 T T T 7 7
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Black boxes = partition of unique set of inverses, orbit of &2
Markov partition = {Zp} 7. Zn = {X € Ig| fq(X) = 51 — nA}.



Introduction
000000e

Continued Fractions

Properties of Nearest A-multiple CF

@ If A€ Gy is hyperbolic it is equivalentto ST#ST?2 ... ST#
with fixedpoints x, X s.t.
o x=[0;a1,az,...,al] € Areg and
] %: [[O;a,,a,_1,...7a1 ] cA.

Theorem (Conjecture for g > 3, Theorem for g = 3)

Ifx=[0;2ar,az,....a] ~g, ¥ = [0; b1, b2, ..., bx] € Apeg either
O(x)=0(y),orO(x)=0(R) and O(y) = O (—R) (or vice
versa) where 3 < R < 1 is given by

R— [1;1,,’2’1,7,1’2}’ g=2h+3>5, odd,
1:[1;1”*1,2}, qg=2h+2, even.
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Reduction Theory

Reduction Theory

There exist a domain Q2 = UJ; x K; with the following properties:

@ Any closed geodesic in H is
Gq' equwalent.to a Nearest integer fractions ¢ =3, A =1 ~
¥ ~ (4, 7-) with —
-1 05
(’7“'?77 ) e Q 04 %

03

@ The endpoints of the J;
coincide with O (+3).  °
@ The endpoints of the K;  «
(heights) coincide with
O (£R). w ‘ ‘ :

—05 —-03 —0.1 0.1 03 0|5
° [y |>F>1.

®




The domain €.

Nearest A,-multiple fractions ¢ =5, A = % <1 + \/5)

ﬁ:fg(R):A—R

_ Mk
IHRITT
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Reduction Theory

Reduction of Geodesics

Definition
The set of Reduced Geodesics

. 1
XRed = {'y closed geodesic of Gq \ v~ (%, 7) € Q}
~ {[0;a1,a,...,a/]regular|/>1}

@ fy maps any closed geodesic vy (eventually) into Xreq, and
@ fy(XRed) € ARed-

@ XReq falls into f3-equivalence classes, O (), and up to
O (y+r) (r = A — R) these are also Gg-equivalence classes.

@ Let VRed = fg\XRed @and Vg = Gg\ARed-
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The Transfer Operator for the Interval Map

Transfer Operator for f,

The Transfer (Generalized Perron-Frobenius) Operator
for the interval map fy : Iy — Iq is defined as

Lof(x)= )

yefy (%)

Example: The Perron-Frobenius operator L4

If 114 is the invariant density for f; then

B

dfq_1(x) ).

ax

['1 Hg = Mg and
L£Yf — pugqexponentially as / — oo

for almost all f (in some Banach space with sup norm).
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The Transfer Operator for the Interval Map

The Principal Series Representation

The principal series representation g

For A= (25) € PGL(2,R), s € C and f defined in a nbhd of R

s (A) K(2) = ((cz + d)2>_sf <az + b> .

cz+d
Let D be a disk and consider the B-Space (with sup norm)
B (D) = {f|fanalytic in Dand cont. in D} .

If Ais hyperbolic with norm A (A) and A (D) c D then s (A) is
nuclear (Grothendieck) and has trace (easy exercise)

Tefrs(A)] = 12 o
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The Transfer Operator for the Interval Map

The Transfer Operator for f;

Forx =[0;a1,a...] € Apeg and R3 > 3

Lof(x)= > m(ST")f(x).

N.X€AReg

We sumoverne Zs.tn.x :=[0;n,ay,a...] € Areg and

Lyf(x)= ) w(STMST™...ST")(x).

(n1...n1) . XEAReg

Reduction Theory = A; = ST™ --- ST" is hyperbolic and
A ~ [0; N7, ] ~ 7y € XRed!
@ Let D be adisk based on / = [~ £, %J O lg. Then Dis
invariant for all Az appearing in the £ !
@ We will work on products of the Banach space, B (D).
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The Trace of L3 and Connection with Selberg Zeta Function

Trace and Fredholm Determinant of £;

For R > % the operator Eg is nuclear of order zero, and

@ has trace
TeL);, = > Trrg (STMST™ ... ST™)
[O?W]EAReg
_ Z N(y)™?
1T —=N(y)

{7}€VRea;l(7)=/
@ and Fredholm determinant given by
o | o 1 N~
_LOgdet 1 —Eﬁ 27 ZT Z W
I=1 I=1 {v}€VRea(v)=!

Here/fy) lif v~ [0;a1a:. .. aj] € Areg and
N(y)=N (ST ...STa).
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The Trace of L3 and Connection with Selberg Zeta Function

The Selberg Zeta function for Gq

For Rs > 1 trivial manipulations yield:

~LogZ(s) = ~Log| ] TI(1-N(w0)*")

{v0}€Prim.Hyp. k=0

o=t N (7)°
-2 1-N() "

I=1 " {v}eVRea*,I(7)=!
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The Trace of L3 and Connection with Selberg Zeta Function

Connecting LogZ(s) and det (1 — L)

@ L5 ~ sum over Vred (fg-equivalence classes)
@ Z(s) ~ sum of Vi 4 (Gg-equivalence classes), hence

—LogZ(s) = i} (Trﬁ’s - TrlCé)

= —Logdet(1 — Ls) + Logdet(1 — Ks),

where K correspond t0 VRed \ Vgeq-
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The Trace of L3 and Connection with Selberg Zeta Function

The Auxillary Operator K

If ~, is the hyperbolic fixing r = —R + A we conjecture (know for
q = 3) that

K =m5 (v-r)-

det (1 — K) has no poles and only simple zeros at

@ Bnk=—n+ In(szr))’ n>0kelZ.

The zeros of det (1 — KCg) are thus known explicitly!
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The Trace of L3 and Connection with Selberg Zeta Function

The “Main Theorem” of the Transfer operator method

Forpg e C
det(1 — Lg) = Z(B)det(1 — Kps),

where (conjecturally for q > 3) Kz = g (v—r).

Proof.
@ For 13 > 1 this follows from the above simple calculations.

@ Writing L3 in terms of Hurwitz Zeta functions gives a
meromorphic continuation.

© This gives us the desired identity in the rest of C.

[Incidentally this also proves the meromorphic continuation of

Z(p).]

Ol
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Implications of the Main Theorem

Implications

Corollary

@ Ls has eigenvalue 1 if and only if Z(3) = 0 for 3 # B k-

@ L3 has unbounded eigenvalues as 3 — 3y € C only if
Z (B) has a pole at 5 = (.

@ At =0,-1,-2,... Lg has eigenvalue 1 of the same
order as the zero of Z () +1.
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Implications of the Main Theorem

What about eigenvalue 1?

@ What can we deduce about the poles and eigenvalue= 1
of ,Cg’?

e [ =1 corresponding to the invariant measure gives a
simple eigenvalue 1.

e We can see the poles at all 8 € 3,
order (=1) (theoretically for g = 3).

e Atthe negative integers it is possible to compute the correct
order of eigenvalue 1 either manually (the first few) or with
computer aid (a few more) by finding correct dimension of
spaces of eigenfunctions (polynomials) (g = 3,4,5,6,7).

1

—%,—3,... to the correct

@ Unfortunately, except for the contribution from Kz we can
not say much about 5 € R, e.g. especially 3 = % (Maass
forms) and forq =3 RG = % (Riemann zeros).
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Computational Aspects

Comparison Of Comp. Methods (Maass forms)

Automorphy (standard) Transfer Operator

@ Real Analytic Theory. @ Holomorphic Theory.

@ Fourier S. = Fast conv. @ Power S. = Slow conv.

@ K-Bessel @ Riemann (.

@ Heuristic tests depend @ )\3 depends analytically
continuously on R € R. on g e C.

@ Solve AgX = X. @ Solve AgX = )X (and

@ Rigorous methods by try to find Ag = 1).
Booker-Strémbergsson- @ Argument principle (in
Venkatesh. absence of poles of )

and norm estimates.
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Computational Aspects

Numerical Verifications

The following were verified:

@ Forqg e {3,4,5,6,7} all Laplace-eigenvalues up to p = 14
(A = 1 + ip) given by the Automorphy method to the
predicted accuracy.

@ For g = 3, 80 digits of the first R as given by
Booker-Strémbergsson-Venkatesh.

@ The Zeros p of the scattering matrix (here scalar) gives
1 — p as zeros of Z(s) and:

o Forq=23:28=1+ipwith } + ip the first few zeros of
Riemann Zeta Function (from Odlyzkos tables). (The first

two to 105 digits).
e For g =5 The first 7 values of p (zeros of ¢ (s)) in Helen
Avelins work to her stated accuraccy (14-15 digits).
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Implemented Extensions

Extensions: Consider Selberg Zeta Functions

@ Finite-index subgroups of I' C Gg,
zZs) = I TI( -V,
~y€Prim.Hyp. k>0

where xr is induced by the trivial rep. of ' C Gg, and
@ PSL(2,7Z) with non-trivial Multiplier v,

Z)= I TI(1-veNm=7).

~yePrim.Hyp. k>0

@ The corr. transfer operators are obtained by replacing
s (7y) with

T8 (7) = xr () 7s (7), and 7E* (v) = v (1) s (), resp.
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Implemented Extensions

Extensions: Worked Out

@ Numerically, characters and multipliers lead to Lerch Zeta
Functions,

L(Ajs,z):i(ﬂm\)s

s(z+n)
@ For rational weights X is rational and L is a sum of Hurwitz
Zeta functions.
@ Explicit expressions have been worked out for

e y(p) C PSL(2,Z), p prime, and
e PSL(2,Z) with v, and rational weight k.

@ Some of these cases have also been tested numerically,
e.glyg (p) for p < 31 and PSL(2,7) with weight
k=133 -
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Movie

An Animation of Eigenvalues \; forq =5, 8 = % + ip.

Hearest Integer Hap, q9=5, b=1/2+iR
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Explicit computations of £ 3 by Example

Explicit Form of Lz is needed for

Nearest A-mult. £, g=15
2 3 4 -3 -2

@ Numerical computations. 2 345
. . . e // “\ ”\ T T
@ Meromorphic continuation. A I
0.57s] / [ ‘
The explicit form of L£zf(x) — H“ H‘l c‘ -
| |
depends on x. 02 / [ H‘ \‘M
We representing f as fx in Jx — i “ i y
and let L3 act on a product of 5| [ ‘ U“ ;‘ /
Banach-spaces — CH i 7
—0.5 J5 | | H“\ “ | /
/ | [ /
; \H 717/
~08 [ 111N /
—og " As 2 of 03 % o
H

(Lsf (x Z Z 75 (ST™) f; (X)
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Explicit computations of £ 3 by Example

Example of Explicit Representation

Example: Let g = 3 then the dimension is 2 and
R= _“2”/5 = [1;3]

Recall the definition of 5 ((25)) (2) = (cz + d) ' f (%£2).

o= (B Emene) ()

@ The building blocks are always of the type > 7g (ST")!

@ Using a simple example we will demonstrate the
meromorphic continuation to ®3 > — 4.
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Explicit computations of £ 3 by Example

Continuation of Example

Example: Continued

Let N > 1 consider one of the “primitive” operators, e.g.
Ls = (Ls)yy

_ (1 N\, [
Lﬁfzzwﬁ(srn)f:2<z+n> f<z+n

n=3 n=3

: +
- 1
0(1)Z(z+n> +2_a(-1) Z(z+n
n=3 k=0 n=3

S ) ) o))

ples and Results
[e]o] le]e]e]
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Explicit computations of £ 3 by Example

Continuation of Example

Example: Continued

Note that the Hurwitz Zeta function is

> 1
C(S,Z)sz, Rs > 1

n=1

and it has a meromorphic continuation to C with a simple pole
at s =1 and residue 1.
By analytic continuation we also have a power series expansion

((sz+1)=)_ (S)n(1)n!g(s+ M) gn,

n=0
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Explicit computations of £ 3 by Example

Continuation of Example

Example: Continued

£V#(z) = 0(1)¢ (28 + N +1,z+3)

e is analytic in R3 > — 4,
@ annihilates polynomials of deg. < N.

N
P, _ 5 90)

As " (—1)*¢(28+k,z+3)

k=0

@ is of finite rank, and
@ has simple poles at fx = 155, k =0,1,2,...,N.

One can show that all poles of Lz arise like this.
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Explicit computations of £ 3 by Example

Continuation of Example

Example: Numerical implementation for g = 3

Project L3 onto the subspace of polynomials of degree < N,
the degree N polynomial approximation of A(BN) using the PS of

¢(26+ k,z+ 3):

" NN —1)"™K (28 + k). (26 + k
(N) Zznzak (=) (26 + ),,;!C(ﬂ—i- +n,3)

and we can represent this operator by a N x N-matrix.
Analytic functions have convergent Power series and hence B
can be approximated by spaces of polynomials, Py and

N
.A/(@ ) = Eﬂ‘pN - ,C/g.




