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Abstract. In this paper, we study the well-posedness of the problems of determining shaping
filters from combinations of finite windows of cepstral coefficients, covariance lags, or Markov param-
eters. For example, we determine whether there exists a shaping filter with a prescribed window of
Markov parameters and a prescribed window of covariance lags. We show that several such problems
are well-posed in the sense of Hadamard; that is, one can prove existence, uniqueness (identifia-
bility), and continuous dependence of the model on the measurements. Our starting point is the
global analysis of linear systems, where one studies an entire class of systems or models as a whole,
and where one views measurements, such as covariance lags and cepstral coefficients or Markov pa-
rameters, from data as functions on the entire class. This enables one to pose such problems in a
way that tools from calculus, optimization, geometry, and modern nonlinear analysis can be used to
give a rigorous answer to such problems in an algorithm-independent fashion. In this language, we
prove that a window of cepstral coefficients and a window of covariance coefficients yield a bona fide
coordinate system on the space of shaping filters, thereby establishing existence, uniqueness, and
smooth dependence of the model parameters on the measurements from data.
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1. Introduction. It is common to model a (real, zero-mean) stationary process
{y(t) | t ∈ Z} as a convolution

y(t) =

t∑
k=−∞

wt−kuk

of an excitation signal {u(t) | t ∈ Z}, which is a white noise, i.e., E{u(t)u(s)} = δts,
where δts is one if t = s and zero otherwise. In the language of systems and control,
under suitable finiteness conditions this amounts to passing the white noise u through
a linear filter with the transfer function w(z) having the Laurent expansion

w(z) =

∞∑
k=0

wkz
−k(1.1)

for all z ≥ 1, thus obtaining the process y as the output, as depicted in Figure 1.
In addition, we assume that w0 �= 0 and that w(z) is a rational function, the latter
assumption being the finiteness condition required in systems and control theory.
Such a filter will be called a shaping filter , and the coefficients w0, w1, w2, . . . will be
called the Markov parameters.
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W(z)
u y

Fig. 1. Representing a signal as the output of a black box.

Clearly, any shaping filter must be stable in the sense that w(z) has all of its poles
in the open unit disc. To begin, we also assume that all zeros are located in the open
unit disc. Such a shaping filter will be called a minimum-phase shaping filter.

Then the stationary stochastic process y has a rational spectral density

Φ(eiθ) = |w(eiθ)|2,
which is positive for all θ. It is well known that the spectral density has a Fourier
expansion

Φ(eiθ) = r0 + 2

∞∑
k=1

rk cos kθ,

where the Fourier coefficients

rk =
1

2π

∫ π

−π

eikθΦ(eiθ)dθ(1.2)

are the covariance lags rk = E{y(t+ k)y(t)}.
The spectral density Φ(z) is analytic in an annulus containing the unit circle and

has there the representation

Φ(z) = f(z) + f(z−1),

where f is a rational function with all of its poles and zeros in the open unit disc.
Hence, in particular, f is analytic outside the unit disc, and

f(z) =
1

2
r0 + r1z

−1 + r2z
−2 + r3z

−3 + · · · .(1.3)

Moreover,

Φ(eiθ) = 2Re{f(eiθ)} > 0

for all θ, and, therefore, f is a real function which maps {|z| ≥ 0} into the right
half-plane {Re z > 0}; such a function is called positive real. For this to hold, the
Toeplitz matrices

Tk =




r0 r1 · · · rk
r1 r0 · · · rk−1

...
...

. . .
...

rk rk−1 · · · r0


(1.4)

must be positive definite for k = 0, 1, 2, . . . .
Another way of representing the distribution of the stationary process is via the

so-called cepstrum

log Φ(eiθ) = c0 + 2

∞∑
k=1

ck cos kθ.(1.5)
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Fig. 2. A frame of speech for the voiced nasal phoneme [ng].

The Fourier coefficients

ck =
1

2π

∫ π

−π

eikθ log Φ(eiθ)dθ(1.6)

are known as the cepstral coefficients.
Finite windows of covariance lags and cepstral coefficients can be estimated from

an observed data record

y0, y1, y2, . . . , yN

of the process {y(t) | t ∈ Z}. In fact, a limited number of covariance lags can be
estimated via some ergodic estimate

rk =
1

N + 1− n

N−n∑
t=0

yt+kyk.(1.7)

However, we can only estimate

r0, r1, . . . , rn,(1.8)

where n << N , with some precision. A complementary set of observables are given
by the window

c0, c1, . . . , cn(1.9)

of cepstral coefficients. One topic considered in this paper is to investigate the con-
ditions under which these estimated coefficients can be used to determine minimum-
phase shaping filters, i.e., to determine the identifiability of such shaping filters from
covariance and cepstral windows.

As an example, to which we shall return several times in this paper, let us consider
a 30 ms frame of speech from the voiced nasal phoneme [ng], depicted in Figure 2.
Here N = 250, a typical sample length for a mobile telephone.

Figure 3 depicts a periodogram of this signal, i.e., a spectral estimate obtained by
fast Fourier transform. This spectral estimate can be modeled as a smooth spectral
envelope perturbed by contributions from an excitation signal. The spectral envelope
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Fig. 3. Periodogram for the voiced nasal phoneme [ng].
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Fig. 4. Cepstrum of voice speech signal.

corresponds to the shaping of the vocal tract, which is described by the minimum-
phase shaping filter.

As the Fourier transform of a convolution, the contributions of the shaping filter
and the excitation signal to the spectral estimate are multiplicative. If we consider the
logarithm of the spectral density Φ, the cepstrum, instead of Φ itself, the contribution
of the excitation signal is additively superimposed on the that of the shaping filter.

Figure 4 shows the estimated cepstral coefficients of a frame of voiced speech. A
contribution of the excitation signal is seen as spikes at multiples of the pitch period,
corresponding to approximately n0 = 57 in Figure 4. The spectral envelope can be
estimated from a finite window

c0, c1, . . . , cn(1.10)

of cepstral coefficients, where n < n0.

For minimum-phase shaping filters, the cepstral coefficients used in signal process-
ing are closely related to the Markov parameters w0, w1, w2, . . . defined by (1.1). In
more general systems problems, the minimum-phase requirement is relaxed to allow
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σ to be an arbitrary (monic) polynomial. In this case, a record

w0, w1, . . . , wn(1.11)

of Markov parameters are typically determined from the impulse response of an un-
derlying system and not from data such as a finite time series, and for this reason
Markov parameters can be quite useful in model reduction problems, starting from
an underlying system. Nonetheless, for minimum-phase shaping filters, the cepstral
coefficients used in signal processing are closely related to the Markov parameters
of the shaping filter w(z). Indeed, in section 6, we shall see that there is a one-to-
one correspondence between windows of cepstral and Markov parameters of the same
length.

In this paper, we are interested in the mathematical nature of the transformation
of measurements, such as covariance lags and cepstral coefficients or Markov parame-
ters, from data into the parameters of systems which produce such data. Our starting
point will be the global analysis of linear systems, where one studies an entire class of
systems or models as a whole and where one views measurements from data or model
parameters as functions on the entire class. This point of view has been pioneered in
[2, 4, 27, 16, 24]; see [5] for a survey. The central issue is whether the transformation
from a set of measurements, viewed as functions, to a set of model parameters is well-
posed, for example, in the sense of Hadamard. To be more precise, suppose the class
of models is the class of (minimum-phase) shaping filters of bounded degree. This
class can be viewed as a smooth manifold, for which any such shaping filter may be
viewed as a point, and on which the coefficients of the numerator and denominator
polynomials are a bona fide system of smooth coordinates on the global geometriza-
tion of this class of shaping filters. Matters being so, one can now ask, for example,
whether a window of cepstral coefficients and a window of covariance coefficients also
yield a bona fide coordinate system, so that, for example, the change of coordinates is
a transformation which is smooth, one-to-one, onto, and with a smooth inverse. That
is, the problem of passing from such data to models is indeed well-posed. Global
analysis enables one to pose such problems in a way that tools from calculus, opti-
mization, geometry, and modern nonlinear analysis can be used to give a rigorous
answer to such problems.

In the next section, we shall review some of the basic spaces of systems we will use
in our global analysis of certain transformations from data to models. In section 3,
we will state our principal results, which we then prove in the following sections.
These results focus on the identifiability of the models from collections of partial
windows of covariance lags, cepstral coefficients, and Markov parameters and the
questions of whether these parameters can be used to smoothly coordinatize spaces
of shaping filters. For example, in section 4, a partial window of covariance lags and
a partial window of cepstral coefficients are shown to jointly provide a system of local
coordinates for shaping filters in the context of the geometry of certain foliations on
the space of positive real functions.

In section 5, we prove that these are global coordinates, using methods from
convex optimization theory. These schemes begin with an extension of the maximum
entropy method, from the classical case of maximizing the zeroth cepstral gain to the
problem of maximizing a “positive” linear combination of the entire partial cepstral
window. This gives a new primal problem whose dual solves the rational covariance
extension problem. In section 6, we provide a fairly complete local and global analysis
of the use of a partial window of covariance lags and a partial window of cepstral
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coefficients. In lieu of a convex optimization argument, we used an extension of the
solution to the rational covariance extension problem and the Lefschetz fixed point
theorem as a generalization of the Brower fixed point theorem for the spaces of Schur
polynomials. We conclude the paper in section 7 with a discussion and illustrations
of the applications of some of these constructions to speech synthesis.

2. Some geometric representations of classes of models. Suppose the
positive real function f is given by

f(z) =
1

2

a(z)

b(z)
,(2.1)

where

a(z) = a0z
n + a1z

n−1 + · · ·+ an,

b(z) = b0z
n + b1z

n−1 + · · ·+ bn

are (real) polynomials of degree n. Clearly, a0 and b0 must have the same sign. We
assume that they are both positive. Then, since

f(z) + f(z−1) = w(z)w(z−1),

we must have

w(z) =
σ(z)

a(z)
,(2.2)

where

σ(z) = σ0z
n + σ1z

n−1 + · · ·+ σn

is the unique polynomial with all roots in the open unit disc satisfying

σ(z)σ(z−1) =
1

2
[a(z)b(z−1) + a(z−1)b(z)](2.3)

and σ0 > 0. We shall denote the class of such polynomials by Ŝn, and we shall denote
the n-dimensional submanifold of monic (Schur) polynomials in Ŝn by Sn. Now, in
order for f to be positive real, the pseudopolynomial

a(z)b(z−1) + a(z−1)b(z)

must be positive on the unit circle, and a(z) must belong to Ŝn. Then b(z) also must

belong to Ŝn.
Clearly, it is no restriction to take a ∈ Sn in (2.3). For each such a(z), let

S(a)v = a(z)v(z−1) + a(z−1)v(z)

define an operator S(a) : Vn → Zn from the vector space Vn of polynomials having
degree less than or equal to n into the vector space Zn of pseudopolynomials of degree
at most n. Then (2.3) may be written as

S(a)b = 2σσ∗,(2.4)
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where σ∗(z) := σ(z−1). Now it is well known that S(a) is bijective when a ∈ Sn (see,
e.g., [8, p. 760]), and hence (2.4) establishes a one-to-one correspondence between f
and w. We may normalize this relation by taking either b(z) or σ(z), but not both,
in Sn.

The normalization b0 = 1 corresponds to taking r0 = 1 in (1.3). We denote by
Pn the set of all (a, b) ∈ Sn × Sn such that (2.1) is positive real. We know [13] that
Pn is a smooth, connected, real manifold of dimension 2n and that it is diffeomorphic
to R2n.

Choosing instead the normalization σ ∈ Sn, corresponding to setting w0 = 1 in
(2.2) and c0 = 0 in (1.5), we obtain an alternative coordinatization of Pn in terms
of (a, σ). In fact, for each (a, σ) ∈ Sn × Sn, we obtain the corresponding (a, b) ∈ Pn

by dividing b = 2S(a)−1(σσ∗) by b0, thus normalizing it to form a monic b. This
is a diffeomorphism, establishing that Pn is diffeomorphic to Sn × Sn. In fact, the
inverse of this coordinate transformation is the stable spectral factorization of 1

2S(a)b
followed by the normalization of σ(z). Since Sn is diffeomorphic to Rn (see Appendix
A), spectral factorization gives an alternative method of exhibiting a diffeomorphism
between Pn and R2n.

We shall generally use (a, σ)-coordinates to describe the geometry of Pn. This
normalizes the cepstral window (1.10) and the Markov window (1.11), fixing c0 at zero
and w0 at one. However, a covariance window which is normalized in (a, b)-coordinates
will not be normalized in (a, σ)-coordinates, and hence, to avoid increasing the di-
mension of the problem, we shall need to consider instead the normalized covariance
lags

rk =

∫ π

−π
eikθΦ(eiθ)dθ∫ π

−π
Φ(eiθ)dθ

, k = 1, 2, . . . , n,(2.5)

when working in (a, σ)-coordinates. In fact, in all of these descriptions, the polyno-
mials a(z), b(z), and σ(z) are monic. Working with unnormalized covariance lags
(1.2), as we shall occasionally do, requires an extra parameter, bringing the number
of coordinates to 2n+ 1.

There are several other spaces of models which we will need in this analysis.
We denote by P∗

n the (dense) open subspace of Pn consisting of those pairs (a, σ) of
polynomials which are coprime. Following the arguments in Appendix A, we see that
Pn is diffeomorphic to the space of coprime pairs of real monic polynomials of degree
n with poles and zeros in C, first studied in [4] using the notation Rat(n). The space
Rat(n) is a 2n-dimensional manifold with n+1 path-connected components, some of
which have a rather complicated topology (see [4, 34, 37, 6]).

We shall also need to study the space Πn of real, monic, degree n-polynomials,
which is, of course, diffeomorphic to Rn. Our interest in this space comes from the
Markov expansion (1.11), where we take σ to be in Πn and a to be in Sn. Consequently,
we allow (a, σ) to vary over the larger space

Qn := Sn ×Πn.

We shall also need to consider the space Q∗
n, the (dense) open subspace of Qn consisting

of those pairs (a, σ) of polynomials which are coprime.

3. Main results. Our first results show that it is possible to parameterize
minimum-phase shaping filters in terms of a window of cepstral coefficients and a
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window of covariance lags, both of which can be estimated from data. It is tempt-
ing, of course, to argue the plausibility of this result by counting parameters. This
method typically works only when there is a rigorous way to compute the dimension
of some geometric object—in this case, the smooth 2n-dimensional manifold Pn. In
this setting, the implicit function theorem enables one to compute dimensions by com-
puting the rank of certain Jacobian matrices or, equivalently, the linear independence
of differentials. The following theorem is proved in section 4 (see Remark 4.7).

Theorem 3.1. The normalized covariance lags r1, r2, . . . , rn and the cepstral
coefficients c1, c2, . . . , cn form a bona fide smooth coordinate system on the open subset
P∗
n of Pn; i.e., the map from P∗

n to R2n with components (r1, r2, . . . , rn, c1, c2, . . . , cn)
has an everywhere invertible Jacobian matrix.

Accordingly, when viewed as functions on P∗
n, (r1, r2, . . . , rn, c1, c2, . . . , cn) form

local coordinates for the space P∗
n of pole-zero filters of degree n. At this point, one

might hope to be able to use a global inverse function theorem, such as Hadamard’s
theorem, to show that these data define a global coordinate system. In part because
of the complicated topology of P∗

n, this is not possible, and instead we use a convex
optimization scheme to conclude one of the important features of a global inverse
function theorem. Indeed, the very nontrivial consequence of our next observation,
to be proved in section 5, is that there is a one-to-one correspondence between the
2n coefficients r1, r2, . . . , rn, c1, c2, . . . , cn of the minimum-phase shaping filter (2.2)
and the 2n coefficients a1, a2, . . . , an, σ1, σ2, . . . , σn of the denominator and numerator
polynomials of (2.2), provided the degree of w is exactly n.

Theorem 3.2. Each shaping filter in P∗
n determines and is uniquely determined

by its window r1, r2, . . . , rn of normalized covariance lags and its window c1, c2, . . . , cn
of cepstral coefficients.

As we have indicated, uniqueness follows from the remarkable fact that such a
modeling filter arises as the minimum of a (strictly) convex optimization problem (see
section 5). This optimization problem has, of course, antecedents in the literature, be-
ginning with maximum entropy methods. Recall that linear predictive coding (LPC)
is the most common method for determining shaping filters in signal processing. Given
the window of (unnormalized) covariance data

r0, r1, . . . , rn(3.1)

with a positive definite Toeplitz matrix Tn, find the (unnormalized) shaping filter
w(z) and the corresponding spectral density

Φ(eiθ) = |w(eiθ)|2,
which maximizes the entropy gain

1

2π

∫ π

−π

log Φ(eiθ)dθ,(3.2)

subject to the covariance-matching condition

1

2π

∫ π

−π

eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n.(3.3)

For this reason, the LPC filter is often called the maximum entropy filter.
Now observe that the entropy gain (3.2) is precisely the zeroth cepstral coefficient

c0 =
1

2π

∫ π

−π

log Φ(eiθ)dθ.
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However, in cepstral analysis, one is interested not only in c0 but in a finite window

c0, c1, . . . , cn(3.4)

of cepstral coefficients. It is natural, therefore, to maximize instead some (positive)
linear combination

p0c0 + p1c1 + · · ·+ pncn(3.5)

of the cepstral coefficients in the window (3.4). In view of (1.6), this may be written
as a generalized entropy gain

IP (f) =
1

2π

∫ π

−π

P (eiθ) log Φ(eiθ)dθ,(3.6)

where P is the symmetric pseudopolynomial

P (z) = p0 +
1

2
p1(z + z−1) + · · ·+ 1

2
pn(z

n + z−n),(3.7)

and f is the positive real part (1.3) of Φ. We shall say that P ∈ D if P is nonnegative
on the unit circle and P ∈ D+ if it is positive there. We note that the covariance
matching condition (3.3) becomes

1

2π

∫ π

−π

eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n,(3.8)

in terms of Φ(eiθ) = |w(eiθ)|2.
Indeed, in section 5, we show that the problem of maximizing (3.5) subject to

(3.8) has a finite solution only if the pseudopolynomial (3.7) belongs to D. Indeed, if
P ∈ D+, there is a unique solution Φ, and this solution has the form

Φ(z) =
P (z)

Q(z)
,

where

Q(z) = q0 + 1
2q1(z + z−1) + · · ·+ 1

2qn(z
n + z−n)

belongs to D+.
In particular, we see that if we take P to be

P (z) = σ(z)σ(z−1)

and let a(z) be the unique stable polynomial satisfying

Q(z) = a(z)a(z−1),

then we have also determined the unique shaping filter (2.2) that matches the co-
variance data (3.1). Hence we have an alternative proof of the following result, first
appearing in [11].

Theorem 3.3. Let r0, r1, . . . , rn be a partial covariance sequence, i.e., real num-
bers such that the Toeplitz matrix (1.4) is positive definite. Then, to any stable poly-
nomial

σ(z) = zn + σ1z
n−1 + · · ·+ σn−1z + σn
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of degree n, there corresponds a unique real stable polynomial

a(z) = a0z
n + a1z

n−1 + · · ·+ an−1z + an

of degree n such that

1

2π

∫ π

−π

eikθ
∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

dθ = rk, k = 0, 1, . . . , n.(3.9)

Theorem 3.3 was conjectured by Georgiou [21] as a solution to the partial covari-
ance extension problem posed by Kalman [25]. Georgiou had already established the
existence part, but a complete proof of the conjecture was given much later in [11].
Similarly, in [11], we also showed the following theorem.

Theorem 3.4. The normalized covariance lags r1, r2, . . . , rn and the zero coeffi-
cients σ1, σ2, . . . , σn form a bona fide smooth coordinate system on the open manifold
Pn; i.e., the map from Pn to R2n with components (r1, r2, . . . , rn, σ1, σ2, . . . , σn) has
an everywhere invertible Jacobian matrix.

In section 6, we derive the following results for coordinatization by covariance
data and Markov parameters.

Theorem 3.5. The normalized covariance lags r1, r2, . . . , rn and the normalized
Markov parameters w1, w2, · · · , wn form a bona fide smooth coordinate system on Q∗

n;
i.e., the map from Q∗

n to R2n with components (r1, r2, . . . , rn, w1, w2, . . . , wn) has an
everywhere invertible Jacobian matrix. For each choice of a covariance window and
a Markov window, there exists exactly one shaping filter matching these windows.

The last statement of this theorem is related to a class of results found in the
literature on Q-Markov covers (see, e.g., [31, 29, 1]). Allowing windows of Markov
parameters for which w0 = 0, as in the literature cited above, would only add filters
w(z), which can be recovered from those of Theorem 3.5 by multiplying w(z) by some
power of z−1.

4. Global analysis on Pn. We choose to represent minimum-phase shaping
filters (2.2) by a pair (a, σ) ∈ Sn × Sn. This imposes the normalization discussed
in section 2. There is a geometric manifestation of the fact that (a, σ) are smooth
coordinates on Pn, which we will use to show that the cepstral and covariance windows
also form bona fide coordinate systems. First note that tangent vectors to Pn at (a, σ)
may be represented as a perturbation (a+ εu, σ + εv), where u, v are polynomials of
degree less than or equal to n − 1. If, as before, we denote the real vector space of
polynomials of degree less than or equal to d by Vd, then the tangent space to Pn at
a point (a, σ) is canonically isomorphic to Vn−1 × Vn−1.

Now, for a ∈ Sn, define Pn(a) to be the space of all points in Pn with the
polynomial a fixed. If we define Pn(σ) analogously, then Pn(a) and Pn(σ) are real,
smooth, connected n-manifolds. In fact, both are clearly diffeomorphic to Sn and
hence to Rn [7] (see also Appendix A). The tangent space to the submanifold Pn(a)
at a point (a, σ) is, therefore,

T(a,σ)Pn(a) = {(u, v) ∈ Vn−1 × Vn−1 | u = 0}.
Similarly, the tangent space to Pn(σ) is given by

T(a,σ)Pn(σ) = {(u, v) ∈ Vn−1 × Vn−1 | v = 0}.
Now the n-manifolds {Pn(a) | a ∈ Sn} form the leaves of a foliation of Pn, as do the
n-manifolds {Pn(σ) | σ ∈ Sn}. Moreover, these two foliations are complementary in
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the sense that if a leaf of one intersects a leaf of the other, the tangent spaces intersect
in just (0, 0). This transversality property is equivalent to the fact that the functions
(a, σ) form a local system of coordinates.

We now turn to the cepstral functions and the covariance functions. Let g : Pn →
Rn be the map which sends (a, σ) to the vector c ∈ Rn with components

ck =
1

2π

∫ π

−π

eikθ log |w(eiθ)|2dθ, k = 1, 2, . . . , n,(4.1)

and let Cn := g(Pn). Moreover, for each c ∈ Cn, define the subset

Pn(c) = g−1(c).

We wish to show that Pn(c) is a smooth submanifold of dimension n. To this end,
we will need to compute the Jacobian matrix of g, evaluated at tangent vectors to a
point (a, σ) ∈ Pn.

Thus, for each component

gk(a, σ) =
1

2π

∫ π

−π

eikθ log

∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

dθ

of g, we form the directional derivative

D(u,v)gk(a, σ) = lim
ε→0

1

ε
[gk(a+ εu, σ + εv)− gk(a, σ)]

in the direction (u, v) ∈ Vn−1 × Vn−1. A straightforward calculation yields

D(u,v)gk(a, σ) =
1

2π

∫ π

−π

2Re

{
v(eiθ)

σ(eiθ)
− u(eiθ)

a(eiθ)

}
eikθdθ(4.2)

=
1

2π

∫ π

−π

[
S(σ)v

σσ∗ − S(a)u

aa∗

]
eikθdθ.(4.3)

Now, for any ϕ ∈ Sn, define the linear map Gϕ : Vn−1 → Rn by

Gϕu =
1

2π

∫ π

−π

S(ϕ)u

ϕϕ∗




eiθ

ei2θ

...
einθ


 dθ.

Then the kernel of the Jacobian of g at (a, σ) is given by

ker Jac(g)|(a,σ) = {(u, v) | Gσv = Gau}.(4.4)

Lemma 4.1. The linear map Gϕ is a bijection.
Proof. Suppose that Gϕu = 0. Then

1

2π

∫ π

−π

S(ϕ)u

ϕϕ∗ eikθdθ = 0(4.5)

for k = 1, 2, . . . , n. By symmetry this also holds for k = −1,−2, . . . ,−n. Moreover,
since

S(ϕ)u

ϕϕ∗ (z) =
u(z)

ϕ(z)
+

u(z−1)

ϕ(z−1)
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and u(z)
ϕ(z) is strictly proper and analytic for |z| ≥ 1, (4.5) holds for k = 0 also so that

integration against S(ϕ)u
ϕϕ∗ annihilates all trigonometric pseudopolynomials of degree

at most n. In particular, we obtain

1

2π

∫ π

−π

∣∣∣∣S(ϕ)uϕ

∣∣∣∣
2

dθ = 0,

which in turn yields S(ϕ)u = 0. But S(ϕ) is nonsingular, and hence u = 0, estab-
lishing injectivity of Gϕ. However, since the range and domain of Gϕ are the same
dimension, namely n, the map is also surjective.

Proposition 4.2. For each c ∈ Cn, the space Pn(c) is a smooth n-manifold. The
tangent space T(a,σ)Pn(c) at (a, σ) consists of precisely all (u, v) ∈ Vn−1 × Vn−1 such
that

1

2π

∫ π

−π

S(σ)v

σσ∗ eikθdθ =
1

2π

∫ π

−π

S(a)u

aa∗
eikθdθ(4.6)

for k = 0, 1, . . . , n.
Proof. The tangent vectors of Pn(c) at (a, σ) are precisely the vectors in the

null space of the Jacobian of g at (a, σ), as computed above. Consequently, by (4.4),
(4.6) holds for k = 1, 2, . . . , n. However, as pointed out in the proof of Lemma 4.1,
(4.5) holds for k = 0, and hence (4.6) holds for k = 0 also. Moreover, by (4.4) and
Lemma 4.1, the tangent space has dimension n. Therefore, the rank of Jac(g)|(a,σ) is
full, and the rest of the claim follows from the implicit function theorem.

Because the rank of Jac(g)|(a,σ) is everywhere n, the connected components of
the submanifolds Pn(c) form the leaves of a foliation of Pn. However, according to
Lemma C.1, the submanifolds Pn(c) are themselves connected.

Proposition 4.3. The n-manifolds {Pn(c) | c ∈ Cn} are connected and hence
form the leaves of a foliation of Pn.

As an example of the more involved calculation we shall next undertake with the
covariance window, we note a simple consequence of the results proven so far.

Corollary 4.4. The foliations {Pn(a) | a ∈ Sn} and {Pn(c) | c ∈ Cn} are
complementary; i.e., any intersecting pair of leaves, with one leaf from each foliation,
intersects transversely. Moreover, any intersecting pair of leaves intersects in at most
one point.

Proof. Setting u = 0 in (4.4), we obtain Gσv = 0. Hence, by Lemma 4.1, v = 0
so that the foliations are transverse. If a leaf Pn(a) intersects a leaf Pn(c) at a point
(a, σ), then the a-coordinates, and hence the roots of a, are known. According to
Appendix B, the value of the cepstral coefficients coincides with the difference of
the Newton sums of the powers of the roots of a and the roots of σ. Therefore, the
Newton sums of the powers of the roots of σ are known, and, therefore, by the Newton
identities, so is σ.

A similar statement for the foliation {Pn(σ) | σ ∈ Sn} can be proved by the mirror
image of this proof and will be omitted.

Next, let f : Pn → Rn be the map which sends (a, σ) to the vector r ∈ Rn of
normalized covariance lags with components

rk =

∫ π

−π
eikθ

∣∣w(eiθ)∣∣2 dθ∫ π

−π
|w(eiθ)|2 dθ

, k = 1, 2, . . . , n,(4.7)
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and let Rn := f(Pn). Of course, any r ∈ Rn satisfies the positivity condition

Tn =




1 r1 · · · rn
r1 1 · · · rn−1

...
...

. . .
...

rn rn−1 · · · 1


 > 0.

Now, for each r ∈ Rn, we want to show that

Pn(r) = f−1(r)

is a smooth manifold of dimension n. To this end, note that the function f : Pn → Rn

has the components

fk(a, σ) =
hk(a, σ)

h0(a, σ)
,

where

hk(a, σ) =
1

2π

∫ π

−π

eikθ
∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

dθ, k = 0, 1, 2, . . . , n.

Clearly, h0(a, σ) > 0 for all (a, σ) ∈ Pn.
A straightforward calculation shows that the directional derivative of f at (a, σ) ∈

Pn in the direction (u, v) ∈ Vn−1 × Vn−1 is

D(u,v)fk(a, σ) =
1

h0(a, σ)
D(u,v)hk(a, σ)− hk(a, σ)

h0(a, σ)2
D(u,v)h0(a, σ),(4.8)

where

D(u,v)hk(a, σ) =
1

2π

∫ π

−π

[
S(σ)v

aa∗
− S(a)u

aa∗
σσ∗

aa∗

]
eikθdθ.(4.9)

Therefore, defining

ϕ(a, σ;u, v) := D(u,v) log h0(a, σ) =
D(u,v)h0(a, σ)

h0(a, σ)
,

the kernel of the Jacobian of f at (a, σ) consists of those (u, v) ∈ Vn−1 × Vn−1 for
which

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ + ϕ(a, σ;u, v)

1

2π

∫ π

−π

σσ∗

aa∗
eikθdθ

for k = 0, 1, . . . , n. In fact, this equation holds trivially for k = 0, and so, to simplify
the notation in what follows, we add this equation.

Proposition 4.5. The space Pn(r) is a smooth, connected, n-manifold, and its
tangent space T(a,σ)Pn(r) consists of those (u, v) ∈ Vn−1 × Vn−1 for which

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ +

ϕ

2π

∫ π

−π

σσ∗

aa∗
eikθdθ(4.10)
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for k = 0, 1, . . . , n, where

ϕ =
1

h0(a, σ)

1

2π

∫ π

−π

[
S(σ)v

aa∗
− S(a)u

aa∗
σσ∗

aa∗

]
dθ.(4.11)

The n-manifolds {Pn(r) | r ∈ Rn} form the leaves of a foliation of Pn.
Proof. The tangent space T(a,σ)Pn(r) is the kernel of the Jacobian of f and is

hence given by (4.10). Defining p ∈ Vn as

p(z) := u(z) +
1

2
ϕa(z),

these tangent equations may also be written as

Fp = Hv,

where F : Vn → Rn+1 and H : Vn−1 → Rn+1 are the linear operators

Fp =
1

2π

∫ π

−π

S(a)p

aa∗
σσ∗

aa∗




1
eiθ

...
einθ


 dθ, Hv =

1

2π

∫ π

−π

S(σ)v

aa∗




1
eiθ

...
einθ


 dθ.(4.12)

To see this, note that

1

2

S(a)a

aa∗
= 1.

Now the linear map F is nonsingular. In fact, supposing that Fp = 0 and, as in the
proof of Lemma 4.1, taking the appropriate linear combination, we obtain

1

2π

∫ π

−π

|S(a)p|2
aa∗

σσ∗

aa∗
dθ = 0,

which holds if and only if S(a)p = 0. But since a is a Schur polynomial, S(a) is
nonsingular, and hence Fp = 0 if and only if p = 0. Since the range and the domain
of F have the same dimension, F is nonsingular, as claimed. Then, since the leading
term of the n-polynomial

p = F−1Hu

is precisely 1
2ϕ, ϕ is a linear function of u. This defines a linear map L : Vn−1 → Vn−1,

which sends v to u := p − 1
2ϕa so that T(a,σ)Pn(r) consists of those (u, v) such that

u = Lv. This establishes that T(a,σ)Pn(r) is n-dimensional and that Pn(r) is an n-
manifold. Since the rank of Jac(f)|(a,σ) is full, smoothness follows from the implicit
function theorem. The connectedness of Pn(r) was proven in [7]. Since the rank of
Jac(f)|(a,σ) is everywhere n, the connected submanifolds Pn(r) form the leaves of a
foliation of Pn.

The relation between the foliations {Pn(r) | r ∈ Rn} and {Pn(c) | c ∈ Cn} is
indeed interesting.

Theorem 4.6. For each (a, σ) ∈ Pn(r) ∩ Pn(c), the dimension of

Θ := T(a,σ)Pn(r) ∩ T(a,σ)Pn(c)
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equals the degree of the greatest common divisor of the polynomials a(z) and σ(z).
Proof. Any (u, v) ∈ Θ satisfies both (4.6) and (4.10). Taking the linear combina-

tions of these equations corresponding to the coefficients of σσ∗ and aa∗, respectively,
we obtain

1

2π

∫ π

−π

S(σ)vdθ =
1

2π

∫ π

−π

S(a)u
σσ∗

aa∗
dθ,

1

2π

∫ π

−π

S(σ)vdθ =
1

2π

∫ π

−π

S(a)u
σσ∗

aa∗
dθ + ϕ‖σ‖2,

demonstrating that ϕ must be equal to zero. With ϕ = 0, (4.6) and (4.10) become

1

2π

∫ π

−π

S(σ)v

σσ∗ eikθdθ =
1

2π

∫ π

−π

S(a)u

aa∗
eikθdθ, k = 0, 1, . . . , n,(4.13)

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ, k = 0, 1, . . . , n.(4.14)

Taking the appropriate linear combinations of (4.13) and (4.14), respectively, we ob-
tain

1

2π

∫ π

−π

|S(σ)v|2
σσ∗ dθ =

1

2π

∫ π

−π

[S(a)u][S(σ)v]

aa∗
dθ,

1

2π

∫ π

−π

[S(σ)v][S(a)u]

aa∗
dθ =

1

2π

∫ π

−π

|S(a)u|2
aa∗

σσ∗

aa∗
dθ.

Now, setting

f1 :=
S(σ)v

σ∗ and f2 :=
σS(a)u

aa∗
,

these equations can be written as

‖f1‖2 = 〈f1, f2〉 and 〈f1, f2〉 = ‖f2‖2

in the inner product and norm of L2[−π, π]. Using the parallelogram law yields

‖f1 − f2‖2 = ‖f1‖2 + ‖f2‖2 − 2〈f1, f2〉 = 0,

which in turn implies that f1 = f2. Therefore,

S(σ)v

σσ∗ =
S(a)u

aa∗

on the unit circle or, equivalently,

Re
{ v

σ

}
= Re

{u

a

}
.(4.15)

However, since these are harmonic functions, (4.15) must hold in the whole complex
plane. In particular, as a(z) and σ(z) are real polynomials, this becomes

v

σ
=

u

a
(4.16)
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Fig. 5. Cepstral (dotted line) and covariance (solid line) matching foliations of P1.

on the real line. However, these functions are analytic outside the unit disc, and so,
by the identity theorem, (4.16) is valid in the whole complex plane. Clearly, u = v = 0
satisfy (4.16), but let us see if there are nontrivial u(z) and v(z) of degree n − 1. If
so, (4.16) can also be written as

v

u
=

σ

a
,

which, of course, has no solution if a(z) and σ(z) are coprime. If a(z) and σ(z) have
a greatest common factor of degree d, u(z) and v(z) could be polynomials of degree
less than or equal to n−1 and have an arbitrary common factor of degree d−1, hence
defining a vector space of dimension d, as claimed.

Remark 4.7. It follows from Theorem 4.6 that the foliations {Pn(r) | r ∈ Rn}
and {Pn(c) | c ∈ Cn} are complementary at any point (a, σ) ∈ Pn, where a and
σ are coprime, as illustrated in Figure 5 for n = 1. From this it follows that the
kernels of Jac(g)|(a,σ) and Jac(f)|(a,σ) are complementary at any point (a, σ) in P∗

n.
In particular, the Jacobian of the joint map (a, σ) → (r1, r2, . . . , rn, c1, c2, . . . , cn) has
full rank, and, by the inverse function theorem, the joint map forms a smooth local
coordinate system on P∗

n. This proves Theorem 3.1.

5. Identifiability of shaping filters from cepstral and covariance win-
dows. In this section, we shall show that the window of n cepstral coefficients and
the window of n normalized covariance lags do indeed determine the (normalized)
shaping filter which generates these data, provided the filter has degree n, thus prov-
ing Theorem 3.2. As a preliminary to this argument, however, we want to return
to the generalization of the maximum entropy integral in terms of “positive” linear
combinations of the entire cepstral window. Not only is this an appealing idea, but it
also turns out to give a novel derivation of a result which is of independent interest
in itself, a solution of the rational covariance extension problem. We now formalize
our analysis of this generalized maximum entropy problem.

Theorem 5.1. If the pseudopolynomial (3.7) belongs to D+, the problem to
maximize (3.5) subject to (3.8) has a unique solution Φ, and this solution has the
form

Φ(z) =
P (z)

Q(z)
,(5.1)
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where

Q(z) = q0 +
1

2
q1(z + z−1) + · · ·+ 1

2
qn(z

n + z−n)(5.2)

also belongs to D+.
It turns out that the algorithm needed to determine Q is precisely the convex

optimization algorithm presented in [12]. In fact, the algorithm is based on the dual
problem, in the sense of mathematical programming, of the problem to maximize (3.6)
subject to (3.8). More precisely, let F+ be the set of bounded positive real functions

f(z) =
1

2
f0 + f1z

−1 + f2z
−2 + · · ·

such that Φ(eiθ) := 2Re{f(eiθ)} is bounded away from zero, and consider the (primal)
problem to maximize the generalized entropy (3.6) over F+, i.e.,

max
f∈F+

IP (f),

subject to (3.8). Then duality theory amounts to forming the Lagrangian

L(f, q) = IP (f) +

n∑
k=0

qk

[
rk − 1

2π

∫ π

−π

eikθΦ(eiθ)dθ

]

=
1

2π

∫ π

−π

P (eiθ) log Φ(eiθ)dθ + r′q − 1

2π

∫ π

−π

Q(eiθ)Φ(eiθ)dθ(5.3)

and determining the Lagrange multipliers q ∈ Rn+1 by minimizing the dual functional

ψ(q) := sup
f∈F+

L(f, q).

Clearly, ψ(q) < ∞ only if both P and Q belong to D. If the function f �→ L(f, q) has
a maximum in the open region F+, then

∂L

∂fk
= 0, k = 0, 1, 2, . . . ,

in the maximizing point. This stationarity condition becomes

1

2π

∫ π

−π

eikθ
[
P (eiθ)Φ(eiθ)−1 −Q(eiθ)

]
dθ = 0, k = 0, 1, 2, . . . ,

which is satisfied if and only if (5.1) or, equivalently,

fk =
1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)
dθ(5.4)

holds. Inserting this into (5.3) yields the dual functional

ψ(q) = JP (q) +
1

2π

∫ π

−π

P (eiθ)[logP (eiθ)− 1]dθ(5.5)

for all P,Q ∈ D, where

JP (q) = r0q0 + r1q1 + · · ·+ rnqn − 1

2π

∫ π

−π

P (eiθ) logQ(eiθ)dθ.(5.6)
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Since the last term in (5.5) does not depend on q, we shall call the optimization
problem

min
Q∈D

JP (Q)(5.7)

the dual problem. The functional (5.6) is strictly convex, and, therefore, the minimum
is unique, provided one exists. This is precisely the optimization problem considered
in [12], where the following theorem was proven.

Theorem 5.2. The dual problem has a unique solution, and it belongs to D+.
Since thus JP takes its minimum in an interior point,

∂JP

∂qk
= rk − 1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)
dθ(5.8)

equals zero there for k = 0, 1, . . . , n. This stationarity condition is precisely the
covariance matching condition. The dual problem is easily solved by Newton’s method
[12, 14]. The statement of Theorem 5.2 is nontrivial. In fact, the proof [12] relies on
the fact that the gradient (5.8) tends to infinity as Q tends to the boundary of D.

Proof of Theorem 5.1. Let Q̂ ∈ D+ be the unique solution to the dual problem
(5.7), let q̂ ∈ Rn+1 be the corresponding vector of coefficients, and let

f̂k =
1

2π

∫ π

−π

eikθ
P (eiθ)

Q̂(eiθ)
dθ.

Clearly, f̂ ∈ F+. Since the gradient (5.8) is zero for Q = Q̂, the covariance matching

condition (3.8) is fulfilled for f = f̂ , and, therefore, IP (f̂) = L(f̂ , q̂). But, by the
construction above,

L(f̂ , q̂) = sup
f∈F+

L(f, q̂) ≥ L(f, q̂)

for all f ∈ F+. Then, for any f ∈ F+ which satisfies the covariance matching condition
(3.8),

IP (f) = L(f, q̂) ≤ IP (f̂),

which establishes the optimality of f̂ .
This analysis motivates the construction of a functional which will be the key in

establishing uniqueness of minimum-phase shaping filters having prescribed windows
r0, r1, . . . , rn and c1, c2, . . . , cn of covariance lags and cepstral coefficients, respectively.
More precisely, consider the (primal) problem of finding a spectral density

Φ(eiθ) = f0 + 2

∞∑
k=1

fk cos kθ,

which minimizes

I(f) =
n∑

k=1

∣∣∣∣ 12π
∫ π

−π

eikθ log Φ(eiθ)dθ − ck

∣∣∣∣− 1

2π

∫ π

−π

log Φ(eiθ)dθ(5.9)

subject to the covariance-lag matching condition

1

2π

∫ π

−π

eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n.(5.10)
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The objective function (5.9) is the (,1) “cepstral error” minus the entropy gain. As
discussed in section 3, the entropy gain is precisely what is maximized in the LPC
solution, and it is identical to the zeroth cepstral coefficient corresponding to Φ. This
term compensates for the absence of a zeroth term in the cepstral error.

To obtain a suitable dual problem, we reformulate the primal problem to minimize

n∑
k=0

εk − 1

2π

∫ π

−π

log Φ(eiθ)dθ

subject to the covariance matching condition (5.10) and

1

2π

∫ π

−π

eikθ log Φ(eiθ)dθ − ck − εk ≤ 0, k = 1, 2, . . . , n,(5.11)

− 1

2π

∫ π

−π

eikθ log Φ(eiθ)dθ + ck − εk ≤ 0, k = 1, 2, . . . , n.(5.12)

Taking q0, q1, . . . , qn to be the Lagrange multipliers for the constraints (5.10) and
λ1, λ2, . . . , λn and µ1, µ2, . . . , µn to be nonnegative Lagrange multipliers for the sets
of constraints (5.11) and (5.12), respectively, we obtain the Lagrangian

L(f, ε, q, λ, µ) =

n∑
k=1

εk − 1

2π

∫ π

−π

log Φ(eiθ)dθ

+

n∑
k=0

qk

[
1

2π

∫ π

−π

eikθΦ(eiθ)dθ − rk

]

+

n∑
k=1

λk

[
1

2π

∫ π

−π

eikθ log Φ(eiθ)dθ − ck − εk

]

−
n∑

k=1

µk

[
1

2π

∫ π

−π

eikθ log Φ(eiθ)dθ − ck + εk

]
.

Now, setting

p0 = 1, pk := µk − λk, k = 1, 2, . . . , n,(5.13)

we can write this in the more compact form

L(f, ε, q, λ, µ) =

n∑
k=1

(1− λk − µk)εk

+c1p1 + c2p2 + · · ·+ cnpn − r0q0 − r1q1 − · · · − rnqn

+
1

2π

∫ π

−π

Q(eiθ)Φ(eiθ)dθ − 1

2π

∫ π

−π

P (eiθ) log Φ(eiθ)dθ,

which clearly can have a finite minimum only for those values of the Lagrange mul-
tipliers for which both P and Q belong to D and λk + µk ≤ 1 for k = 1, 2, . . . , n.
For such Lagrange multipliers, if the function (f, ε) → L(f, ε, q, λ, µ) has a minimum,
then

∂L

∂fk
= 0, k = 0, 1, 2, . . . ,(5.14)
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and

(1− λk − µk)εk = 0, k = 1, 2, . . . , n,(5.15)

in the minimizing point. The stationarity condition (5.14) becomes

1

2π

∫ π

−π

eikθ
[
P (eiθ)Φ(eiθ)−1 −Q(eiθ)

]
dθ = 0, k = 0, 1, 2, . . . ,

or, equivalently,

Φ(z) =
P (z)

Q(z)
,

which, inserted together with (5.15) into the Lagrangian with P given by (5.13), yields
the dual functional

inf
(f,ε)∈F+×R+

L(f, ε, q, λ, µ) = J(P,Q) + 1,

where the functional

J(P,Q) = c1p1 + c2p2 + · · ·+ cnpn − r0q0 − r1q1 − · · · − rnqn

− 1

2π

∫ π

−π

P (eiθ) log
P (eiθ)

Q(eiθ)
dθ(5.16)

is concave but not necessarily strictly concave.
Theorem 5.3. The dual problem to maximize J(P,Q) over all (P,Q) ∈ D × D

such that p0 = 1 has a solution (P̂ , Q̂), and, for any such solution, Q̂ ∈ D+, and

Φ(z) =
P̂ (z)

Q̂(z)
(5.17)

satisfies the covariance matching condition (5.10). If, in addition, P̂ ∈ D+, then
(5.17) is a solution of the primal problem with ε1 = ε2 = · · · = εn = 0, i.e., there is both
covariance matching and cepstral matching. A maximizing point (P̂ , Q̂) ∈ D+ × D+

is unique if and only if P̂ and Q̂ are coprime.
Proof. It can be shown along the same lines as in [12] that the functional J has

compact sublevel sets in D × D. Hence J has a maximal point (P̂ , Q̂) there. The
boundary of D × D consists of those points where either P̂ or Q̂ or both have zeros
on the unit circle. Now a straightforward calculation shows that

∂J

∂qk
=

1

2π

∫ π

−π

eikθ
P (eiθ)

Q(eiθ)
dθ − rk, k = 0, 1, . . . , n,(5.18)

∂J

∂pk
= ck − 1

2π

∫ π

−π

eikθ log
P (eiθ)

Q(eiθ)
dθ, k = 1, 2, . . . , n.(5.19)

From this and the argument in [12], it can be shown that the gradient (5.18) becomes
infinite when Q lies on the boundary and hence that Q̂ ∈ D+. Therefore, since the
functional J is concave, (5.18) must be zero at (P̂ , Q̂), and hence (5.17) satisfies the
covariance matching condition (5.10).
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Next suppose that P̂ ∈ D+. Then (5.19) must also be zero at (P̂ , Q̂), and hence
there is also cepstral matching. For any f ∈ F+ satisfying (5.10) and ε > 0,

I(f) ≥ L(f, ε, q̂, λ̂, µ̂) ≥ J(P̂ , Q̂) + 1,

where q̂, λ̂, and µ̂ are Lagrange multipliers corresponding to (P̂ , Q̂). On the other

hand, if f̂ is the positive-real part of (5.17), then

I(f̂) = L(f̂ , 0, q̂, λ̂, µ̂) = J(P̂ , Q̂) + 1,

and hence f̂ minimizes I, and ε̂ = 0, as claimed.
Clearly, the maximizing solution (P̂ , Q̂) cannot be unique if P̂ and Q̂ are not

coprime. Therefore, the last statement of the theorem would follow if we could show
that J is strictly concave over some neighborhood of D+×D+ if P̂ and Q̂ are coprime.
To this end, we consider the Hessian. Let

δJ(P,Q; δP, δQ) = lim
ε→0

J(P + δP,Q+ εδQ)− J(P,Q)

ε

denote the directional derivative in the direction (δP, δQ). The admissible directions
(δP, δQ) are symmetric pseudopolynomials such that (P+εδP,Q+εδQ) ∈ D+×D+ for
sufficiently small ε > 0. Since p0 = 1, we must also have δp0 = 0. It is straightforward
to see that

δJ(P,Q; δP, δQ) = c1δp1 + c2δp2 + · · ·+ cnδpn − r0δq0 − r1δq1 − · · · − rnδqn

+
1

2π

∫ π

−π

δQ(eiθ)
P (eiθ)

Q(eiθ)
dθ − 1

2π

∫ π

−π

δP (eiθ) log
P (eiθ)

Q(eiθ)
dθ,

and hence second differentiation yields

δ2
J(P,Q; δP, δQ) = −

〈
(PδQ−QδP )2,

1

PQ2

〉
≤ 0,

where equality holds if and only if PδQ−QδP = 0, i.e., if and only if

δP

δQ
=

P

Q
.

However, this is impossible if P̂ and Q̂ are to be coprime, since p0 = 1 and δp0 = 0.
Consequently, J is strictly concave at (P̂ , Q̂), as claimed.

Now, given the minimizing pair of pseudopolynomials (P̂ , Q̂) of Theorem 5.3, let
a(z) and σ(z) be the normalized, polynomial spectral factors of Q̂ and P̂ , respectively,
i.e., the Schur polynomials satisfying

a(z)a(z−1) =
1

a2
0

Q̂(z), σ(z)σ(z−1) =
1

σ2
0

P̂ (z),

where a2
0 and σ2

0 are the appropriate normalizing factors. Then Theorem 5.3 provides
a procedure for determining, from a combined window (r0, r1, . . . , rn, c1, . . . , cn) of
covariance lags and cepstral coefficients, a pair (a, σ), which is unique if and only
if a(z) and σ(z) are coprime, i.e., (a, σ) ∈ P∗

n, and a corresponding (unnormalized)
shaping filter

w(z) =
σ0

a0

σ(z)

a(z)
.
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Therefore, in particular, we have proved Theorem 3.2. In fact, given any (a, σ) ∈
P∗
n, a window (r1, . . . , rn, c1, . . . , cn) is uniquely determined from (4.7) and (4.1).

Conversely, given (r1, . . . , rn, c1, . . . , cn), the optimization problem of Theorem 5.3
yields an (a, σ) ∈ Pn, which matches this window and is unique if and only if (a, σ) ∈
P∗
n.

6. The simultaneous partial realization problem. While the stochastic re-
alization problem [25, 21, 26, 10, 30] amounts to determining shaping filters w having
a fixed window of covariance lags r0, r1, . . . , rn, the object of the deterministic re-
alization problem (see, e.g., [3, 23]) is to find shaping filters w with a fixed window
w0, w1, . . . , wn of Markov parameters (1.11). An important question is whether the
two problems can be solved simultaneously so that both interpolation conditions are
satisfied at the same time. This problem has been studied in the literature as the Q-
Markov cover problem (see [31, 29, 1], where it has been used as a tool for performing
model reduction).

This basic question will also be addressed in this section using geometric methods.
Thus we would ask whether the two problems can be solved simultaneously and, if so,
whether this solution is unique. We find a positive answer to the existence question in
Qn using fixed point methods. We also determine where these windows provide a bona
fide set of smooth coordinates. Finally, we give a geometric proof of the uniqueness
of the corresponding shaping filter, i.e., of identifiability of the shaping filter from
covariance and Markov windows, providing an independent proof of a result which is
basic to the existing theory of the Q-Markov cover problem. These results prove the
assertions in Theorem 3.5. We also provide an independent proof of Theorem 3.4.

To address these issues, let ψ : Qn → Rn be the map which sends (a, σ) to

w :=



w1

w2

...
wn


 ,

and let Wn := ψ(Qn). Given any w ∈ Wn, define

Qn(w) := ψ−1(w).

Now, multiplying (2.2) by a(z) and identifying coefficients of nonnegative powers in
z, we have 


σ1

σ2

...
σn


 =



w1

w2

...
wn


+




1
w1 1
...

...
. . .

wn−1 wn−2 · · · 1





a1

a2

...
an


 .(6.1)

Identifying coefficients in negative powers of z yields the appropriate Hankel system.
From (6.1) we see first that Wn = Rn. Second, given w, a can be chosen arbitrarily in
Sn. Hence, Qn(w) is completely parameterized by a ∈ Sn, and hence it is a connected
n-manifold, diffeomorphic to Rn. Its boundary is characterized by a having a root
on the unit circle. Clearly, the closure Qn(w) is the graph of a continuous function
γ : Sn → Πn, defined by (6.1). Although the manifold Qn is not bounded, Qn(w)
is. Moreover, Qn(w) is homeomorphic to Sn, which is compact with a contractible
interior (see Appendix A).
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Theorem 6.1. Any continuous map T : Sn → Sn has a fixed point.
Proof. We first note that Sn is contained in the (Euclidean) space of real monic

polynomials with roots in the open disc of radius 1 + ε for any positive ε. As in
Appendices A and C, the continuous retraction r : D1+ε → D, defined by

r(x) =

{
x if ‖x‖ ≤ 1,
x

‖x‖ if ‖x‖ ≥ 1,

induces a continuous retraction of PD1+ε(n) → Sn. In particular, Sn is a Euclidean
neighborhood retract, and, therefore, the Lefschetz fixed point theorem applies to
continuous maps of Sn to itself [18, p. 209]. The Lefschetz fixed point theorem asserts
that a continuous map f from a space X to itself has a fixed point provided its Lef-
schetz number is nonzero. More precisely, to define the Lefschetz number, we need to
introduce the homology (real) vector spaces Hi(X;R), defined for each i = 0, 1, 2, . . . .
If X is a compact Euclidean neighborhood retract in RN , then each Hi(X;R) is finite-
dimensional and vanishes for i > N . In this case, the Lefschetz number of f , Lef(f),
is defined as

Lef(f) =

n∑
i=0

tr(f∗i),

where (f∗i) is the linear transformation

f∗i : Hi(X;R) → Hi(X;R)

introduced by f . For X = Sn, we have

Hi(Sn,R) = {0} for i ≥ 1

since Sn is contractable. Moreover, since Sn is therefore connected,

H0(Sn,R) ∼ R,

and the map f∗i is the identity. In summary, Lef(f) = 1, and the Lefschetz fixed
point theorem therefore implies that f has a fixed point.

Remark 6.2. One might hope that the Brower fixed point theorem would apply
directly to Sn. Even in the case when n = 2, this does not work. In fact, the space S2

is represented by a triangle in the plane, and its interior is a manifold with corners and
not a disc. While in this simple case the closure of the Schur region is homeomorphic
to a disc, a proof in arbitrary dimensions has not yet been formulated, but the current
standard methods of the Lefschetz fixed point theorem apply readily.

The tangent space of Qn(w) at (a, σ) is given by the following proposition.
Proposition 6.3. For each w ∈ Wn, the space Qn(w) is a smooth, connected

n-manifold with the tangent space

T(a,σ)Qn(w) = {(u, v) ∈ Vn−1 × Vn−1 | av − σu = ρ; deg ρ ≤ n− 1}(6.2)

at (a, σ) ∈ Qn(w). The n-manifolds {Qn(w) | w ∈ Wn} form the leaves of a foliation
of Qn.

Proof. We have already established that Qn(w) is a connected n-manifold, dif-
feomorphic to Rn. To prove that T(a,σ)Qn(w) is given by (6.2), observe that the
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directional derivative

D(u,v)ψ(a, σ) =
1

2π

∫ π

−π

eikθ
[v
a
− σu

a2

]
dθ

=
1

2π

∫ π

−π

eikθ
av − σu

a2
dθ

is zero for k = 0, 1, . . . , n if and only if the polynomial ρ = av−σu has degree at most
n − 1. In fact, zkρ(z)/a(z)2 is analytic for z ≥ 1 and strictly proper precisely when
deg ρ < 2n − k. Since the tangent space has dimension n, the rank of Jac(ψ)|(a,σ)

is everywhere n, and hence the connected submanifolds Qn(w) form the leaves of a
foliation of Qn.

As pointed out in the introduction, for minimum-phase shaping filters, there is
a close relation between the cepstral coefficients and the Markov parameters of the
corresponding shaping filter w. To establish these relations, make a Laurent expansion
of

log Φ(z) = logw(z) + logw(z−1)(6.3)

on a subset Ω of the complex plane, where Ω is the intersection between an annulus
containing the unit circle but none of the zeros of w(z) or w(z−1) and a sector con-
taining the positive-real axis. The purpose of the sector is to avoid circling the origin.
Then the Laurent expansion obtained from the series expansions on the corresponding
segment of the real line of logw(z) and logw(z−1) extends to all of Ω and hence, in
particular, to the arc on the unit circle contained in Ω. Then, however, the uniqueness
of the Fourier transform ensures that the Laurent expansion also holds there. From
this we see

c0 = 2 logw0,

c1 =
w1

w0
,

c2 =
w2

w0
− 1

2

(
w1

w0

)2

,

c3 =
w3

w0
− 1

2

(
2
w1

w0

w2

w0

)
+

1

3

(
w1

w0

)3

.

...

Indeed, these equations form a triangular system, and hence the Markov parameters
can also be obtained from the cepstral coefficients, and vice versa. Setting w0 = 1, we
obtain the usual normalization with c0 = 0. Therefore, the nonempty submanifolds
Qn(w) ∩ Pn are precisely the leaves of the foliation {Pn(c) | c ∈ Cn}. In fact, let
φ : Pn → Rn be the restriction of ψ to Pn, and define Pn(w) := φ−1(w) for each
w ∈ Mn := φ(Pn). Then we have the following corollary.

Corollary 6.4. The n-manifolds {Pn(w) | w ∈ Mn} form the leaves of a
foliation of Pn, which is identical to {Pn(c) | c ∈ Cn}.

In the present setting, however, we also consider nonminimum phase shaping
filters, allowing σ to be an arbitrary real monic polynomial. Whereas in Pn there
is a one-to-one correspondence between windows of cepstral coefficients and Markov
parameters, this is no longer the case in Qn. The tangent vectors of Pn(w) at (a, σ)
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do satisfy (4.6) of Proposition 4.2, but this does not extend to the situation where
σ(z) is no longer a Schur polynomial. Indeed, the first integral in (4.6) is not even
defined when σ(z) has a root on the unit circle. Nevertheless, we have the following
lemma, which is all we need below.

Lemma 6.5. Any (u, v) ∈ T(a,σ)Qn(w) satisfies the equation

1

2π

∫ π

−π

S(σ)vdθ =
1

2π

∫ π

−π

S(a)u
σσ∗

aa∗
dθ.(6.4)

Proof. By Proposition 6.3, the tangent space T(a,σ)Qn(w) consists of those (u, v)
for which the polynomial ρ := av − σu has degree at most n− 1. Since

v =
σu

a
+

ρ

a
,

we have

S(σ)v = S(a)u
σσ∗

aa∗
+ σ∗ ρ

a
+ σ

(ρ
a

)∗
.(6.5)

However, ρ/a is strictly proper and analytic for |z| ≥ 1, and hence it has a Laurent
expansion

ρ

a
= α1z

−1 + α2z
−2 + · · · ,

which is valid on the unit circle. Therefore,

1

2π

∫ π

−π

[
σ∗ ρ

a
+ σ

(ρ
a

)∗]
dθ = 0,(6.6)

and hence (6.4) follows.
Next let φ : Qn → Rn be the map that sends (a, σ) to the vector r ∈ Rn of

normalized covariance lags (4.7). Clearly, φ(Qn) = Rn := f(Pn). Given any r ∈ Rn,
define

Qn(r) := φ−1(r).

The following proposition is a Qn-version of Proposition 4.5, and the proof is the same
mutatis mutandis.

Proposition 6.6. For each r ∈ Rn, Qn(r) is a smooth, connected manifold of
dimension n. The tangent space T(a,σ)Qn(r) consists of those (u, v) ∈ Vn−1 × Vn−1

for which

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ +

ϕ

2π

∫ π

−π

σσ∗

aa∗
eikθdθ(6.7)

for k = 0, 1, . . . , n, where

ϕ =
1

h0(a, σ)

1

2π

∫ π

−π

[
S(σ)v

aa∗
− S(a)u

aa∗
σσ∗

aa∗

]
dθ.(6.8)

The n-manifolds {Qn(r) | r ∈ Rn} form the leaves of a foliation of Qn.
In the case in which a(z) and σ(z) are coprime, we can now show that if the

tangent spaces T(a,σ)Qn(w) and T(a,σ)Qn(r) do intersect, they intersect transversely.
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Proposition 6.7. Suppose that the polynomials a(z) and σ(z) are coprime. Then

T(a,σ)Qn(w) ∩ T(a,σ)Qn(r) = 0(6.9)

for any (a, σ) ∈ Qn(w) ∩ Qn(r).
Proof. Suppose that (u, v) ∈ T(a,σ)Qn(w)∩T(a,σ)Qn(r). Then (u, v) satisfies (6.7)

for k = 0, 1, . . . , n and, by symmetry, also for k = −1,−2, . . . ,−n. Taking the linear
combination corresponding to the coefficients of aa∗, we obtain

1

2π

∫ π

−π

S(σ)vdθ =
1

2π

∫ π

−π

S(a)u
σσ∗

aa∗
dθ + ϕ‖σ‖2.

However, by Lemma 6.5, (u, v) also satisfies (6.4), and hence, since ‖σ‖ > 0, we must
have ϕ = 0.

Consequently, T(a,σ)Qn(w) ∩ T(a,σ)Qn(r) consists of those (u, v) ∈ Vn−1 × Vn−1

which satisfy both

1

2π

∫ π

−π

S(σ)v

aa∗
eikθdθ =

1

2π

∫ π

−π

S(a)u

aa∗
σσ∗

aa∗
eikθdθ, k = 0, 1, . . . , n,(6.10)

and

av − σu = ρ, deg ρ ≤ n− 1.(6.11)

In view of (6.5), we have

S(σ)v

aa∗
=

S(a)u

aa∗
σσ∗

aa∗
+

S(aσ)ρ

(aa∗)2
,

which, inserted into (6.10), yields

1

2π

∫ π

−π

S(aσ)ρ

(aa∗)2
eikθdθ = 0, k = 0, 1, . . . , n.(6.12)

Clearly, there is a decomposition

S(aσ)ρ

(aa∗)2
=

d

a2
+

d∗

(a∗)2
=

S(a2)d

(aa∗)2
,(6.13)

where d(z) is a real polynomial of degree at most 2n. Since a(z) has all of its roots
in the open unit disc, there is also a Laurent expansion

d(z)

a(z)2
=

1

2
β0 +

∞∑
j=1

βjz
−j

valid on the unit circle, having real coefficients β0, β1, β2, . . . , in terms of which

S(aσ)ρ

(aa∗)2
=

∞∑
j=−∞

βje
−ijθ,

where β−j = βj for all j. Inserting this into (6.12), we see that β0, β1, . . . , βn = 0,
and hence the polynomial d(z) has degree at most n− 1, precisely as ρ(z) has.
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Now from (6.13) we also have

S(aσ)ρ = S(a2)d

or, equivalently,

a(σ∗ρ− a∗d)∗ + a∗(σ∗ρ− a∗d) = 0.

Introducing the reversed polynomials a∗(z) := zna(z−1) and σ∗(z) := znσ(z−1), we
may write this as

S(zna)(σ∗ρ− a∗d) = 0,

which is well defined since deg(σ∗ρ − a∗d) = 2n − 1 < deg(zna). Then, since the
polynomial zna has all of its roots in the open unit disc, kerS(zna) = 0, and hence

σ∗ρ = a∗d.(6.14)

Now, if ρ �= 0,

d∗
ρ∗

=
σ

a
,

where ρ∗(z) := zn−1ρ(z−1) and d∗(z) := zn−1d(z−1). But this is impossible when
a(z) and σ(z) are coprime because the left member is a proper rational function of
degree at most n − 1, while the right member has degree n. Hence only ρ = d = 0
satisfies (6.14). However, for ρ = 0, (6.11) has only the solution u = v = 0, as claimed.
In fact, if v �= 0,

v

u
=

σ

a
,

which has no solution if a(z) and σ(z) are coprime.
Just as in Remark 4.7, this establishes that the Jacobian of the joint map (a, σ) →

(r1, r2, . . . , rn, w1, w2, . . . , wn) has full rank, and, by the inverse function theorem,
the joint map forms a smooth local coordinate system on Q∗

n. This proves the first
statement of Theorem 3.5.

Figure 6 illustrates the fact that the covariance foliation and the Markov foliation
are everywhere transverse. Also note that the shaded region in Figure 6 is identical
to Figure 5, thus illustrating Corollary 6.4.

Figure 6 also suggests that each leaf of the Markov foliation meets each leaf of
the covariance matching foliation, a fact that we shall now establish in a slightly
generalized form. As above, Qn(r) and Qn(w) denote the closures of the submanifolds
Qn(r) and Qn(w), respectively.

Theorem 6.8. The closure of every leaf of the Markov foliation intersects the
closure of any leaf of the covariance matching foliation. Moreover, either the leaves
themselves intersect, or every point of intersection is of the form (a, σ), where a has
some roots on the unit circle and σ vanishes at each of these roots, while the ratio has
the prescribed covariance and Markov windows.

Proof. The basic space we work on is the product Sn×Πn. We have already seen
that Qn(w) is the graph of a continuous function γ : Sn → Πn. We wish to exhibit
Qn(r) as the graph of a continuous function δ : Πn → Sn. Assuming this for the
moment, we deduce from Theorem 6.1 that the continuous map

δ ◦ γ : Sn → Sn
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Fig. 6. Markov (dotted line) and covariance (solid line) matching foliations of Q1.

has a fixed point ā; i.e., (δ ◦ γ)(ā) = ā. If σ̄ = γ(ā), then (ā, σ̄) is a point lying on
both Qn(w) and Qn(r). To see this, note that (ā, σ̄) = (ā, γ(ā)) by definition and that
(ā, σ̄) = (δ ◦ γ(ā), γ(ā)) by construction.

Therefore, it remains to construct δ. If σ is a Schur polynomial, then, according
to Theorem 3.3, there exists a unique Schur polynomial a such that (a, σ) lies in
Pn(r) ⊂ Qn(r). We shall write δ(σ) = a. According to Theorem 3.4, δ is a smooth
function on Sn. Since this is crucial for what follows, we give an independent proof
of Theorem 3.4, using the global analysis developed in section 4.

First, we note that the foliations {Pn(r) | r ∈ Rn} and {Pn(σ) | σ ∈ Sn} are
complementary. To see this, we ask whether a tangent vector (u, 0) to Pn(σ) at a
point (a, σ) could also be tangent to the leaf Pn(r) through (a, σ). To this end, just
as in the proof of Proposition 4.5, we first observe that (6.7) may be written as

Fp = Hv,

where p(z) := u(z) + 1
2ϕa(z) and F,H are the linear maps (4.12). Then, substituting

(u, 0) into (6.7), we obtain Fp = 0. However, we also established in the proof of
Proposition 4.5 that F is nonsingular, and hence p = 0, which, in turn, implies that
ϕ = 0 and thus that u = 0.

Now consider the map η : Pn → Sn defined via η(a, σ) = σ. The kernel of the
Jacobian of η at any point is the tangent space to Pn(σ) at that point. In particular,
the kernel of the Jacobian of the map ηr : Pn(r) → Sn defined via ηr(a, σ) = σ is
zero at every point of Pn(r). According to Theorem 3.3, the map ηr has an inverse
δ. Moreover, by the inverse function theorem, δ is smooth and hence continuous.

In [22], Georgiou proves that δ has a continuous extension to Sn with a very
interesting property. If σ has roots on the unit circle, a = δ(σ) may have roots on
the unit circle, but σ must vanish at each of these roots, yielding a lower degree
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ratio having the prescribed covariance window. Of course, Theorem 3.3 and the
constructions in [11, 22] start with the pseudopolynomial

d(z, z−1) = σ(z)σ(z−1)

rather than σ itself. Since d is taken to be an arbitrary pseudopolynomial of degree
less than or equal to zero and nonnegative on the unit circle, the continuity of δ on
Sn is equivalent to the continuity of δ on the larger space Πn. This enables us to
form the continuous function δ ◦γ on Sn and apply the Lefschetz fixed point theorem,
yielding the statement of the theorem.

Since, according to Theorem 6.8, any intersection between Qn(r) and Qn(w) on
the boundary of Qn defines a pair (a, σ) of polynomials whose roots on the unit circle
are common, after cancellation, w(z) = σ(z)/a(z) has all of its poles in open unit
disc and is thus a bona fide shaping filter. Consequently, Theorem 6.8 establishes the
existence part of the last statement of Theorem 3.5. The uniqueness part follows from
the following proposition.

Proposition 6.9. There is at most one shaping filter w(z) having given windows
(1, w1, . . . , wn) and (1, r1, . . . , rn) of normalized Markov parameters and normalized
covariance lags, respectively.

Proof. Let w1(z) and w2(z) be two shaping filters having the same window
(1, w1, . . . , wn) of normalized Markov parameters. Then, if

w1(z) =
σ1(z)

a1(z)
, w2(z) =

σ2(z)

a2(z)
,

where (a1, σ1) and (a2, σ2) are coprime pairs of monic polynomials, the degree of the
polynomial

ρ := σ1a2 − σ2a1

is at most n− 1. In fact, the first n Markov parameters of

σ1

a1
− σ2

a2
=

ρ

a1a2

are zero.

Without restriction, we may order the shaping filters so that λ1 ≥ λ2, where

λ1 :=

(
1

2π

∫ π

−π

∣∣∣∣σ1

a1

∣∣∣∣
2

dθ

)−1

, λ2 :=

(
1

2π

∫ π

−π

∣∣∣∣σ2

a2

∣∣∣∣
2

dθ

)−1

.

Then, assuming that w1(z) and w2(z) also have the same normalized covariance lags
(1, r1, . . . , rn), we have

1

2π

∫ π

−π

eikθΨ(eiθ)dθ = 0, 0, 1, . . . , n,

where

Ψ := λ1

∣∣∣∣σ1

a1

∣∣∣∣
2

− λ2

∣∣∣∣σ2

a2

∣∣∣∣
2

.
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Fig. 7. Spectral envelope of 10th order LPC filter.

We want to show that ρ = 0. To this end, note that, in particular,

1

2π

∫ π

−π

|a2(e
iθ)|2Ψ(eiθ)dθ = 0,(6.15)

where

|a2|2Ψ = λ1
|ρ|2
|a1|2 + λ1

σ2ρ
∗

a∗1
+ λ1

σ∗
2ρ

a1
+ (λ1 − λ2)|σ2|2.

However, for the same reason as in (6.6),

1

2π

∫ π

−π

[
σ2

(
ρ

a1

)∗
+ σ∗

2

(
ρ

a1

)]
dθ = 0,

and hence (6.15) can be written as∥∥∥∥ ρ

a1

∥∥∥∥
2

+

(
1− λ2

λ1

)
‖σ2‖2 = 0.

Since ‖σ2‖ > 0 and 1 − λ2/λ1 > 0, this implies that λ1 = λ2 and ρ = 0. Hence
w1 = w2, as claimed.

7. Zero assignability vs. cepstral assignability. The theory derived in this
paper was developed for dealing with problems encountered in applying Theorem 3.3
to the identification of speech segments. The maximum entropy solution described
in section 3, often called the LPC method in the speech processing community, is
a standard tool for representing the spectral envelope of speech signals [17]. Its
popularity is mainly due to its low computation costs and nice matching of spectral
peaks. The latter property is illustrated in Figure 7, which shows the periodogram of
Figure 3 together with the spectral envelope determined by a tenth order LPC filter,
based on ergodic estimates of r0, r1, . . . , r10 from the data in Figure 2.

However, it is well known that this estimate of the spectral envelope may not
reproduce the notches of the spectrum very well, especially for nasal sounds, where
the spectra have a deep valley because of the dead end formed by the mouth. This
“flatness” of the spectral envelope, illustrated by Figure 7, is one of the shortcomings
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of LPC filtering. It is due to the fact that the zeros of the modeling filter, being at
the origin, are maximally removed from the unit circle, where the spectral density is
evaluated. There is thus a need for introducing nontrivial zeros in the shaping filter.

By Theorem 3.3, to any Schur polynomial σ(z), there is a unique shaping fil-
ter having σ(z) as its numerator polynomial and matching the covariance window
r0, r1, . . . , rn in the same way as the LPC filter. In fact, there is even a convex op-
timization procedure, based on (5.7), to determine this shaping filter. However, this
does leave us with the problem of how to choose the zeros.

It is generally agreed that a finite window (1.9) of cepstral coefficients contains
more information about the zeros than does a finite window (1.8) of covariance lags.
In fact, differentiate the expansion

log
σ(z)

a(z)
=

c0
2
+

∞∑
k=1

ckz
−k,

obtained from (6.3), with respect to z to obtain

σ′(z)a(z)− σ(z)a′(z)
σ(z)a(z)

= −
∞∑
k=1

kckz
−k−1.(7.1)

Consequently, {−kck} are the Markov parameters of a filter whose poles are the
original poles and zeros. Therefore, modulo deciding which are which, both the poles
and the zeros can be determined from a finite number of exact cepstral coefficients
by solving a Hankel system. In so-called homomorphic prediction, e.g., the method
of Shanks [35], the zeros are estimated according to these principles once the poles
have been determined using LPC analysis. Indeed, it is well known [32] that the LPC
envelope has a nonuniform spectral weighting and that it matches the peaks much
more accurately than the valleys, i.e., giving much better estimates of poles than zeros.
While, in theory, these methods provide estimates of a shaping filter, and hence of a
spectral envelope, they do not achieve covariance matching and may produce shaping
filters that are neither stable nor minimum-phase. Therefore, these ad hoc methods
do not as such provide an alternative to an algorithm based on Theorem 3.3, but they
could provide the required zero estimates.

In this context, we suggest an alternative method for estimating the zeros: Given
estimates of spectral values of a periodogram at equidistant points on the unit circle,

Φ(eiθk), k = 1, 2, . . . , N,(7.2)

find, by linear programming, pseudopolynomials P and Q which minimize

max
k

|Q(eiθk)Φ̂(eiθk)− P (eiθk)|(7.3)

subject to the constraints that |P (eiθk | ≥ ε and |Q(eiθk | ≥ ε for some ε > 0. Again,
the shaping filter P/Q obtained in this way would have the same undesirable proper-
ties describe above, but we can use P as the pseudopolynomial required in the dual
problem (5.7) to determine a new Q such that P/Q satisfies the covariance matching
condition. In this procedure, the Q obtained via (7.3) can be used as an initial condi-
tion when applying Newton’s method to solve the dual problem. For all the reasons
described above, it is better to use a cepstrally smoothed periodogram in determining
(7.2). Explicitly, the cepstral parameters are calculated from the data (1.9) using an
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Fig. 8. Spectral envelope of a 6th order LLN filter.
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Fig. 9. Spectral envelope of 10th order LLN filter.

inverse discrete Fourier transform on the logarithm of the periodogram, after which
the cepstral coefficients are windowed and inversely transformed [33, pp. 494–495]. As
we have seen, the logarithm evens out the difference of energy in the valleys and the
peaks and then treats valleys and peaks the same. In Figure 8, we show the spectral
envelope of the signal in Figure 2 obtained from a sixth order shaping filter computed
by this method. This spectral envelope should be compared with that of the tenth
order LPC filter in Figure 7. Instead using a tenth order filter, we obtain the spectral
envelope in Figure 9.

However, instead of matching covariance lags and zeros, we may match covariance
lags and cepstral coefficients, thus applying an algorithm based on the dual problem to
maximize (5.16) described in Theorem 5.3. The covariance and cepstrum interpolation
problem is very appealing since both the covariances and the cepstral parameters can
be estimated directly from data using ergodicity. Estimation of covariances is well
analyzed (see e.g., the books [28, 36]), whereas the estimation of the cepstrum is a
less studied problem. One method based on taking the discrete Fourier transform
of the periodogram has been analyzed in, e.g., [20]. Using estimated covariance and
cepstrum parameters, the filter depicted in Figure 10 was determined.
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Fig. 10. Spectral envelope of 10th order cepstral match filter.

More specifically, Figure 10 shows the periodogram of a frame of speech for the
phoneme [s] together with a tenth order spectral envelope produced by this method.
In this case, P ∈ D+, so there is both covariance and cepstral matching. In general,
however, this is not the case, as Theorem 5.3 states. This can be seen already in the
case when n = 1. In Figure 5, the covariance matching foliation (straight lines) is
depicted together with the cepstral matching foliation (curved). Clearly, a leaf in one
foliation in general does not intersect all leaves in the other. Therefore, methods for
determining approximate solutions in the interior D+ have been developed [19].

The problem that P may tend to the boundary of D led us to relax the stability
constraint of the numerator polynomial σ and hence, in view of the bijection between
cepstral and Markov parameters, prompted us to consider the simultaneous partial
realization problem of section 7.

Appendix A. Divisors and polynomials. In global analysis, we shall also
need to recognize spaces of real polynomials which are diffeomorphic to Rn as well
as certain subsets of polynomials having certain properties, e.g., connectivity, in the
relative topology. For this reason, we will adapt the standard treatment of divisors
and elementary symmetric functions to the real case.

Let Ω be a self-conjugate, open subset of C, which we take to be path-connected.
For such an Ω we denote by PΩ(n) the space of real monic polynomials p(z), of degree
n, with all roots lying in Ω. Now the roots of any p ∈ PΩ(n) determine a self-
conjugate, unordered n-tuple (λ1, . . . , λn) of points λi ∈ C, not necessarily distinct,
known as a real divisor of degree n on Ω. We denote this divisor by Dp and refer to
the space of such divisors as the real symmetric product Ω(n) of Ω.

Alternatively, it is standard to construct the symmetric product Ω(n) by letting
the permutation group Sn on n-letters act on the ordinary Cartesian product Ωn

by permuting the coordinates of n-vectors with entries in Ω. The set of equivalence
classes, or orbits of Sn, in the Cartesian product form the points in the symmetric
product. In general, the real symmetric product Ω(n) is always a smooth n-manifold;
in fact, Ω(n) is diffeomorphic to PΩ(n) using the identification

(λ1, . . . , λn) → (p1, . . . , pn),

where p(z) = zn + p1z
n−1 + · · ·+ pn :=

∏n
k=1(z − λk). For example, we see that the

real symmetric product Ω(n) for Ω = C is diffeomorphic to Rn. For the unit disc,
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D, the real symmetric product is diffeomorphic to the space of real Schur polynomi-
als, i.e., those real polynomials satisfying the Schur–Cohn conditions, while for the
open left half-plane the real symmetric product is diffeomorphic to the space of those
real monic polynomials satisfying the Routh–Hurwitz conditions. Each of these real
symmetric products is in turn diffeomorphic with Rn, although not via the standard
correspondence given above. Indeed, if Ω ⊂ C is a self-conjugate open subset of the
Riemann sphere, with a simple, closed, rectifiable, orientable curve as boundary, then
PΩ(\) is diffeomorphic to Rn. As noted in [7], this follows from the Riemann mapping
theorem and the corresponding result for the open unit disc D. For Ω = D this may
be explicitly represented using the real diffeomorphism T of D to C, defined in polar
coordinates via

T (r, θ) =
(
tan

rπ

2
, θ
)
.

In general, the projection Pn : Ωn → Ω(n) is smooth, and any diffeomorphism

T : Ω
(n)
1 → Ω

(n)
2 is induced by a unique Sn-invariant diffeomorphism T̃ : Ωn

1 → Ωn
2 . In

particular, if T : Ω1 → Ω2 is a diffeomorphism, then the induced map T̄ : Ω
(n)
1 → Ω

(n)
2

defined on divisors of degree n via

T̄ (λ1, . . . , λn) = (T (λ1), . . . , T (λn))

is a diffeomorphism. In particular, PD(n) is diffeomorphic with PC(n), which is dif-
feomorphic to Rn.

Appendix B. Calculation of cepstral coefficients. Suppose

Φ(eiθ) = ρ2

∣∣∣∣σ(eiθ)a(eiθ)

∣∣∣∣
2

,

where

a(z) = zn + a1z
n−1 + · · ·+ an

and

σ(z) = zn + σ1z
n−1 + · · ·+ σn

are Schur polynomials, i.e., have all of their roots in the open unit disc, and ρ is a real
number. Then the cepstral coefficients, i.e., the Fourier coefficients in the expansion
(1.5), are given by

c0 = 2 log ρ,

ck =
1

k
{sk(a)− sk(σ)}, k = 1, 2, 3, . . . ,

where

sk(a) = pk1 + pk1 + · · ·+ pkn,

sk(σ) = zk1 + zk1 + · · ·+ zkn,

in which p1, p2, . . . , pn are the roots of a(z) and z1, z2, . . . , zn are the roots of σ(z).
For the case of maximal entropy (or LPC) filters, we have zi = 0, and the above

formula is well known. For pole-zero models, this formula is, to the best of our
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knowledge, new but straightforward to derive using the basic algebraic properties of
the logarithm.

Moreover, using Newton’s identities [15, p. 5], one derives the following recursions:

sk(a) = −kak −
k−1∑
j=1

ak−jsj(a),

sk(σ) = −kσk −
k−1∑
j=1

σk−jsj(σ).

These equations also hold for k > n provided we set ak = 0 and σk = 0 whenever
k > n.

Appendix C. Connectivity of Pn(c). We also need to know about various
coordinates on PΩ(n) and hence about C∞ functions. If f : Ω(n) → R is C∞, then f
lifts to a C∞ function on Ωn which is Sn-invariant, and, conversely, any C∞ function
on Ωn which is Sn-invariant descends to a C∞ function defined on Ω(n). We denote
the algebra of C∞ functions on Ω(n) by C∞[Ω(n)] and the algebra of Sn-invariant
C∞ functions on Ωn by C∞[Ωn]Sn . In light of the remarks made above, C∞[Ω(n)] is
canonically isomorphic to C∞[Ωn]Sn .

Whenever a real diffeomorphism M maps such a domain Ω1 onto such a domain
Ω2, M commutes with the actions of Sn on Ωn

1 and on Ωn
2 , so that composition with

M induces an isomorphism between C∞[Ωn
2 ]

Sn and C∞[Ωn
1 ]

Sn and hence between

C∞[Ω
(n)
2 ] and C∞[Ω

(n)
1 ]. Therefore, composition with M−1 will map generators of

C∞[Ωn
1 ]

Sn to generators of C∞[Ω
(n)
2 ].

As an example, consider Ω = C. Then the algebra of Sn-invariant real polynomials
is generated by the coefficients pi of the polynomials p(z), treated as the points of the
real symmetric product. We denote this by writing

C∞[C(n)] = C∞[p1, . . . , pn].

Any diffeomorphism of Rn with itself will give another set of n generators, and,
conversely, any other choice of n generators will define a diffeomorphism. Indeed,
consider the self-conjugate polynomials in λ,

sk(λ) = λk
1 + · · ·+ λk

n,

which are invariant under the action of Sn on the n-fold Cartesian product of C. Each
sk(λ) lies in C∞[C(n)] and is in fact a real polynomial in (λ1, . . . , λn), as described by
the Newton identities [15, p. 5]

sk(λ) = −kλk −
k−1∑
j=1

λk−jsj(λ),

where we set ak = 0 and σk = 0 whenever k > n.
Conversely, the Newton identities also show that the λi are real polynomials in

the sk, and so we may write

C∞[C(n)] = C∞[λ1, . . . , λn].

To put this another way, the functions sk form a system of smooth coordinates on the
real Euclidean n-space, C(n).
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If

c̃k(T̃ (a), T̃ (σ)) = ck(σ, a),

then the functions c̃k form a set of generators for C∞[C(n)]. In particular, in these
coordinates, the sets are affine planes and are hence connected.

Lemma C.1. The submanifolds Pn(c) are connected.
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