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What is Known for the Modular Group

Geodesic Flow on S (Γ\H) Closed geodesics on Γ\H
↓ ↓

Cross section & Return Map Continued Fractions
↓ ↓

Interval Map ← Reduction Theory
↓

Transfer Operator −→ Functional Equation
↓ (Dynamics or Reduction) ↓ (Bruggeman-Lewis-Zagier)

Selberg Zeta Function Cohomology
↓STF(implicit) ↓ (explicit)

Maass waveforms
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Current Status

Our aim is to
Generalize everything from PSL(2, Z) (q = 3) to Hecke
Triangle Groups Gq, q 6= 3.

Current Status
Good candidate for Continued Fractions and Reduction.
A Transfer Operator related to the Selberg Zeta Function.
Partial results for Functional Equations and cohomology.
We have yet to:

Find an explicit crossection and first return map.
Prove uniqueness of identified orbits for q 6= 3.
Connect Maass forms explicit to this representation of the
cohomology for q 6= 3.
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Hecke Triangle Groups

Let q ≥ 3 and
λ = λq = 2 cos

(
π
q

)
S =

(
0 −1
1 0

)
,

T =

(
1 λ
0 1

)
.

Gq = 〈S, T 〉 ,

S2 = (ST )q = Id
−λ

2
λ

2

i

T
S

π

q
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Geodesics on Gq\H

γ = lift of γ∗ on Gq\H
γ∗ closed⇔ γ± pair of
hyp. fixpts. of Gq.
γ+ = attracting
γ− = repelling
End points coded by
Continued Fractions

i

γ+ =
[
0−3,−2

]
γ
−1
− =

[[
0−2,−3

]]

γ

γ∗
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Continued Fractions

Continued Fractions

The classical “+”, Gauss, or simple CF
For x ∈ R:

x = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+···

, aj ∈ Z, aj≥0, j > 0.

Used by Artin (code modular billiard flow), Mayer (transfer
operator), etc.
A slight problem: z → 1

z has determinant −1 in PGL(2, R).
A major problem: The generalization to q > 3 gives a bad
(non trace-class) Transfer operator.
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Continued Fractions

General λ (or Gq)-Continued Fractions.

Definitions

We identify a sequence of integers,
{

aj
}

j≥0, with

x = T a0ST a1ST a2 · · · (0) = a0λ−
1

a1λ− 1
. . .

∈ R,

and say that it is a

non-regular (formal) CF, [[a0; a1, a2, . . .]]λ ∈ A in general.
regular CF, [a0; a1, a2, . . .]λ ∈ AReg, if it is generated by
some function or satisfies some “regularity conditions” (e.g.
avoids certain “forbidden blocks”).

Repetitions in a CF are denoted by powers (finite) or bars
(infinite).
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Continued Fractions

Nearest λ-multiple Fractions

From now on, consider the Nearest λ-CF (Hurwitz for
q = 3 and Nakada for q > 3).
Write λ = λq and let (x) =

⌊ x
λ + 1

2

⌋
be the nearest

λ-multiple of x .

Example

Here λ3 = 1, λ4 =
√

2, λ5 = 1+
√

5
2 , λ6 =

√
3, etc.

1 = [1]3 =
[
1; 2
]

4 = [1; 1]5 =
[
1; 1, 2

]
6 = [1; 1, 1]7 = · · ·

Note that finite/eventually periodic CFs correspond to
parabolic/hyperbolic points (i.e. rational/quadratic irrational for
q = 3, much harder to characterize for q > 3, i.e. cusps=Q (λ)
only for q = 3 and 5).
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Continued Fractions

The Generating Map

Definition (Generating Map)

Let Iq =
[
−λ

2 , λ
2

]
. The map fq : I:q → Iq defined by

fq(x) =
−1
x
−
(
−1
x

)
λ, x ∈ Iq

is a generating map for the nearest λ-multiple CF.
If x = [0; a1a2 . . .]λ then {an} is obtained by setting x1 = x and
then recursively for n ≥ 1:

an =

(
−1
xn

)
,

xn+1 = fq (xn) =
−1
xn
− anλ.
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Continued Fractions

Action by fq

The map fq acts by a left-shift on regular λ-CF’s inside Iq, i.e. if
x = [0; a1, a2, . . .] ∈ AReg, then

fq (x) = T−a1Sx =
−1
x
− a1λ = [0; a2, a3, . . .] ,

f k
q (x) = [0; ak+1, ak+2, . . .] , k ≥ 2.

We extend the map fq by setting fq (x) = x − (x) λ for x 6∈ Iq.

Definition
For x ∈ R we denote the fq-orbit of x inside Iq by

O (x) =
{

f k
q (x)

}
,

{
k ≥ 0, x ∈ Iq,

k ≥ 1, x 6∈ Iq.
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Continued Fractions

Examples of Generating Maps

Black boxes = partition of unique set of inverses, orbit of ±λ
2 .

Markov partition = {In}n∈Z , In =
{

x ∈ Iq | fq (x) = −1
x − nλ

}
.

Nearest λ-mult. fq, q = 5
−9−8−7−6−5−4−3 −2

−1

1 2 3 456789

−0.8 −0.5 −0.2 0.2 0.5 0.8
−0.8

−0.5

−0.2

0.2

0.5

0.8

J1 J2 J3 J6J5J4

J1

J2

J3

J6

J5

J4

Nearest λ-mult. fq, q = 4
−7−6−5−4 −3 −2

−1

1 2 3 4567

−0.7 −0.4 −0.1 0.1 0.4 0.7
−0.7

−0.4

−0.1

0.1

0.4

0.7

J1 J2

J1

J2
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Continued Fractions

Properties of Nearest λ-multiple CF

If A ∈ Gq is hyperbolic it is equivalent to ST a1ST a2 · · ·ST al

with fixedpoints x , x s.t.
x = [0; a1, a2, . . . , al ] ∈ AReg and
1
x = [[0; al , al−1, . . . , a1]] ∈ A .

Theorem (Conjecture for q > 3, Theorem for q = 3 )

If x = [0; a1, a2, . . . , al ] ∼Gq y =
[
0; b1, b2, . . . , bk

]
∈ AReg either

O (x) = O (y) , or O (x) = O (R) and O(y) = O (−R) (or vice
versa) where λ

2 < R ≤ 1 is given by

R =


−1+

√
5

2 =
[
1; 3
]
, q = 3,[

1; 1h, 2, 1h−1, 2
]
, q = 2h + 3 ≥ 5, odd,

1 =
[
1; 1h−1, 2

]
, q = 2h + 2, even.



Introduction The Transfer Operator Examples and Results

Reduction Theory

Reduction Theory

Nearest integer fractions q = 3, λ = 1
R = −1+

√
5

2

Ω

1−R = 3−
√

5
2

−0.5 −0.3 −0.1 0.1 0.3 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Any closed geodesic in H is
Gq- equivalent to a
γ ∼ (γ+, γ−) with(
γ+, γ−1

−

)
∈ Ω.

The endpoints of the Ji
coincide with O

(
±λ

2

)
.

The endpoints of the Ki
(heights) coincide with
O (±R).
|γ−| ≥ 1

R ≥ 1.

There exist a domain Ω = ∪Ji × Ki with the following properties:



The domain Ω.

Nearest λq-multiple fractions q = 5, λ = 1
2

(
1+
√

5
)

λ−21−λ 2−λ λ−1

R

L1 = f 3
q (R) = λ+R

2λ(1+R)+1

L2 = fq(R) = 1
λ+R

L3 = f 2
q (R) = λ−R

Ω

−0.8 −0.5 −0.2 0.2 0.5 0.8

−0.8

−0.6

−0.5

−0.3

−0.2

0

0.2

0.3

0.5

0.6

0.8
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Reduction Theory

Reduction of Geodesics

Definition
The set of Reduced Geodesics

XRed =

{
γ closed geodesic of Gq

∣∣ γ ∼ (γ+,
1
γ−

)
∈ Ω

}
' {[0; a1, a2, . . . , al ] regular | l ≥ 1}

fq maps any closed geodesic γ (eventually) into XRed, and
fq (XRed) ⊆ XRed.
XRed falls into fq-equivalence classes, O (γ), and up to
O (γ±r ) (r = λ−R) these are also Gq-equivalence classes.
Let YRed = fq\XRed and Y∗Red = Gq\XRed.
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The Transfer Operator for the Interval Map

Transfer Operator for fq

The Transfer (Generalized Perron-Frobenius) Operator
for the interval map fq : Iq → Iq is defined as

Lβf (x) =
∑

y∈f−1
q (x)

∣∣∣∣∣df−1
q (x)

dx

∣∣∣∣∣
β

f (y) .

Example: The Perron-Frobenius operator L1

If µq is the invariant density for fq then

L1µq = µq, and
Ll

1f → µq exponentially as l →∞

for almost all f (in some Banach space with sup norm).
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The Transfer Operator for the Interval Map

The Principal Series Representation

The principal series representation πs

For A =
(

a b
c d

)
∈ PGL(2, R), s ∈ C and f defined in a nbhd of R

πs (A) f (z) =
(
(cz + d)2

)−s
f
(

az + b
cz + d

)
.

Let D be a disk and consider the B-Space (with sup norm)

B (D) =
{

f | f analytic in D and cont. in D
}

.

If A is hyperbolic with norm N (A) and A
(
D
)
⊂ D then πs (A) is

nuclear (Grothendieck) and has trace (easy exercise)

Tr [πs(A)] =
N (A)−s

1−N (A)−1 ,
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The Transfer Operator for the Interval Map

The Transfer Operator for fq

For x = [0; a1, a2 . . .] ∈ AReg and <β > 1
2

Lβf (x) =
∑

n.x∈AReg

πβ (ST n) f (x).

We sum over n ∈ Z s.t n.x := [0; n, a1, a2 . . .] ∈ AReg and

Ll
βf (x) =

∑
(n1...nl ).x∈AReg

πβ (ST n1ST n2 · · ·ST nl ) f (x).

Reduction Theory⇒ A~n = ST n1 · · ·ST nl is hyperbolic and
A~n ∼ [0; n1, . . . , nl ] ∼ γ ∈ XRed!

Let D be a disk based on I =
[
− 1

R , 1
R

]
⊃ Iq. Then D is

invariant for all A~n appearing in the Ll
β!

We will work on products of the Banach space, B (D).
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The Trace of Lβ and Connection with Selberg Zeta Function

Trace and Fredholm Determinant of Lβ

For <β > 1
2 , the operator Ll

β is nuclear of order zero, and

has trace

TrLl
β =

∑
[0;n1n2...nl ]∈AReg

Trπβ (ST n1ST n2 . . . ST nl )

=
∑

{γ}∈YRed,l(γ)=l

N (γ)−β

1−N (γ)−1

and Fredholm determinant given by

−Log det (1− Lβ) =
∞∑

l=1

1
l

TrLl
β =

∞∑
l=1

1
l

∑
{γ}∈YRed,l(γ)=l

N (γ)−β

1−N (γ)−1 .

Here l (γ) = l if γ ∼ [0; a1a2 . . . al ] ∈ AReg and
N (γ) = N (ST a1 . . . ST al ).
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The Trace of Lβ and Connection with Selberg Zeta Function

The Selberg Zeta function for Gq

For <s > 1 trivial manipulations yield:

−LogZ (s) = −Log

 ∏
{γ0}∈Prim.Hyp.

∞∏
k=0

(
1−N (γ0)

−s−k
)

...

=
∞∑

l=1

1
l

∑
{γ}∈YRed

∗,l(γ)=l

N (γ)−s

1−N (γ)−1 .
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The Trace of Lβ and Connection with Selberg Zeta Function

Connecting LogZ (s) and det (1− Lβ)

Ls ∼ sum over YRed (fq-equivalence classes)
Z (s) ∼ sum of Y∗Red (Gq-equivalence classes), hence

−LogZ (s) =
∞∑

l=1

1
l

(
TrLl

s − TrKl
s

)
= −Log det (1− Ls) + Log det (1−Ks) ,

where Ks correspond to YRed r Y∗Red.
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The Trace of Lβ and Connection with Selberg Zeta Function

The Auxillary Operator Kβ

If γr is the hyperbolic fixing r = −R + λ we conjecture (know for
q = 3) that

Kβ = πβ (γ−r ) .

Theorem
det (1−Kβ) has no poles and only simple zeros at

βn,k = −n + 2πik
ln(γ′r (−r)) , n ≥ 0, k ∈ Z.

The zeros of det (1−Kβ) are thus known explicitly!
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The Trace of Lβ and Connection with Selberg Zeta Function

The “Main Theorem” of the Transfer operator method

Theorem
For β ∈ C

det (1− Lβ) = Z (β) det (1−Kβ) ,

where (conjecturally for q > 3) Kβ = πβ (γ−r ).

Proof.
1 For <β > 1 this follows from the above simple calculations.
2 Writing Lβ in terms of Hurwitz Zeta functions gives a

meromorphic continuation.
3 This gives us the desired identity in the rest of C.

[Incidentally this also proves the meromorphic continuation of
Z (β).]
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Implications of the Main Theorem

Implications

Corollary

Lβ has eigenvalue 1 if and only if Z (β) = 0 for β 6= βn,k .
Lβ has unbounded eigenvalues as β → β0 ∈ C only if
Z (β) has a pole at β = β0.
At β = 0,−1,−2, . . . Lβ has eigenvalue 1 of the same
order as the zero of Z (β) +1.
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Implications of the Main Theorem

What about eigenvalue 1?

What can we deduce about the poles and eigenvalue= 1
of Lβ?

β = 1 corresponding to the invariant measure gives a
simple eigenvalue 1.
We can see the poles at all β ∈ 1

2 ,− 1
2 ,− 3

2 , . . . to the correct
order (=1) (theoretically for q = 3).
At the negative integers it is possible to compute the correct
order of eigenvalue 1 either manually (the first few) or with
computer aid (a few more) by finding correct dimension of
spaces of eigenfunctions (polynomials) (q = 3, 4, 5, 6, 7).

Unfortunately, except for the contribution from Kβ we can
not say much about β 6∈ R, e.g. especially <β = 1

2 (Maass
forms) and for q = 3 <β = 1

4 (Riemann zeros).
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Computational Aspects

Comparison Of Comp. Methods (Maass forms)

Automorphy (standard)

Real Analytic Theory.
Fourier S. = Fast conv.
K -Bessel
Heuristic tests depend
continuously on R ∈ R.
Solve AR

~X = ~X .
Rigorous methods by
Booker-Strömbergsson-
Venkatesh.

Transfer Operator

Holomorphic Theory.
Power S. = Slow conv.
Riemann ζ.
λβ depends analytically
on β ∈ C.
Solve Aβ

~X = λβ
~X (and

try to find λβ = 1).
Argument principle (in
absence of poles of ϕ)
and norm estimates.
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Computational Aspects

Numerical Verifications

The following were verified:

For q ∈ {3, 4, 5, 6, 7} all Laplace-eigenvalues up to ρ = 14
(λ = 1

4 + iρ) given by the Automorphy method to the
predicted accuracy.
For q = 3, 80 digits of the first R as given by
Booker-Strömbergsson-Venkatesh.
The Zeros ρ of the scattering matrix (here scalar) gives
1− ρ as zeros of Z (s) and:

For q = 3: 2β = 1
2 + iρ with 1

2 + iρ the first few zeros of
Riemann Zeta Function (from Odlyzkos tables). (The first
two to 105 digits).
For q = 5 The first 7 values of ρ (zeros of ϕ (s)) in Helen
Avelins work to her stated accuraccy (14-15 digits).
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Implemented Extensions

Extensions: Consider Selberg Zeta Functions

Finite-index subgroups of Γ ⊂ Gq,

ZΓ(s) =
∏

γ∈Prim.Hyp.

∏
k≥0

(
1− χΓ (γ)N (γ)−s−k

)
,

where χΓ is induced by the trivial rep. of Γ ⊂ Gq, and
PSL(2, Z) with non-trivial Multiplier v ,

Zv ,k (s) =
∏

γ∈Prim.Hyp.

∏
k≥0

(
1− v (γ)N (γ)−s−k

)
.

The corr. transfer operators are obtained by replacing
πs (γ) with

πΓ
s (γ) = χΓ (γ) πs (γ) , and πv ,k

s (γ) = v (γ) πs (γ) , resp.
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Implemented Extensions

Extensions: Worked Out

Numerically, characters and multipliers lead to Lerch Zeta
Functions,

L (λ, s, z) =
∞∑

n=0

e (nλ)

(z + n)s

For rational weights λ is rational and L is a sum of Hurwitz
Zeta functions.
Explicit expressions have been worked out for

Γ0 (p) ⊂ PSL(2, Z), p prime, and
PSL(2, Z) with vη and rational weight k .

Some of these cases have also been tested numerically,
e.g Γ0 (p) for p ≤ 31 and PSL(2, Z) with weight
k = 1, 1

2 , 1
4 , 1

10 .
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Movie

An Animation of Eigenvalues λβ for q = 5, β = 1
2 + iρ.
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Explicit computations of Lβ by Example

Explicit Form of Lβ is needed for

(Lβf (x))i =
H∑

j=1

∑
n∈Iij

πβ (ST n) fj (x)

Nearest λ-mult. fq, q = 5
−9−8−7−6−5−4−3 −2

−1

1 2 3 456789

−0.8 −0.5 −0.2 0.2 0.5 0.8
−0.8

−0.5

−0.2

0.2

0.5

0.8

J1 J2 J3 J6J5J4

J1

J2

J3

J6

J5

J4

Numerical computations.
Meromorphic continuation.

The explicit form of Lβf (x)
depends on x .
We representing f as fk in Jk
and let Lβ act on a product of
Banach-spaces
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Explicit computations of Lβ by Example

Example of Explicit Representation

Example: Let q = 3 then the dimension is 2 and
R = −1+

√
5

2 =
[
1; 3
]

Recall the definition of πβ

((
a b
c d

))
f (z) = (cz + d)−2β f

(
az+b
cz+f

)
.

Lβ
~f =

( ∑∞
n=3 πβ (ST n)

∑−∞
n=−2 πβ (ST n)∑∞

n=2 πβ (ST n)
∑−∞

n=−3 πβ (ST n)

)(
f1
f2

)

The building blocks are always of the type
∑

πβ (ST n)!
Using a simple example we will demonstrate the
meromorphic continuation to <β > −N

2 .
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Explicit computations of Lβ by Example

Continuation of Example

Example: Continued
Let N ≥ 1 consider one of the “primitive” operators, e.g.
L̃β = (Lβ)11:

L̃βf =
∞∑

n=3

πβ (ST n) f =
∞∑

n=3

(
1

z + n

)2β

f
(
−1

z + n

)

=
∞∑

n=3

(
1

z + n

)2β
[

N∑
k=0

ak

(
−1

z + n

)k

+ O

((
1

z + n

)N+1
)]

= O(1)
∞∑

n=3

(
1

z + n

)2β+N+1

+
N∑

k=0

ak (−1)k
∞∑

n=3

(
1

z + n

)2β+k

= L̃(N)
β f + Ãβ

(N)
f .
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Explicit computations of Lβ by Example

Continuation of Example

Example: Continued
Note that the Hurwitz Zeta function is

ζ (s, z) =
∞∑

n=1

1
(z + n)s , <s > 1

and it has a meromorphic continuation to C with a simple pole
at s = 1 and residue 1.
By analytic continuation we also have a power series expansion

ζ (s, z + 1) =
∞∑

n=0

(s)n (−1)n ζ (s + n)

n!
zn.
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Explicit computations of Lβ by Example

Continuation of Example

Example: Continued

L̃(N)
β f (z) = O(1)ζ (2β + N + 1, z + 3)

is analytic in <β > −N
2 ,

annihilates polynomials of deg. ≤ N.

Ãβ
(N)

f =
N∑

k=0

f (k)(0)

k !
(−1)k ζ (2β + k , z + 3)

is of finite rank, and
has simple poles at βk = 1−k

2 , k = 0, 1, 2, . . . , N.

One can show that all poles of Lβ arise like this.
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Explicit computations of Lβ by Example

Continuation of Example

Example: Numerical implementation for q = 3
Project Lβ onto the subspace of polynomials of degree ≤ N,
the degree N polynomial approximation of A(N)

β using the PS of
ζ (2β + k , z + 3):

Ãβ
(N)

f (z) =
N∑

n=0

zn
N∑

k=0

ak

[
(−1)n+k (2β + k)n ζ (2β + k + n, 3)

n!

]

and we can represent this operator by a N × N-matrix.
Analytic functions have convergent Power series and hence B
can be approximated by spaces of polynomials, PN and

A(N)
β = Lβ|PN

→ Lβ.


