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Algebraic geometry plays an important role in the theory of linear systems
for (at least) three reasons. First, the Laplace transform turns expressions
about linear differential systems into expressions involving rational functions.
In addition, many of the transformations studied in linear systems theory,
like changes of coordinates or feedback, turn out to be the action of algebraic
groups on algebraic varieties. Finally, when we study linear quadratic problems
in optimization and estimation, all roads eventually lead either to the Riccati
equation or to spectral factorization.

Clyde Martin was a pioneer in applying algebraic geometry to linear sys-
tems in all three of these theaters. Perhaps the work which is closest to the
results we discuss in this paper was his joint study, with Bob Hermann, of the
matrix Riccati equation as a flow on a Grassmannian.

In this paper3 we study the steady state form of a discrete-time matrix
Riccati-type equation, connected to the rational covariance extension problem
and to the partial stochastic realization problem. This equation, however, is
nonstandard in that it lacks the usual kind of definiteness properties which un-
derlie the solvability of the standard Riccati equation. Nonetheless, we prove
the existence and uniqueness of a positive semidefinite solution. We also show
that this equation has the proper geometric attributes to be solvable by ho-
motopy continuation methods, which we illustrate in several examples.

1 The covariance extension equation

We will consider real sequences

c = (c0, c1, . . . , cn) (1)

3 This research was supported in part by grants from AFOSR, NSF, VR, the Göran
Gustafsson Foundation, and Southwestern Bell.
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that are positive in the sense that

Tn =











c0 c1 · · · cn

c1 c0 · · · cn−1

...
...

. . .
...

cn cn−1 · · · c0











> 0,

and we consider Schur polynomials

σ(z) = zn + σ1z
n−1 + · · · + σn; (2)

i.e, polynomials with all their roots in the open unit disc. For simplicity, we
normalize by taking c0 = 1. Motivated by the partial stochastic realization
problem and the rational covariance extension problem, which we will briefly
review in Section 3, we form the following n vectors and n × n matrix:

σ =











σ1

σ2

...
σn











, h =











1
0
...
0











, and Γ =















−σ1 1 0 · · · 0
−σ2 0 1 · · · 0

...
...

...
. . .

...
−σn−1 0 0 · · · 1
−σn 0 0 · · · 0















. (3)

Defining u1, u2, . . . , un via

zn

zn + c1zn−1 + · · · + cn
= 1 − u1z

−1 − u2z
−2 − u3z

−3 − . . . (4)

we also form

u =











u1

u2

...
un











U =















0
u1 0
u2 u1

...
...

. . .

un−1 un−2 · · · u1 0















. (5)

We shall also need the function g : R
n×n → R

n defined by

g(P ) = u + Uσ + UΓPh. (6)

From these quantities, in [4], we formed the Riccati-like matrix equation

P = Γ (P − Phh′P )Γ ′ + g(P )g(P )′, (7)

which we sought to solve in the space of positive semidefinite matrices satis-
fying the additional constraint

h′Ph < 1, (8)
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where ′ denotes transposition. We refer to this equation as the covariance
extension equation (CEE).

To this end, define the semialgebraic sets

X = {(c, σ) | Tn > 0, σ(z) is a Schur polynomial}

and
Y = {P ∈ R

n×n | P ≥ 0, h′Ph < 1}.

On X × Y we define the rational map

F (c, σ, P ) = P − Γ (P − Phh′P )Γ ′ − g(P )g(P )′

Of course its zero locus

Z = F−1(0) ⊂ X × Y

is the solution set to the covariance extension equations. We are interested in
the projection map restricted to Z

πX (c, σ, P ) = (c, σ).

For example, to say that πX is surjective is to say that there is always a
solution to CEE, and to say that πX is injective is to say that solutions
are unique. One of the main results of this paper is the following, which, in
particular, implies that CEE has a unique solution P ∈ Y for each (c, σ) ∈ X
[4, Theorem 2.1].

Theorem 1. The solution set Z is a smooth semialgebraic manifold of di-

mention 2n. Moreover, πX is a diffeomorphism between Z and X.

In particular the map πX is smooth with no branch points and every
smooth curve in X lifts to a curve in Z. These observations imply that the
homotopy continuation method will apply to solving the covariance extension
equation [1].

2 Proof of Theorem 1

The rational covariance extension problem is to find polynomials

a(z) = zn + a1z
n−1 + · · · + an (9a)

b(z) = zn + b1z
n−1 + · · · + bn (9b)

satisfying the interpolation condition

b(z)

a(z)
=

1

2
+ c1z

−1 + · · · + cnz−n + O(z−n−1) (10)
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and the positivity condition

1

2

[

a(z)b(z−1) + b(z)a(z−1)
]

= ρ2σ(z)σ(z−1) (11)

for some positive real number ρ. Given (9), let a and b be the n-vectors
a := (a1, a2, . . . , an) and b := (b1, b2, . . . , bn), respectively.

In [4] we proved:

Theorem 2. There is a one-to-one correspondence between symmetric solu-

tions P of the covariance extension equation (7) such that h′Ph < 1 and pairs

of monic polynomials (9a)-(9b) satisfying the interpolation condition (10) and

the positivity condition (11). Under this correspondence

a = (I − U)(ΓPh + σ) − u, (12a)

b = (I + U)(ΓPh + σ) + u, (12b)

ρ = (1 − h′Ph)1/2, (12c)

and P is the unique solution of the Lyapunov equation

P = JPJ ′ −
1

2
(ab′ + ba′) + ρ2σσ′, (13)

where

J =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















(14)

is the upward shift matrix. Moreover the following conditions are equivalent

1. P ≥ 0
2. a(z) is a Schur polynomial

3. b(z) is a Schur polynomial

and, if they are fulfilled,

deg v(z) = rank P. (15)

We can now prove Theorem 1. Let Pn be the space of pairs (a, b) whose
quotient is positive real. Clearly, the mapping

f : Pn → X,

sending (a, b) to the corresponding (c, σ), is smooth. Our main result in [5]
asserts that f is actually a diffeomorphism. In particular, for each positive
sequence (1) and each monic Schur polynomial (2), there is a unique pair
of polynomials, (a, b), satisfying (10) and (11), and consequently (a, b) solves
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the rational covariance extension problem corresponding to (c, σ). Moreover,
by Theorem 2, there is a unique corresponding solution to the covariance
extension equation, which is positive semi-definite.

Since J is nilpotent, the Lyapunov equation (13) has a unique solution,
P , for each right hand side of equation (13). Moreover, the right hand side
is a smooth function on X and, using elementary methods from Lyapunov
theory, we conclude that P is also smooth as a function on X . As the graph
in X × Y of a smooth mapping defined on X , Z is a smooth manifold of
dimension 2n = dim X . Moreover, this mapping has the smooth mapping πX

as its inverse. Therefore, πX is a diffeomorphism.

Remark 1. Our proof, together with the results in [5], shows more. Namely,
that Z is an analytic manifold and that πX is an analytic diffeomorphism with
an analytic inverse.

3 Rational covariance extension and the CEE

As described above, given a positive sequence (1), the rational covariance ex-
tension problem – or the covariance extension problem with degree constraint
– amounts to finding a pair (a, b) of Schur polynomials (9a)-(9b) satisfying
the interpolation condition

b(z)

a(z)
=

1

2
+ c1z

−1 + · · · + cnz−n + O(z−n−1) (16)

and the positivity condition

1

2

[

a(z)b(z−1) + b(z)a(z−1)
]

> 0 on T. (17)

Then there is a Schur polynomial (2) such that

1

2

[

a(z)b(z−1) + b(z)a(z−1)
]

= ρ2σ(z)σ(z−1) (18)

for some positive normalizing coefficient ρ, and

Re

{

b(eiθ)

a(eiθ)

}

=

∣

∣

∣

∣

ρ
σ(eiθ)

a(eiθ)

∣

∣

∣

∣

2

. (19)

Georgiou [9, 10] raised the question whether there exists a solution for each
choice of σ and answered this question in the affirmative. He also conjectured
that this assignment is unique. This conjecture was proven in [5] in a more
general context of well-posedness.

In [4] we showed that, for any (c, σ) ∈ X , CEE has a unique solution P ∈ Y
and that the unique solution corresponding to σ to the rational covariance
extension problem is given by
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a = (I − U)(ΓPh + σ) − u, (20a)

b = (I + U)(ΓPh + σ) + u. (20b)

Clearly the interpolation condition (16) can be written

b = 2c + (2Cn − I)a, (21)

where

c =











c1

c2

...
cn











Cn =















1
c1 1
c2 c1 1
...

...
...

. . .

cn−1 cn−2 cn−3 . . . 1















.

Using the fact that Cnu = c and Cn(I −U) = I , it was shown in [4] that (21)
can be written

a =
1

2
(I − U)(a + b) − u. (22)

For a fixed (c, σ) ∈ X , let H : Y → R
n×n be the map sending P to

F (c, σ, P ), and let

dH(P ; Q) := lim
t→0

H(P + tQ) − H(P )

t

be the derivative in the direction Q = Q′. A key property needed in the
homotopy continuation solution of the CEE is the fact that this derivative is
full rank.

Proposition 1. Given (c, σ) ∈ X, let P ∈ Y be the corresponding solution of

CEE. Then, if dH(P ; Q) = 0, Q = 0.

Proof. Suppose that dH(P ; Q) = 0 for some Q. Then

H(P ) + λdH(P ; Q) = 0

for any λ ∈ R. Since

dH(P ; Q) = Q−ΓQΓ ′+ΓPhh′QΓ ′+ΓQhh′PΓ ′−g(P )h′QΓ ′U ′−UΓQhg(P )′,

this can be written
H(Pλ) = λ2R(Q), (23)

where Pλ := P + λQ and

R(Q) := 2ΓQhh′QΓ ′ − 2UΓQhh′QΓ ′U ′.

Proceeding as in the proof of Lemma 4.6 in [4], (23) can be written

Pλ = JPλJ ′ −
1

2
(aλb′λ + bλa′

λ) + ρ2
λσσ′ − λ2R(Q), (24)
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where
aλ = (I − U)(ΓPλh + σ) − u, (25a)

bλ = (I + U)(ΓPλh + σ) + u, (25b)

ρλ = (1 − h′Pλh)1/2. (25c)

Observe that

aλ =
1

2
(I − U)(aλ + bλ) − u, (26)

and hence (aλ, bλ) satisfies the interpolation condition (22), or, equivalently,
(16), for all λ ∈ R.

Multipying (24) by zj−i = zn−iz−(n−j) and summing over all i, j =
1, 2, . . . , n, we obtain

1

2

[

aλ(z)bλ(z−1) + bλ(z)aλ(z−1)
]

= ρ2
λσ(z)σ(z−1) − λ2

∑

i=1

∑

j=1

Rij(Q)zj−i

(27)
again along the calculations of the proof of Lemma 4.6 in [4]. Since σ(z)σ(z−1) >
0 on T,

ρ2
λσ(z)σ(z−1) − λ2

∑

i=1

∑

j=1

Rij(Q)zj−i > 0 on T

for |λ| sufficiently small. Then there is a Schur polynomial σλ and a positive
constant ρ̂λ such that

ρ̂2
λσλ(z)σλ(z−1) = ρ2

λσ(z)σ(z−1) − λ2
∑

i=1

∑

j=1

Rij(Q)zj−i.

Therefore,

1

2

[

aλ(z)bλ(z−1) + bλ(z)aλ(z−1)
]

= ρ̂2
λσλ(z)σλ(z−1) (28)

for |λ| sufficiently small.
Now recall that a0 = a and b0 = b are Schur polynomials and that the

Schur region is open in R
n. Hence there is an ε > 0 such that aε(z), a−ε(z), bε(z)

and b−ε(z) are also Schur polynomials and (28) holds for λ = ±ε.
Consequently, (aε, bε) and (a−ε, b−ε) both satisfy the interpolation con-

dition (16) and the positivity condition (18) corresponding to the same
σ := σε = σ−ε. Therefore, since the solution to the rational covariance ex-
tension problem corresponding to σ is unique, we must have aε = a−ε and
bε = b−ε, and hence in view of (24), Pε = P−ε; i.e, Q = 0, as claimed.
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4 Reformulation of the Covariance Extension Equation

Solving the covariance extension equation (7) amounts to solving 1
2n(n − 1)

nonlinear scalar equations, which number grows rapidly with increasing n.
As in the theory of fast filtering algorithms [11, 12], we may replace these
equations by a system of only n equations. In fact, setting

p = Ph (29)

the covariance extension equation can be written

P − ΓPΓ ′ = −Γpp′Γ ′ + (u + Uσ + UΓp)(u + Uσ + UΓp)′ (30)

If we could first determine p, P could be obtained from (30), regarded as a
Lyapunov equation. We proceed to doing precisely this.

It follows from Theorem 2 that (30) may also be written

P = JPJ ′ −
1

2
(ab′ + ba′) + ρ2σσ′, (31)

with a, b and ρ given by (12). Multiplying (31) by zj−i = zn−iz−(n−j) and
summing over all i, j = 1, 2, . . . , n, we obtain precisely (11), which in matrix
form becomes

S(a)

[

1
b

]

= 2ρ2

[

d
σn

]

(32)

or, symmetrically,

S(b)

[

1
a

]

= 2ρ2

[

d
σn

]

, (33)

where

S(a) =















1 . . . an−2 an−1 an

a1 . . . an−1 an

a2 . . . an

... . .
.

an















+















1 a1 a2 . . . an

1 a1 . . . an−1

1 . . . an−2

. . .
...
1















(34)

and

d =















1 + σ2
1 + σ2

2 + · · · + σ2
n

σ1 + σ1σ2 + σn−1σn

σ2 + σ1σ3 + σn−2σn

...
σn−1 + σ1σn















. (35)

Inserting (12) and (29) in (32) yields

S(a(p))

[

1
b(p)

]

= 2(1− h′p)

[

d
σn

]

, (36)



A Solution of the Covariance Extension Equation 9

where
a(p) = (I − U)(Γp + σ) − u, (37a)

b(p) = (I + U)(Γp + σ) + u (37b)

are functions of p. More precisely, (36) are n + 1 equations in the n unknown
p. However, from (12) we have

1

2
(an + bn) = ρ2σn,

which is precisely the last equation in (32). Hence (36) is redundant and can
be deleted to yield

ES(a(p))

[

1
b(p)

]

= 2(1 − h′p)d, (38)

where E is the n × (n + 1) matrix

E =
[

In 0
]

. (39)

These n equations in n unkowns p1, p2, . . . , pn clearly has a unique solution p̂,
for CEE has one.

5 Homotopy continuation

Suppose that (c, σ) ∈ X . To solve the corresponding covariance extension
equation

P = Γ (P − Phh′P )Γ ′ + g(P )g(P )′ (40)

for its unique solution P̂ , we first observe that the solution is particularly
simple if c = c0 = 0. Then u = 0, U = 0 and (40) reduces to

P = Γ (P − Phh′P )Γ ′ (41)

having the unique solution P = 0 in Y . Consider the deformation

c(ν) = νc, ν ∈ [0, 1].

Clearly, (c(ν), σ) ∈ X , and consequently the equation

H(P, ν) := P − Γ (P − Phh′P )Γ ′ − g(P, ν)g(P, ν)′ = 0, (42)

where
g(P, ν) = u(ν) + U(ν)σ + U(ν)ΓPh

with
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u(ν) =















1
νc1 1
νc2 νc1 1
...

...
...

. . .

νcn−1 νcn−2 νcn−3 . . . 1















−1










νc1

νc2

...
νcn











and

U(ν) =















0
u1(ν) 0
u2(ν) u1(ν)

...
...

. . .

un−1(ν) un−2(ν) · · · u1(ν) 0















,

has a unique solution P̂ (ν) in Y .
The function H : Y × [0, 1] → R

n×n is a homotopy between (40) and
(41). In view of Theorem 1, the trajectory {P̂ (ν)}1

ν=0 is continuously differ-
entiable and has no turning points or bifurcations. Consequently, homotopy
continuation can be used to obtain a computational procedure. However, the
corresponding ODE will be of dimension O(n2). Therefore, it is better to work
with the reduced equation (38), which yields an ODE of order n.

To this end, setting

V := {p ∈ R
n | p = Ph, P ∈ Y },

consider instead the homotopy G : V × [0, 1] → R
n defined by

G(p, ν) := ES(a(p))

[

1
b(p)

]

− 2(1− h′p)d,

where a(p) and b(p) are given by (37). A fortiori the corresponding trajec-
tory {p̂(ν)}1

ν=0 is continuously differentiable and has no turning points or
bifurcations. Differentiating

G(p, ν) = 0

with respect to ν yields

ES(a)

[

0

ḃ

]

+ ES(b)

[

0
ȧ

]

+ 2h′ṗd = 0,

where dot denotes derivative and

ȧ = (I − U)Γ ṗ − U̇(Γp + σ) − u̇, (43a)

ḃ = (I + U)Γ ṗ + U̇(Γp + σ) + u̇, (43b)

or, which is the same,
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ES

(

a + b

2

) [

0
Γ ṗ

]

− ES

(

b − a

2

) [

0
UΓ ṗ

]

+ dh′ṗ =

= ES

(

b − a

2

) [

0

U̇Γp + U̇σ + u̇

]

.

In view of (37), this may be written

[

Ŝ(Γp + σ) − Ŝ(UΓp + Uσ + u) + dh′

]

ṗ = Ŝ(UΓp+Uσ+u)(U̇Γp+U̇σ+ u̇),

where Ŝ(a) is the n× n matrix obtained by deleting the first column and the
last row in (34). Hence we have proven the following theorem.

Theorem 3. The differential equation

ṗ =
[

Ŝ(Γp + σ) − Ŝ(U(ν)Γp + U(ν)σ + u(ν)) + dh′

]−1

×

Ŝ(U(ν)Γp + U(ν)σ + u(ν))(U̇ (ν)Γp + U̇(ν)σ + u̇(ν)),

p(0) = 0

has a unique solution {p̂(ν); 0 ≤ ν ≤ 1}. Moreover, the unique solution of the

Lyapunov equation

P − ΓPΓ ′ = −Γ p̂(1)p̂(1)′Γ ′ + (u + Uσ + UΓ p̂(1))(u + Uσ + UΓ p̂(1))′,

where U = U(1) and u = u(1), is also the unique solution of the covariance

extension equation (7).

The differential equation can be solved by methods akin to those in [3].

6 Simulations

We illustrate the method described above by two examples, in which we use
covariance data generated in the following way. Pass white noise through a
given stable filter

white noise
w

−→ w(z)
y

−→

with a rational transfer function

w(z) =
σ̂(z)

â(z)

of degree n̂, where σ̂(z) is a (monic) Schur polynomial. This generates a time
series

y0, y1, y2, y3, . . . , yN , (44)

from which a covariance sequence is computed via the biased estimator
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ĉk =
1

N

N
∑

t=k+1

ytyt−k, (45)

which actually provides a sequences with positive Toepliz matrices. By setting
ck := ĉk/ĉ0 we obtained a normalized covariance sequence

1, c1, c2, . . . , cn, n ≥ n̂. (46)

Example 1: Detecting the positive degree

Given a transfer function w(z) of degree n̂ = 2 with zeros at 0.37e±i and
poles at 0.82e±1.32i, estimate the covariance sequence (46) for n = 2, 3, 4, 5
and 6. Given these covariance sequences, we apply the algorithm of this paper
to compute the n × n matrix P , using the zero polynomial σ(z) = zn−n̂σ̂(z),
thus keeping the trigonometric polynomial |σ(eiθ)|2 constant. For each value
of n, 100 Monte Carlo simulations are performed, and the average of the
singular values of P are computed and shown in Table 1.

n=2 n=3 n=4 n=5 n=6

.42867 .42892 .42922 .42967 .43004

.25322 .25368 .25388 .25407 .25433

3.0409 ·10−6 2.5042 ·10−5 2.1045 ·10−4 4.3479 ·10−4

2.6563 ·10−7 1.6027 ·10−6 1.0086 ·10−4

3.6024 ·10−7 9.1628 ·10−7

1.8882 ·10−7

Table 1. Singular values of solution P of the CEE

For each n > 2, the first two singular values are considerably larger than
the others. Indeed, for all practical purposes, the singular values below the
line in Table 1 are zero. Therefore, as the dimension of P increases, its rank
remains close to 2. This is to say that the positive degree [4] of the covariance
sequence (46) is approximately 2 for all n. In Fig. 2 the spectral density for
n = 2 is plotted together with those obtained by taking n > 2, showing no
major difference.

Next, for n = 4, we compute the solution of the CEE with

σ(z) = σ̂(z)(z − 0.6e1.78i)(z − 0.6e−1.78i).

As expected, the rank of the 4× 4 matrix solution P of the CEE, is approxi-
mately 2, and, as seen in Fig. 3 , a(z) has roots that are very close to cancelling
the zeros 0.6e±1.78i of σ(z).
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Fig. 1.

The given spectral density (n = 2) and the estimated one for n = 4, 5, 6.
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Fig. 2.

The spectral zeros (o) and the corresponding poles (x) for n = 4.

Example 2: Model reduction

Next, given a transfer function w(z) of degree 10 with zeros

0.99e±1.78i, 0.6e±0.44i, 0.55e±2i, 0.98e±i, 0.97e±2.7i

and poles

0.8e±2.6i, 0.74e±0.23i, 0.8e±2.09i, 0.82e±1.32i, 0.77e±0.83i
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as in Fig. 3, we generate data (44) and a corresponding covariance sequence
(46). Clearly, there is no zero-pole cancellation.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 3.

Zeros (o) and the corresponding poles (x) of w(z).

Nevertheless, the rank of the 10× 10 matrix solution P of CEE is close to
6. In fact, its singular values are equal to

1.1911 0.1079 0.0693 0.0627 0.0578 0.0434
0.0018 0.0012 0.0009 0.0008

The last four singular values are quite small, establishing an approximate rank
of 6. The estimated spectral density (n = 10) is depicted in Fig. 4 together
with the theoretical spectral density.

Clearly six zeros are dominant, namely

0.98e±i, 0.99e±1.78i, 0.97e±2.7i,

and these can be determined from the estimated spectral density in Fig.
4. Therefore applying our algorithm to the reduced covariance sequence
1, c1, . . . , c6 using the six dominant zeros to form σ(z), we obtain a 6 × 6
matrix solution P of CEE and a corresponding reduced order system with
poles and zeros as in Fig. 5. Comparing with Fig. 3, we see that the poles are
located in quite different locations. Nevertheless, the corresponding reduced-
order spectral estimate, depicted in Fig. 6, is quite accurate.
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n = 10 estimate of spectral density together with the true spectral density.
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Zeros (o) and poles (x) of the reduced-order system.
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