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The Covariance Extension Equation:
A Riccati-type Approach to Analytic Interpolation

Yufang Cui, Student Member, IEEE and Anders Lindquist, Life Fellow, IEEE

Abstract—Analytic interpolation problems with rationality
and derivative constraints are ubiquitous in systems and control.
This paper provides a new method for such problems, both in
the scalar and matrix case, based on a non-standard Riccati-
type equation. The rank of the solution matrix is the same as the
degree of the interpolant, thus providing a natural approach to
model reduction. A homotopy continuation method is presented
and applied to some problems in modeling and robust control.
We also address a question on the positive degree of a covariance
sequence originally posed by Kalman.

I. INTRODUCTION

Analytic interpolation problems abound in systems and
control, occurring in spectral estimation, robust control, system
identification and signal processing, to mention a few. In the
scalar case, the most general problem formulation goes as
follows. Given m+1 distinct complex numbers z0, z1, . . . , zm
in the open unit disc D := {z | |z| < 1}, consider the problem
to find a real Carathéodory function mapping the unit disc
D to the open right half-plane, i.e., a real function f that is
analytic in D and satisfies Re{f(z)} > 0 there, and which in
addition satisfies the interpolation conditions

f (k)(zj)

k!
= wjk, j = 0, 1, · · · ,m, (1)

k = 0, · · ·nj − 1

where f (k) is the k:th derivative of f , and the interpolation
values {wjk; j = 0, 1, · · · ,m, k = 0, · · ·nj − 1} are complex
numbers in the open right half plane C+ that occur in con-
jugate pairs. In addition we impose the complexity constraint
that the interpolant f is rational of degree at most

n :=

m∑
j=0

nj − 1. (2)

To simplify calculations, we normalize the problem by setting
z0 = 0 and f(0) = 1

2 , which can be achieved through a
simple Möbius transformation. Since f is a real function,
f (k)(z̄j)/k! = w̄jk is an interpolation condition whenever
f (k(zj)/k! = wjk is.

For m = 0 and n0 = n + 1, this becomes the rational
covariance extension problem introduced by Kalman [1] and
completely solved in steps in [2], [3], [4], [5], [6]. This
problem, which is equivalent to determining a rational positive
real function of prescribed maximal degree given a partial
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covariance sequence, is a basic problem in signal processing
and speech processing [7] and system identification [8], [9].

With n0 = n1 = · · · = nm = 1, we have the
regular Nevanlinna-Pick interpolation problem with degree
constraint [10], [11], [12] occurring in robust control [13],
high-resolution spectral estimation [14], [15], simultaneous
stabilization [16] and many other problems in systems and
control. In fact, the Nevanlinna-Pick interpolation problem to
find a Carathéodory function that interpolates the given data
was early used in systems and control [17], [18]. The gen-
eral Nevanlinna-Pick interpolation problem described above,
allowing derivative constraints, was studied in [19], motivated
by H∞ control problems with multiple unstable poles and/or
zeros in the plant. Such problems could not be handled by a
classical interpolation approach [20, p. 18].

The early work on the rational covariance extension prob-
lem [2], [3], [4] had nonconstructive proofs based on topo-
logical degree theory. A first attempt to provide an algorithm
was presented in [5], where a new nonstandard Riccati-type
equation called the Covariance Extension Equation (CEE) was
introduced. However, this approach was completely super-
seded by a convex optimization approach [6], [11], and thus
abandoned. However, in a brief paper [21], it was shown that
the regular Nevanlinna-Pick interpolation problem with degree
constraint could also be solved by the Covariance Extension
Equation, and thus it was shown that CEE is universal in
the sense that it can be used to solve more general analytic
interpolation problems by only changing certain parameters.
This idea was then used in [22] to attach the general problem
presented above. A first attempt to generalize this method to
multivariable analytic interpolation problems was then made
in [23], and we shall pursue this inquiry in this paper.

To provide basic insight into ideas behind the CEE ap-
proach, in Section II we shall review its application to the
rational covariance extension problem, and also bring up
the issue of the importance to distinguish between positive
and algebraic degree of partial covariance sequences. This
is important since the CEE approach provides a simple tool
for model reduction. In Section III we deal with the general
scalar problem formulated above and provide a numerical
algorithm based on homotopy continuation in the style of
[24]. Section IV is devoted to the multivariable generalization,
which turns out to be a challenging problem. The results
fall somewhat short of what the scalar case promises, and,
given some results in [25], we suspect that this is due to
problems introduced by the nontrivial Jordan structure of
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the multivariable case. In Section V we illustrate our theory
with some numerical examples, and finally in Section VI we
provide some conclusions.

II. PRELIMINARIES ON COVARIANCE EXTENSION

To clarify basic concepts and set notation we first develop
and review basic theory for the the special case that m = 0,
z0 = 0 and

w0k = ck, k = 0, 1, . . . , n, (3)

where the Toeplitz matrix

T =


c0 c1 · · · cn
c1 c0 · · · cn−1
...

...
. . .

...
cn cn−1 · · · c0

 (4)

is positive definite. A sequence (c0, c1, . . . , cn) with the prop-
erty T > 0 is called a positive covariance sequence. To
normalize the problem we set c0 = 1

2 .

A. The rational covariance extension problem

If f is a Carathéodory function, then

φ+(z) := f(z−1) (5)

is a positive real function. The problem is then reduced to
finding a rational positive real function

φ+(z) = 1
2 + c1z

−1 + c2z
−2 + c3z

−3 + · · · , (6)

of degree at most n for which only the first n coefficients
c1, c2, . . . , cn are specified. This is the rational covariance
extension problem. In fact,

φ(z) := φ+(z)+φ+(z−1) =

∞∑
k=−∞

ckz
−k > 0, z ∈ T, (7)

where T is the unit circle {z = eiθ | 0 ≤ θ < 2π}. Hence φ
is a power spectral density, and therefore there is a minimum-
phase spectral factor v(z) such that

v(z)v(z−1) = φ(z). (8)

It is well-known [9] that passing normalized white noise
{u(t)}t∈Z through a shaping filter with transfer function v(z),
i.e.,

white noise u −→ v(z)
y−→

until steady state, the output {y(t)}t∈Z is a stationary process
with power spectral density φ(eiθ), θ ∈ [−π, π]. Moreover,
the coefficient (c0, c1, c2, . . . ) are the covariance lags

ck = E{y(t+ k)y(t)}. (9)

Since φ+(z) is rational of degree at most n, it can be
represented as

φ+(z) =
1

2

b(z)

a(z)
, (10a)

where

a(z) = zn + a1z
n−1 + · · ·+ an (10b)

b(z) = zn + b1z
n−1 + · · ·+ bn (10c)

are Schur polynomials, i.e., monic polynomials with all its
roots in the open unit disc. Consequently, a simple calculation
shows that

v(z) = ρ
σ(z)

a(z)
, (11)

where ρ > 0 and

σ(z) = zn + σ1z
n−1 + · · ·+ σn (12)

is a Schur polynomial satisfying

a(z)b(z−1) + b(z)a(z−1) = 2ρ2σ(z)σ(z−1). (13)

Theorem 1. Let (c0, c1, . . . , cn) be a positive covariance
sequence. Then, given any Schur polynomial (12), there is one
and only one Schur polynomial (10b) and ρ > 0 such that (11)
is a shaping filter for (c0, c1, . . . , cn). The mapping from σ to
(a, ρ) is diffeomorphism.

The existence part of Theorem 1 was proved in [2] (also
see [3]) and the rest of the theorem in [4]. Note that σ(z) and
a(z) may have common roots, so the degree of v(z) might
be less than n. Via (13) there is a one-one correspondence
between v and φ+, and they have the same degree.

For each parameter σ there is a convex optimization
problem solving for (a, ρ), which first appeared in [6] (also
see [26], [27]), but here we shall consider a different method
of solution described next.

B. Covariance Extension Equation

Given the parameter polynomial (12), we introduce

σ =


σ1
σ2
...
σn

 , Γ =


−σ1 1 0 · · · 0
−σ2 0 1 · · · 0

...
...

...
. . .

...
−σn−1 0 0 · · · 1
−σn 0 0 · · · 0

 , h =


1
0
...
0

 .
(14)

Moreover, we represent the covariance data in terms of the
first n coefficients in the expansion

zn

zn + c1zn−1 + · · ·+ cn
= 1− u1z−1 − u2z−2 − u3z−3 − . . .

(15a)

about infinity and define

u =


u1
u2
...
un

 , U =


0
u1 0
u2 u1
...

...
. . .

un−1 un−2 · · · u1 0

 (15b)

and the function g : Rn×n → Rn given by

g(P ) = u+ Uσ + UΓPh. (16)
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The Covariance Extension Equation (CEE), introduced in [5],
is the nonstandard Riccati equation

P = Γ(P − Phh′P )Γ′ + g(P )g(P )′, (17)

where ′ denotes transposition. The following theorem was
proved in [5].

Theorem 2. Let (c0, c1, . . . , cn) be a positive covariance
sequence. Then, for each Schur polynomial (12), there is a
unique symmetric, positive semi-definite solution P of CEE
satisfying h′Ph < 1. Moreover, for each σ there is a unique
shaping filter (11) for (c0, c1, . . . , cn) and a corresponding
positive real function (10a), where a(z), b(z) and ρ are given
in terms of the corresponding P by

a = (I − U)(ΓPh+ σ)− u,
b = (I + U)(ΓPh+ σ) + u,

ρ =
√

1− h′Ph.
(18)

Here a := (a1, a2, . . . , an)′ and b := (b1, b2, . . . , bn)′.
Finally

deg v = deg φ+ = rankP. (19)

Note that P looses rank, i.e., has rank less than n, only on a
thin (lower-dimensional) subset of parameters u [5].

C. Algebraic and positive degree

For the moment, let φ+(z) be any rational function of
degree d, not necessarily positive real, given by (6). Then it
has a representation (10) with n replaced by d. Identifying
coefficients of powers of z in b(z) = 2φ+(z)a(z) as done in
[5], we obtain

b1
b2
...
bd

 = 2


c1
c2
...
cd

+


1

2c1 1
...

...
2cd−1 2cd−2 . . . 1



a1
a2
...
ad

 (20a)

for nonnegative powers and
c1 c2 · · · cd
c2 c3 · · · cd+1

...
...

. . .
...

cd cd+1 · · · c2d−1



a1
a2
...
ad

 = −


cd+1

cn+2

...
c2d

 (20b)

for negative powers. The coefficient matrix in (20b) is a
Hankel matrix that we denote Hd. By Kronecker’s theorem
[28],

d := deg φ+(z) = rankH∞ = rankHd. (21)

Therefore φ+(z) can be determined from a finite sequence
(c0, c1, . . . , cn) of covariance lags, where n := 2d. We say
that d is the algebraic degree of (c0, c1, . . . , cn).

Therefore, at first blush, given a partial covariance se-
quence (c0, c1, . . . , cn), we might assume that (20) solves
the rational covariance problem in a minimal-degree form.
This idea underlies (at least the early work on) subspace

identification [29], [30], [31], where in general the biased
ergodic estimates

ck =
1

N − k + 1

N−k∑
t=0

yt+kyt (22)

would be used to insure that the corresponding Toeplitz matrix
is positive definite. Then since

ck = h′F k−1g

where φ+(z) has the realization

φ+(z) = 1
2 + h′(zI − F )−1g, (23)

(F, g, h) could be determined by minimal factorization of the
Hankel matrix Hd. However, as pointed out in [32], this is
incorrect and may lead to an φ+(z) that is not positive real;
also see [9, Chapter 13]. In [33] simple examples were given
where subspace algorithms will fail.

In general we cannot achieve a solution φ+ to the rational
covariance extension problem of a degree d only half of n.
By Theorem 2, the best we could do is

p := min
σ

rankP (σ), (24)

which we call the positive degree of the covariance sequence
(c0, c1, . . . , cn). Since the algebraic degree can be determined
from the rank of the Hankel matrix Hd (also see [28], [34]),
in 1972 Kalman [35] posed the question whether there is
a similar matrix-rank criterion for determining the positive
degree. However, since then it has been shown [5] that for any
p between [n2 ] and n there is an open set in Rn of covariance
sequences (c1, c2, . . . , cn) for which p is the positive degree.
Hence it seems that we cannot get a better criterion than (24).

III. THE GENERAL SCALAR PROBLEM

Next we show that the Covariance Extension Equation is
universal in the sense that it also solves the general analytic
interpolation problem stated in the introduction, by merely
adopting the parameters (u, U) to the new interpolation data.

A. Some stochastic realization theory

We express the realization (23) of φ+(z) in the observable
canonical form, where h is defined as in (14),

F =


−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0

 = J − ah′, (25)

J is the upward shift matrix, and g is an n-vector to be
determined. Note that this need not be a minimal realization,
as there could be cancellations of common zeros of a(z) and
b(z).

Lemma 3. The vector g in (23) is given by

g =
1

2
(b− a). (26)
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Proof. From (10a) and (23) we have

b(z)

a(z)
= 1 + 2h′(zI − F )−1g,

to which we apply the matrix inversion lemma to obtain

a(z)

b(z)
= 1− 2h′(2gh′ + zI − F )−1g

= 1− 2h′[zI − (J − ah′ − 2gh′)]−1g.

Consequently, since b(z) is the denominator polynomial, we
must have a+ 2g = b, from which (26) follows.

As a preliminary, let us review some facts from stochastic
realization theory [9, Section 6]. In view of (7) and (23), the
spectral density φ(z) may be written

φ(z) =
[
h′(zI − F )−1 1

]
M(P )

[
(z−1I − F ′)−1h

1

]
(27a)

for any symmetric n× n matrix P , where

M(P ) =

[
P − FPF ′ g − FPh
g′ − h′PF ′ 1− h′Ph

]
. (27b)

As a straight-forward calculation shows, the left member of
(27a) does not depend on P , as all terms containing P cancel.
However, M(P ) does depend on P , and, by the Positive Real
Lemma (see, e.g. [9, p. 200]), φ+ is positive real if and only
if there is a P such that

M(P ) ≥ 0. (28)

In this case, P must be positive semidefinite, and there is a
minimum-rank factorization

M(P ) =

[
k
ρ

] [
k′ ρ

]
, (29)

where k ∈ Rn and ρ ∈ R. Together with (27a) this yields (8)
with the spectral factor

v(z) = ρ+ h′(zI − F )−1k. (30)

There is a unique minimal symmetric solution of (28) in the
ordering ≥ of symmmetric matrices, and from now on P will
denote precisely this solution. Then (30) is the minimum-phase
spectral factor with all poles and zeros in the open unit disc,
i.e., (30) is precisely (11). Moreover, from (29) we also have

P = FPF ′ + kk′ (31a)
g = FPh+ ρk (31b)

ρ2 = 1− h′Ph, (31c)

from which we have the algebraic Riccati equation

P = FPF ′ + (g − FPh)(1− h′Ph)−1(g − FPh)′. (32)

Note that ρ must be nonzero, or otherwise v(z) would be
identically zero by (11), and thus the same would hold for the
spectral density φ(z). Therefore, in view of (31c),

h′Ph < 1. (33)

Since all eigenvalues of F lie in the open unit disc, the
Lyapunov equation (31a) has a unique solution

P =

∞∑
j=0

F jkk′(F ′)j ≥ 0

[9, Proposition B.1.19, B.1.20]. If (F, k) is a reachable pair so
that (30) is a minimal realization, then P > 0 [9, Proposition
B.1.20]. If rankP = r < n, there is a transformation T and
a positive definite r × r matrix P1 such that

TPT ′ =

[
P1 0
0 0

]
.

Setting

TFT−1 =

[
F11 F12

F21 F22

]
, Tk =

[
k1
k2

]
, (T ′)−1h =

[
h1
h2

]
,

it follows from (31a) that F21 = 0 and k2 = 0, and hence a
straightforward calculation yields the minimal realization

v(z) = h′1(zI − F11)−1k1 + ρ

of degree r = rankP . Moreover,

a(z) = det(zI − F )−1 = det(zI − F11)−1 det(zI − F22)−1,

so det(zI − F22)−1 must be the common factor in σ(z) and
a(z) that is canceled. In view of (13), b(z) has the same
common factor which is canceled in (10a), and hence degree
of φ+(z) is also r. Thus

deg φ+(z) = deg f = rankP. (34)

It is important to note that P looses rank on a thin set
where zero cancelations occur. However, by considering the
singular values of P , we can determine whether P is close to
being singular, which can then be used for approximate model
reduction.

Remark 4. Note that the algebraic Riccati equation (32)
is different from that of Kalman filtering. Indeed, if x̂(t) is
the steady-state Kalman filter estimate of a stationary state
process x(t), then the algebraic Riccati equation of Kalman
filtering solves for the error covariance matrix

Σ := E{[x(t)− x̂(t)][x(t)− x̂(t)]′} = Π− P.

where Π := E{x(t)x(t)′}, and P := E{x̂(t)x̂(t)′} is the
matrix P in our present setting [9, Section 6.9].

Lemma 5. The vectors g and k in (23) and (30) are given by

g = ΓPh+ σ − a (35a)
k = ρ(σ − a), (35b)

where P is the minimal symmetric solution of (28), or equiv-
alently (32).

Proof. In the same way as in the proof of Lemma 3, the matrix
inversion lemma yields

a(z)

σ(z)
= 1− h′(ρ−1kh′ + zI − F )−1ρ−1k

= 1− h′[zI − J + (a− ρ−1k)h′]−1ρ−1k.
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and consequently

J − (a− ρ−1k)h′ = J − σh′ = Γ,

since the denominator is σ(z). Hence (35b) follows. Moreover,
Γ = F − ρ−1k, which, together with (35b), yields

(1− h′Ph)(σ − a) = g − JPh+ ah′Ph,

from which (35a) follows.

In view of (35),

P = (Γ + ρ−1kh′)P (Γ + ρ−1kh′)′ + kk′,

from which it follows that

P − ΓPΓ′ = ρ−2kk′ + ρ−1ΓPhk′ + ρ−1kh′PΓ′

= (ΓPh+ ρ−1k)(ΓPh+ ρ−1k)′ − ΓPhh′PΓ′,

which in turn yields

P = Γ(P − Phh′P )Γ′ + gg′ (36)

by (35). By introducing interpolation data we shall deriver the
appropriate CEE from (36).

B. CEE for general interpolation data

We return to the general interpolation condition (1), where
now

f(z) := φ+(z−1) =
1

2

b∗(z)

a∗(z)
, (37)

a∗(z) := zna(z−1) being the reversed polynomial, and, in
view of (6),

f(z) = 1
2 + c1z + c2z

2 + c3z
3 + · · · . (38)

Given the interpolation values, we form the (n+ 1)× (n+ 1)
matrix

W :=

W0

. . .
Wm

 , (39a)

where, for j = 0, 1, . . . ,m,

Wj =


wj0
wj1 wj0

...
. . . . . .

wjnj−1
· · · wj1 wj0

 . (39b)

In the same format we also define

Z :=

Z0

. . .
Zm

 , Zj =


zj
1 zj

. . . . . .
1 zj

 (40)

and the n+ 1-dimensional column vector

e := [en0
1 , en1

1 , · · · , enm
1 ]′, (41)

where e
nj

1 = [1, 0, · · · , 0] ∈ Rnj for each j = 0, 1, . . . ,m.
Clearly Z is a stability matrix with all eigenvalues in D, and
therefore the Lyapunov equation

X = ZXZ∗ + ee∗, (42)

where Z∗ is the Hermitian conjugate of Z, has a unique
solution X [9, Proposition B.1.19]. The following result can,
for example, be found in [36], [19], [11].

Proposition 6. There exists a (strict) Carathéodory function
f satisfying (1) if and only if

Σ = WX +XW ∗ (43)

is positive definite.

The matrix Σ is called the generalized Pick matrix.

In view of (38),

f(Z) =
1

2
I + c1Z + c2Z

2 + c3Z
3 · · · = W (44)

[37], which together with b∗(Z) = 2f(Z)a∗(Z) yields

b∗(Z)e = 2Wa∗(Z)e.

Therefore
V

[
1
b

]
= 2WV

[
1
a

]
where the matrix

V := [e, Ze, Z2e, · · · , Zne] (45)

is nonsingular by reachability. Therefore, by Lemma 3,[
0
g

]
= (V −1WV − 1

2I)

[
1
a

]
= V −1(W − 1

2I)V

[
1
a

]
, (46)

or equivalently

(W + 1
2I)V

[
0
g

]
= (W − 1

2I)V

[
1

a+ g

]
. (47)

Since (W + 1
2I) is nonsingular, it follows from Lemma 5 that[

0
g

]
= V −1TV

[
1

ΓPh+ σ

]
, (48)

where
T := (W + 1

2I)−1(W − 1
2I). (49)

Now defining the n-vector u and the n× n-matrix U via[
u U

]
:=
[
0 In

]
V −1TV, (50)

where In denotes the n × n identity matrix to distinguish it
from the (n+ 1)× (n+ 1) identity matrix I , (48) yields

g = u+ Uσ + UΓPh, (51)

which inserted into (36) yields precisely the Covariance Ex-
tension Equation

P =Γ(P − Phh′P )Γ′

+ (u+ Uσ + UΓPh)(u+ Uσ + UΓPh)′,
(52)

but now with (u, U) exchanged for (50). Furthermore, by (35),
(26), (31b) and (31c),

a = (I − U)(ΓPh+ σ)− u
b = (I + U)(ΓPh+ σ) + u

ρ =
√

1− h′Ph
(53)

in analogy with (18).
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C. Main theorems

Let the first column in (39b) be denoted (wj0, w
′
j)
′ and

form the n-vector

w = (w′0, w10, w
′
1, w20, w

′
2, . . . , wm0, w

′
m)′, (54)

where w00 = 1
2 has been removed since it is a constant and

not a variable, and let W+ be the space of all w such that Σ
in (43) is positive definite. Moreover, let Sn be the space of
Schur polynomial of the form (12).

The proof of the following proposition will be deferred to
the appendix.

Proposition 7. There is map u = ω(w) sending w to u, which
is a diffeomorphism. Moreover, there is a linear map L such
that U = Lu.

The Covariance Extension Equation (52) can be written

P = ΓPΓ′ +R(p), (55)

where R(p) is a function of the first column p := Ph in
the matrix variable P . Hence once p has been determined,
P can be solved from the Lyapunov equation (55), since Γ is
a stability matrix. Consequently, CEE contains n independent
variables, the same number as the real dimension of w.

Note that (52) can reformulated as

P = (Γ+σh′)P (Γ+σh′)′−(ΓPh+σ)(ΓPh+σ)′+gg′+ρ2σσ′,

where g is given by (51). Since g = 1
2 (b−a) and ΓPh+σ =

1
2 (a+ b), this can rewritten as

P − JPJ ′ = −1

2
(ab′ + ba′) + ρ2σσ′, (56)

where a and b are given by (53).

Let Pn be the 2n-dimensional space of pairs (a, b) ∈ Sn×
Sn such that f = b/a is a Carathéodory function. Moreover,
for each σ ∈ Sn, let Pn(σ) be the submanifold of Pn for
which (13) holds. It was shown in [38] that {Pn(σ) | σ ∈ Sn}
is a foliation of Pn, i.e., a family of smooth nonintersecting
submanifolds, called leaves, which together cover Pn.

Theorem 8. Let σ ∈ Sn. Then for each w ∈ W+ there is a
unique (a, b) ∈ Pn(σ) such that (37) satisfies the interpolation
conditions (1) and the positivity condition (13). In fact, the
map sending (a, b) ∈ Pn(σ) to w ∈ W+ is a diffeomorphism.

Proof. The Carathéodory function f can be written

f(z) =

∫ π

−π

eiθ + z

eiθ − z
Re{ϕ(eiθ)} dθ

2π
,

where (eiθ + z)(eiθ − z)−1 is a Herglotz kernel. Hence the
interpolation problem can be formulated as the generalized
moment problem to find the Carathéodory function (37) sat-
isfying the moment conditions∫ π

−π
αjk(eiθ) Re{ϕ(eiθ)} dθ

2π
= wjk, (57)

where

αj0(z) =
z + zj
z − zj

j = 0, 1, . . . ,m

αjk(z) =
2z

(z − zj)k+1
j = 0, . . . ,m, k = 1, . . . , nj−1

(see, e.g., [12]). Then, by [39, Theorem 3.4], there is a
diffeomorphic map sending aa∗ to w. However there is a
smooth bijection between aa∗ and a, see, e.g., [4, Section
III]. Given σ and a, b is uniquely determined via the linear
relation (13). Note that ρ2 is just the appropriate normalizing
scalar factor once (a, σ) has been chosen.

Theorem 9. For each (σ,w) ∈ Sn × W+, the Covariance
Extension Equation (52) has a unique positive semidefinite
solution P with the property h′Ph < 1, and (53) is the
corresponding unique solution of the analytic interpolation
problem to find a rational Carathéodory function (37) of
degree at most n satisfying the interpolation conditions (1).
Moreover,

deg f = rankP. (58)

Proof. For each (σ,w) ∈ Sn × W+, by Theorem 8, there
is a unique (a, b) ∈ Pn(σ), which means there is a unique
rational positive real function φ+(z) given by (10a). By the
construction in Section III-A, the algebraic Riccati equation
(32) has a unique minimal solution P ≥ 0 satisfying (33). By
tranforming (32) to (36) and inserting (51), there is a unique
positive semidefinite solution to (52) satisfying (33). Relation
(58) follows from (34).

Finally we observe as in [24] that P can be eliminated
from (56) by multiplying by zj−i and summing over all i, j =
1, 2, . . . , n, leading to an equation in merely the independent
vector variable p. In fact, we recover (13), which in matrix
form can be written

S(a)

[
1
b

]
= 2(1− h′p)

[
s
σn

]
, (59)

where

S(a) =


1 · · · an−1 an
a1 · · · an
...

. . .
an

+


1 a1 · · · an

1 · · · an−1
. . .

...
1


and

s =


1 + σ2

1 + σ2
2 + · · ·+ σ2

n

σ1 + σ1σ2 + · · ·+ σn−1σn
...

σn−1 + σ1σn

 ,
where a and b are functions of p via (53). However, among
the n+ 1 equations (59), the last is redundant [24] and can be
removed. Then we are left with n equations[

In 0
]
S(a)

[
1
b

]
= 2(1− h′p)s (60)

in n variables p1, p2, . . . , pn.
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D. Back to rational covariance extension

Next we show how the results presented in subsection II-B
follow from Theorem 9. With m = 0, z0 = 0 and w given by
(3) we have

W =


1
2
c1

1
2

...
. . . . . .

cn · · · c1
1
2


and

Z =


0
1 0

. . . . . .
1 0

 , e =


1
0
...
0

 .
Since therefore V = I and

D =

[
1
c C

]−1 [
0
c C − In

]
=

[
0 0

C−1c In − C−1
]
,

where

C =


1
c1 1
...

...
. . .

cn−1 cn−2 · · · 1

 , c =


c1
c2
...
cn

 ,
(50) yields

u = C−1c, U = In − C−1. (61)

To see that (61) is equivalent to (15), we identify negative
powers of z in

(1 + c1z
−1 + · · ·+ cnz

−n)(1− u1z−1 − u2z−2 − . . . ) = 1,

to obtain

ck = uk +

k−1∑
j=1

ck−juj , k = 1, 2, . . . , n,

which is equivalent to

Cu = c, C(In − U) = In. (62)

E. An algorithm for solving CEE

We shall use a homotopy continuation method to solve
CEE, i.e., determine the unique positive semidefinite P with
the property h′Ph < 1 that satisfies (52) (Theorem 9). For
u = 0, CEE takes the form

P = Γ(P − Phh′P )Γ′, (63)

which has the unique solution P = 0. We would like to make
a continuous deformation of u to go between the solutions of
(52) and (63). To this end, we choose

u(λ) = λu, λ ∈ [0, 1]. (64)

Then U(λ) = λU (Proposition 7). Define w(λ) := ω−1(λu) in
terms of the diffeomorphism in Proposition 7 for all λ ∈ [0, 1].
It follows from (49) that W = (I − T )−1− 1

2I , and therefore
the corresponding deformation is

W (λ) = (I − λT )−1 − 1
2I.

We want to show that W (λ) remains in W+ along the
trajectory, i.e., that W (λ) satisfies Σ > 0 in (43) for all
λ ∈ [0, 1]. To this end, a straightforward calculation yields

Σ(λ) := W (λ)X +XW (λ)∗

= (I − λT )−1(X − λ2TXT ∗)(I − λT ∗)−1.

However, X −λ2TXT ∗ ≥ X −TXT ∗ > 0 for all λ ∈ [0, 1],
and consequently Σ(λ) > 0 as claimed.

To solve the reduced CEE in terms of p = (p1, p2, . . . , pn)
we use the homotopy

H(p, λ) :=
[
In 0

]
S(a(p, λ))

[
1

b(p, λ)

]
− 2(1− h′p)s = 0

(65)

where
a(p, λ) = (I − λU)(Γp+ σ)− λu (66a)

b(p, λ) = (I + λU)(Γp+ σ) + λu, (66b)

which also has a unique solution p(λ) for all λ ∈ [0, 1].

By the implicit function theorem we have the differential
equation

dp

dλ
=

[
∂H(p, λ)

∂p

]−1
∂H(p, λ)

∂λ
, p(0) = 0, (67)

where
∂H(p, λ)

∂λ
=
[
In 0

]
(S(a(p, λ))− S(b(p, λ)))

[
0

g(p, 1)

]
∂H(p, λ)

∂p
=
[
In 0

]
(S(a(p, λ)) + S(b(p, λ)))

[
0
Γ

]
+ 2hs′

+
[
In 0

]
(S(a(p, λ))− S(b(p, λ)))

[
0

λUΓ

]
and

g(p, λ) = u(λ) + U(λ)σ + U(λ)Γp. (68)

The differential equation (67) has a unique solution p(λ) on
the interval λ ∈ [0, 1], so by solving the Lyapunov equation

P − ΓPΓ′ = −Γp(1)p(1)′Γ′+

(u+ Uσ + UΓp(1))(u+ Uσ + UΓp(1))′,
(69)

we obtain the unique solution of (52) [9, Proposition B.1.19].
To solve the differential equation (67) we use predictor-
corrector steps [41].

IV. MULTIVARIABLE ANALYTIC INTERPOLATION

Next we consider the multivariable version of the problem
stated in Section I. More precisely, let F be an `× ` matrix-
valued real rational function, analytic in the unit disc D, which
satisfies the interpolation condition

1

k!
F (k)(zj) = Wjk, j = 0, 1, · · · ,m, (70)

k = 0, · · ·nj − 1,

and the positivity condition

F (eiθ) + F (e−iθ)′ > 0, −π ≤ θ ≤ π. (71)
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We restrict the complexity of the rational function F (z) by
requiring that its McMillan degree be at most `n, where

n =

m∑
j=0

nj − 1. (72)

Without loss of generality we may assume that z0 = 0 and
W0 = 1

2I . Then F (z) has a realization

F (z) = 1
2I + zH(I − zF )−1G, (73)

where H ∈ R`×`n, F ∈ R`n×`n, G ∈ R`n×`, (H,F ) is an
observable pair, and the matrix F has all its eigenvalues in D.

In analogy with the construction in subsection III-B we
form the `(n+ 1)× `(n+ 1) matrix

W :=

W0

. . .
Wm

 (74)

with

Wj =


Wj0

Wj1 Wj0

...
. . . . . .

Wjnj−1 · · · Wj1 Wj0

 ∈ C`nj×`nj (75)

for each j = 0, 1, . . . ,m. Let X be the unique solution of the
Lyapunov equation (42). The inverse problem to determine the
interpolant F (z) has a solution if and only if the Pick-type
condition

W (X ⊗ I`) + (X ⊗ I`)W ∗ > 0, (76)

is satisfied, where ⊗ denotes Kronecker product.

A. Multivariable stochastic realization theory

Following the pattern in subsection IV-A we define

Φ+(z) := F (z−1) = 1
2I +H(zI − F )−1G, (77)

which is (strictly) positive real. Moreover, define the
minumum-phase spectral factor V (z) satisfying

V (z)V (z−1)′ = Φ(z) := Φ+(z) + Φ+(z−1)′, (78)

which then has a realization of the form

V (z) = H(zI − F )−1K +R (79)

[9, Chapter 6]. Now, by the usual coordinate transformation
(H,F,G)→ (HT−1, TFT−1, TG) we can choose (H,F ) in
the observer canonical form

H = diag(ht1 , ht2 , . . . , ht`) ∈ R`×n`

with hν := (1, 0, . . . , 0) ∈ Rν , and

F = J −AH ∈ Rn`×n` (80)

where J := diag(Jt1 , Jt2 , . . . , Jt`) with Jν the ν × ν shift
matrix

Jν =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1
0 0 0 . . . 0



and A ∈ Rn`×`. The numbers t1, t2, . . . , t` are the observabil-
ity indices of Φ+(z), and

t1 + t2 + · · ·+ t` = n`. (81)

Moreover, define

Π(z) := diag(πt1(z), πt2(z), . . . , πt`(z)), (82)

where πν(z) = (zν−1, . . . , z, 1) ,

D(z) := diag(zt1 , zt2 , . . . , zt`). (83)

and
A(z) = D(z) + Π(z)A. (84)

Lemma 10. The rational matrix functions (77) and (79) have
the matrix fraction representations

Φ+(z) = 1
2A(z)−1B(z), (85a)

where

B(z) = D(z) + Π(z)B with B = A+ 2G (85b)

and
V (z) = A(z)−1Σ(z)R, (86a)

where

Σ(z) = D(z) + Π(z)Σ with Σ = A+KR−1. (86b)

Proof. Since Π(z)(zI − J) = D(z)H ,

Π(z)(zI − F ) = Π(z)(zI − J) + Π(z)AH = A(z)H,

and hence
H(zI − F )−1 = A(z)−1Π(z). (87)

Then (85) and (86) follow from (77) and (79), respectively.

It follows from stochastic realization theory [9, Chapter 6]
that

K = (G− FPH ′)(R′)−1 (88a)
RR′ = I −HPH ′ (88b)

where P is the minimal symmetric solution of the algebraic
Riccati equation

P = FPF ′+(G−FPH ′)(I−HPH ′)−1(G−FPH ′)′. (89)

Then, from (80) and (88) we have

G = JPH ′ −AHPH ′ +KR−1(I −HPH ′)
= ΓPH ′ +KR−1,

where, by (86b),
Γ = J − ΣH, (90)

and consequently

G = ΓPH ′ + Σ−A. (91)

We are now in a position to derive the multivariable version
of (36), namely

P = Γ(P − PH ′HP )Γ′ +GG′. (92)
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In fact, noting that F = Γ+KR−1H and G−ΓPH ′ = KR−1,
we see that (89) can be written

P = (Γ +KR−1H)P (Γ +KR−1H)′ +KK ′

= ΓPΓ′ + ΓPH ′(KR−1)′ +KR−1HPΓ′

+KR−1(KR−1)′,

where we have also used (88b). Then inserting KR−1 = G−
ΓPH ′ we obtain (92).

B. The multivariable Covariance Extension Equation

Next we introduce the interpolation condition (70).

Lemma 11. The interpolation condition (70) can be written

F (Z ⊗ I`) = W, (93)

where the matrices W and Z are given by (74) and (40),
respectively.

Proof. Since F (z) is analytic in D, it has a representation

F (z) =

∞∑
k=0

Ckz
k

there, where C0 = 1
2I`. A straight-forward calculation yields

F (Zj ⊗ I`) =

∞∑
k=0

(Zj)
k ⊗ Ck = Wj ,

where Wj is given by (75). Then (93) follows from (40) and
(74).

Analogously to the situation in subsection III-B, (85)
provides us with the representation

F (z) = 1
2A∗(z)

−1B∗(z) (94a)

in terms of the reversed matrix polynomials

A∗(z) = D(z)A(z−1) = I` +D(z)Π(z−1)A (94b)

B∗(z) = D(z)B(z−1) = I` +D(z)Π(z−1)B, (94c)

where D(z) is given by (83). Then the interpolation condition
(93) takes the form

2A∗(Z ⊗ I`)W = B∗(Z ⊗ I`). (95)

In view of (84) and (85b) we have the polynomial represen-
tations

A∗(z) = I` +A1z +A2z
2 + · · ·+Atz

t (96a)

B∗(z) = I` +B1z +B2z
2 + · · ·+Btz

t, (96b)

where t is the largest observability index. Introducing Q :=
A+G, it follows from (85b) that A = Q−G and B = Q+G,
so the interpolation condition (95) can be written’

G∗(Z ⊗ I`) = Q∗(Z ⊗ I`)T, (97)

where

G∗(z) = G1z +G2z
2 + · · ·+Gtz

t (98)

Q∗(z) = I` +Q1z +Q2z
2 + · · ·+Qtz

t (99)

and

T := (W − 1
2I)(W + 1

2I)−1 =

T0 . . .
Tm

 , (100)

where

Tj =


Tj0
Tj1 Tj0

...
. . . . . .

Tjnj−1 · · · Tj1 Tj0

 (101)

for j = 0, 1, . . . ,m. Now, (97) yields

Z ⊗G1 + Z2 ⊗G2 + · · ·+ Zt ⊗Gt
= (I`(n+1) + Z ⊗Q1 + Z2 ⊗Q2 + · · ·+ Zt ⊗Qt)T.

Multiplying both sides from the right by (e⊗I`) and observing
that, in view of the rule

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (102)

which holds for arbitrary matrices of appropriate dimensions,

(Zk ⊗Gk)(e⊗ I`) = (Zke)⊗Gk = (Zke⊗ I`)Gk,

we have

V

G1

...
Gt

 = T̂ +(Z⊗Q1+Z2⊗Q2+ · · ·+Zt⊗Qt)T̂ , (103)

where V is the `(n+ 1)× `t matrix

V :=
[
Ze⊗ I` · · · (Zte)⊗ I`

]
(104)

and T̂ is the `(n+ 1)× ` matrix

T̂ := T (e⊗ I`). (105)

Here

T̂ =


T̂0
T̂1
...
T̂m

 , where T̂j =


Tj0
Tj1

...
Tjnj−1

 . (106)

Next let N1, N2, . . . , Nt be the `× `n matrices defined by

D(z)Π(z−1) = N1z +N2z
2 + · · ·+Ntz

t. (107)

Then Aj = NjA, Bj = NjB, Gj = NjG and Qj = NjQ for
j = 1, 2, . . . , t, and therefore (103) takes the form

V NG = T̂ + (Z ⊗N1Q+ · · ·+ Zt ⊗NtQ)T̂ , (108)

where

N =

N1

...
Nt

 ∈ R`t×`n, Nk =


ekt1

ekt2
. . .

ekt`

 (109)

Here ekj is a 1 × j row vector with the k:th element being 1
and the others 0 whenever k ≤ j, and a zero row vector of
dimension 1× j when k > j. Now, V N is an `(n+ 1)× `n
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matrix in which the top ` rows are zero, since z0 = 0, i.e., it
takes the form

V N =

[
0`×`n
L

]
. (110)

To derive the multivariable CEE we would like to solve (108)
for G and insert it in (92). This would be possible if the square
matrix L is nonsingular, in which case V N would have a
psuedo-inverse (V N)†.

Lemma 12. The `n × `n matrix L defined by (110) is
nonsingular if and only if all observability indices are the
same, i.e., t1 = t2 = · · · = t` = n.

Proof. Ordering the the observability indices as

t1 ≥ t2 ≥ · · · ≥ t`

and setting t := t1, we have t ≥ n by (81). Since (Z, e) is a
reachable pair,

rank
[
Ze Z2e · · · Zte

]
= n. (111)

First assume that t = n. Then, since rank(A ⊗ B) =
rank(A)rank(B),

V =
[
Ze Z2e · · · Zne

]
⊗ I` ∈ C`n×`n

has rank `n, and so does N ∈ Rn`×n`. Therefore Sylverster’s
inequality,

rankV + rankN − `n ≤ rankV N ≤ min (rankV, rankN),

(see, e.g., [9, p.741]) implies that V N has rank `n, and hence
L is nonsingular.

Next assume that t > n. Then the first t columns of N
can be written It ⊗ (e1`)

′, so the first t columns of V N form
the matrix([

Ze Z2e · · · Zte
]
⊗ I`

) (
It ⊗ (e1`)

′)
=
[
Ze Z2e · · · Zte

]
⊗ (e1`)

′,

which in view of (111) has rank n < t. Hence the columns of
V N are linearly dependent, and thus L is singular.

Consequently, assuming that all observability indices are
the same, we can solve (108) for G to obtain

G = (V N)†T̂ +(V N)†(Z⊗N1Q+ · · ·+Zt⊗NtQ)T̂ (112)

Since Q = A+G, (91) yields

G = u+ U(ΓPH ′ + Σ), (113)

where u := (V N)†T̂ and U : R`n×` → R`n×` is the linear
operator

Q 7→ (V N)†(Z ⊗N1Q+ · · ·+ Zt ⊗NtQ)T̂ .

Then, inserting (113) into (92) we obtain the multivariable
Covariance Extension Equation

P =Γ(P − PH ′HP )Γ′

+ (u+ UΣ + UΓPH ′)(u+ UΣ + UΓPH ′)′.
(114)

C. Main results in the multivariable case

We redefine Sn for the multivarible case to be the class of
` × ` matrix polynomials (84) such that detA(z) has all its
zeros in the open unit disc D. Moreover, letW+ be the values
in (70) that satisfy the generalized Pick condition (76). In the
present matrix case, the relation (13) becomes

A(z)B(z−1)′ +B(z)A(z−1)′ = 2Σ(z)RR′Σ(z−1)′. (115)

Let Pn be the space of pairs (A,B) ∈ Sn × Sn such that
A(z)−1B(z) is positive real. Then the problem at hand is to
find, for each Σ ∈ Sn, a pair (A,B) ∈ Pn such that (115)
and (70) hold.

Clearly Sn consists of subclasses with different Jordan
structures J defined via (80). In each such subclass D(z) and
Π(z) in (84), as well as N1, N2, . . . , Nt in (107), are the same.

From this calculation we have the following theorem. For
the details of the proof of the last statement (118) we refer to
[5].

Theorem 13. Given (Σ,W ) ∈ Sn × W+, where Σ(z) has
all it observability indices equal. Then there is a positive
semidefinite solution P to the Covariance Extension Equation
(114) such that HPH ′ < I . To any such P there corresponds
a unique analytic interpolant (94), where the matrices A and
B are given by

A = (I − U)(ΓPH ′ + Σ)− u
B = (I + U)(ΓPH ′ + Σ) + u

(116)

The matrix polynomials A(z) and B(z) have the same Jordan
structure as Σ(z), and they satisfy (115) with

R = (I −HPH ′) 1
2 . (117)

Finally,
degF = rankP. (118)

This result is considerably weaker than the scalar version
Theorem 9. Theorem 13 does not guarantee that a solution to
(114) is unique. In fact, if there were two solutions to (114),
there would be two interpolants, a unique one for each solu-
tion P . Moreover, the condition on the observability indices
restricts the classes of Jordan structures that are feasible.

Theorem 14. Given (Σ,W ) ∈ Sn×W+, where Σ(z) = σ(z)I
with σ(z) a scalar Schur polynomial. Then there is a unique
positive semidefinite solution P to the Covariance Extension
Equation (114) such that HPH ′ < I and a corresponding
unique analytic interpolant (94), where A(z) and B(z) have
the same Jordan structure as Σ(z), and the matrices A and B
are obtained as in Theorem 13. Finally, degF (z) = rankP .

The observability indices of Σ(z) in Theorem 14 are all
the same. Moreover, for this case, existence and uniqueness
of the underlying multivariable analytic interpolation problem
have already been established [42], [45]. Then the proof of
Theorems 8 and 9 can be modified for the resulting setting
mutatis mutandis.
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Recently there have been several results [45], [46], [25],
[47], [48] on the question of existence and uniqueness of
the multivariate analytic interpolation problem, mostly for the
covariance extension problem (m = 0, n0 = n+ 1), but there
are so far only partial results and for special structures of the
prior (in our case Σ(z)). Especially the question of uniqueness
has proven elusive. Perhaps, as suggested in [25], this is due
to the Jordan structure, and this could be the reason for the
condition on the observability indices required in Theorem 13.
In any case, as long as our algorithm delivers a solution to the
Covariance Extension Equation, we will have a solution to the
analytic interpolation problem, unique or not. An advantage of
our method is that (118) can be used for model reduction, as
will be illustrated in Section V.

D. An algorithm for the multivariable CEE

As in the scalar case we shall use a homotopy continuation
method. We assume from now on that t := t1 = t2 = . . . , t` =
n. When u = 0, T̂ = 0, and hence U = 0. Then the modified
Riccati equation (114) becomes P = Γ(P − PH ′HP )Γ′,
which has the solution P = 0. We would like to make a
continuous deformation of u to go from this trivial solution to
the solution of (114), so we choose u(λ) = λu with λ ∈ [0, 1].
The corresponding deformation of U is λU , and T is deformed
to λT . Since (100) implies that W = (I − T )−1 − 1

2I , the
value matrix (74) will then vary as W (λ) = (I−λT )−1− 1

2I .
Then, the proof that W (λ) ∈ W+ is mutatis mutandis the
same as in subsection III-E. Hence W (λ) satisfies (76) along
the whole trajectory.

Analogously with the scalar case, we reduce the problem
to solving for the n`× ` matrix

p = PH ′. (119)

To this end, we note that the matrix version of (115) is

S(A)M(B) + S(B)M(A)

= 2S(Σ)(In+1 ⊗RR′)M(Σ)
(120)

where

S(A) =


I A1 · · · An

I · · · An−1
. . .

...
I

 M(A) =


I
A′1
...
A′n

 .
From (116), (88b) and (91) we have

A+B = 2(ΓPH ′ + Σ) = 2(JPH ′ + ΣRR′).

Since ennJn = 0 and hence NnJ = 0, this yields the relation

An +Bn = 2ΣnRR
′

between An = NnA, Bn = NnB and Σn = NnΣ. This is
the same as the last block row in (120), which can therefore
be deleted, leaving us with[
In` 0n`×`

]
(S(A)M(B) + S(B)M(A))

= 2
[
In` 0n`×`

]
S(Σ)(In+1 ⊗RR′)M(Σ).

Consequently, we use the homotopy

H(p, λ) :=
[
In` 0n`×`

] (
S(A)M(B) + S(B)M(A)

− 2S(Σ)(In+1 ⊗ (I −Hp))M(Σ)
)

= 0,
(121)

where

A = A(p, λ) := Γp+ Σ− λu− λU(Γp+ Σ)

B = B(p, λ) := Γp+ Σ + λu+ λU(Γp+ Σ)
(122)

depend on (p, λ), thus reducing the problem to solving the
differential equation

d

dλ
vec(p(λ)) =

[
∂vec(H(p, λ))

∂vec(p)

]−1
∂vec(H(p, λ))

∂λ

vec(p(0)) = 0

(123)

[41], which has the solution p̂(λ) for 0 ≤ λ ≤ 1. The solution
of (114) is then obtained by finding the unique solution of the
Lyapunov equation

P − ΓPΓ′ = −Γp(1)p(1)′Γ′

+ (u+ U(Γp(1) + Σ))(u+ U(Γp(1) + Σ))′.
(124)

V. SOME NUMERICAL EXAMPLES

A. Spectral estimation with model reduction

Consider a transfer function (11), i.e.,

v(z) = ρ
σ(z)

a(z)
,

of degree 7 with zeros at 0.9e±2.6i, 0.5e±1.3i, 0.94e±1.6i, 0.3,
poles at 0.1e±1.9i, 0.8e±1.35i, 0.7e±2.1i, 0.1, and ρ = 0.5,
as depicted in Fig. 1. Now passing normalized white noise
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Fig. 1: The position of poles (×) and zeros (◦).

through the filter

white noise−→ v(z)
y−→

with v(z) as its transfer function, we generate an observed time
series y0, y1, y2, . . . , yN . Then, using the covariance estimates
(22) and appropriate choice of σ(z), we can determine an
estimate of the spectral density of y by using the methods in
subsection II-B. In terms of the general interpolation problem
(1) this corresponds to choosing m = 0, n0 = 8 and z0 = 0,
i.e., all the interpolation points at zero.

However it was shown in [14], [15] that a higher resolution
estimate (in a designated band of frequences) can be obtained
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by moving some of the interpolation points away from zero
closer to the unit circle. This in known by the acronym THREE
(Tunable High REeolution Estimator). This can be one by
passing the signal y through a bank of filters as in Fig. 2
with

Gj(z) = z(zI − Zj)−1e
nj

1 , j = 0, 1, · · · ,m,

where Zj is given by (40). In the present example we choose
n0 = 4, n1 = n2 = n3 = n4 = 1, z1 = 0.98e2.1i, z2 =
0.98e−2.1i, z3 = 0.99 and z4 = −0.99.

white noise

Fig. 2: The bank of filters

With u the output vector of the bank of filters, an estimate
of the covariance matrix Σ := E{u(t)u∗(t)} yields the matrix
W in (39) by solving the Lyapunov equation (43) in Propo-
sition 6. Then using the homotopy continuation algorithm in
subsection III-E, we obtain a solution to estimation problem. In
fact, using the σ(z) with zeros 0.9e±2.6i, 0.94e±1.6i, 0.5e±1.3i

and 0.3, we see in Fig. 3 how the trajectories of the poles, i.e.,
the zeros of a(p(λ)), move as λ varies from 0 to 1. The poles
for λ = 0 are marked with circles and the poles for λ = 1
by ×. The continuity of the trajectory shows the feasibility of
the homotopy continuation method.

Fig. 3: The trajectories of the poles

Moreover, we obtain a solution P of CEE with the singular
values

0.7435, 0.1328, 0.0794, 0.0630, 0.0023, 0.0003, 6× 10−6,

the last three of which are close to zero. Consequently, P has
approximately rank 4. Therefore, in view of (58) and the fact
that deg v = deg f , we can reduce the degree of v(z) to 4
to obtain the reduced system v̂(z). Fig. 4 shows the given
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Fig. 4: The given spectral factor and its estimated ones

spectral factor v(z) together with the degree 7 solution and
the approximate degree 4 approximation v̂(z).

More precisely, v̂(z) = ρ̂σ̂′z)/â(z) with ρ̂ = 0.5247 and

σ̂(z) = z4 + 1.5973z3 + 1.7783z2 + 1.4073z + 0.7157,

â(z) = z4 + 0.9341z3 + 1.112z2 + 0.7007z + 0.3939,

where the last three spectral zeros of σ(z) have been removed
to obtain σ̂(z). Likewise, computing the degree 5 and 6
approximations show that the corresponding solutions P also
have rank approximately 4.

B. Robust control with sensitivity shaping

Given a plant

P (z) =

(
z − 1.1e

19
20πi

)(
z − 1.1e−

19
20πi

)
z(z − 1.1) (z2 + 1.21)

(125)

and the feedback configuration in Fig. 5, we need to find

Fig. 5: A feedback configuration

a controller C such that the system is internally stable and
satisfies the following specifications:∣∣S (eiθ)∣∣ ≤ −1dB, θ ∈ [0, 0.3](rad/sec)∣∣S (eiθ)∣∣ ≤ 0.5dB, θ ∈ [2.5, π](rad/sec)

(126)

‖S‖∞ < 5 ≈ 13.98dB

where
S(z) := 1/(1 + P (z)C(z))

is the sensitivity function. From the robust control literature
[13] we know that a necessary and sufficient condition for
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internal stability is that we have no unstable pole-zero cancel-
lation between P and C in the sensitivity function and that
the sensitivity function is stable.

The plant P (z) has three real unstable poles at ±1.1i
and 1.1 and three unstable zeros at ∞ and 1.1e±

19
20πi with

multiplicities two, one, and one respectively. Since the system
should be internally stable, the sensitivity function must satisfy
the interpolation conditions

S(±1.1i) = 0, S(1.1) = 0

S(∞) = 1, S′(∞) = 0, S
(

1.1e±
19
20πi

)
= 1

(127)

Since ‖S‖∞ < 5, the function g(z) := S(z)/5 maps the
exterior of the disc into the unit disc, so

f(z) :=
1 + g(z−1)

1− g(z−1)
=

5 + S(z−1)

5− S(z−1)

maps the disc into the right half plane, and hence f is a
Carathéodory function. To find such a function f satisfying
the given specifications (126) and interpolation constraints
(127) is an analytic interpolation problem of the type stated
in Section I. Since there are seven interpolation conditions,
we can construct an interpolant of degree six by choosing six
spectral zeros.

Note that the zeros of f(z) + f(z−1) are the zeros of

Γ(z) := 25− S(z)S(z−1).

Next we will show how to achieve the given specifications by
choosing suitable zeros of Γ(z). Suppose Γ(z) has one spectral
zero λ near z = eiθ, then

∣∣S (eiθ)∣∣ ≈ 5 by the continuity of
Γ(z) at z = eiθ. So by choosing a spectral zero near z = eiθ,
we can elevate the frequency response of S at θ to about 5.
More details can be found in [40].

When we choose the spectral zeros at 0.98e±
7
15πi,

0.97e±
1
2πi, 0 and −0.1. we obtain the sensitivity function and

the controller as

S(z) =

z6 − 0.0414z5 + 1.1873z4 − 0.8951z3

− 0.4795z2 − 1.0224z − 0.5470

z6 − 0.0414z5 + 1.5522z4 − 0.0209z3

+ 0.5729z2 + 0.0192z − 0.0219

,

C(z) =
0.3648z3 + 0.08142z2 + 0.434z

z3 + 1.059z2 + 1.142z + 0.411
,

respectively. The frequency response of S is illustrated in
Fig. 6, from which we can see that the specifications are indeed
fulfilled.

C. Model reduction in multivariable case

Consider a system with a 2× 2 transfer function

V (z) = A(z)−1Σ(z)R (128)

of dimension ten and with observability indices t1 = t2 = 5,
where

R =

[
2 1
1 2

]
, A =

[
A11 A12

A21 A22

]
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with

A11 = z5 − 0.11z4 − 0.08z3 + 0.05z2 − 0.05z − 0.13

A12 = −0.02z4 − 0.15z3 + 0.1z2 − 0.09z − 0.09

A21 = 0.11z4 + 0.09z3 − 0.03z2 − 0.1z + 0.12

A22 = z5 + 0.07z4 + 0.19z3 − 0.03z2 − 0.13z + 0.05,

and

Σ(z) = (z − 0.1)(z − 0.9)(z − 0.37)(z + 0.4)(z + 0.95)I2.

Fig. 7 shows the location of poles and zeros (”2” means there
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Fig. 7: The locations of poles and zeros of V (z)

are two zeros at the same position). Clearly there is no pole
zero cancellation. Let F be the matrix-valued Carathéodory
function F (z) := Φ+(z−1), where Φ+ is the positive real
function satisfying (78).

Next, passing normalized (vector-valued) white noise
through the filter

white noise u −→ V (z)
y−→

with transfer function V (z), we generate a vector-valued sta-
tionary process y with an observed record y0, y1, y2, . . . , yN ,
and from this output data we estimate the 2×2 matrix valued
covariance sequence

Ĉk =
1

N − k + 1

N∑
t=k

yty
′
t−k. (129)

We want to determine a matrix-valued Carathéodory function
F satisfying the interpolation conditions

1

k!
F (k)(0) = Ĉk, k = 0, 1, · · · , 5. (130)
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This is a matrix-valued covariance extension problem, which
takes the form (70) with ` = 2, m = 0 and n0 = 6. Using
the homotopy method of subsection IV-D, the poles move as
λ varies from 0 to 1 as shown in Fig. 8.
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Fig. 8: The trajectory of poles as λ varies from 0 to 1

The modified Riccati equation has a solution P with
eigenvalues

5.8× 10−6, 2.03× 10−4, 1.8× 10−3, 3.9× 10−3, 6× 10−3,

0.03, 0.365, 0.4879, 0.7895, 0.8967

The first six eigenvalues are very small, so we can reduce the
degree of this system from 10 to 4 by choosing the first three
covariance lags Ĉ0, Ĉ1, Ĉ2 and removing six zeros of Σ(z).
We choose two double zeros at 0.9 and −0.95. The reduced
system

V̂ (z) = HÂ(z)−1Σ̂(z)R̂

has observability indices t1 = t2 = 2, and

H =

[
535/378 −363/3758
−363/3758 891/523

]
,

R̂ =

[
1623/1138 1177/1625
1997/3448 7279/6408

]
,

Â(z) =

[
z2 − 0.01968z + 0.09216 −0.1574z − 0.08796

0.03346z + 0.1083 z2 + 0.1314z + 0.4366

]
,

Σ̂(z) = (z − 0.9)(z + 0.95)I2.

The singular values of the true system (128) together with
those of the estimated systems of degree 10 and 4 are shown
in Fig. 9.

Here the estimated degree 10 system estimates the true
system (128) perfectly, as the black curves of the given spectral
factor are completely covered by the red estimate curves.
However, the estimated system of degree 4 approximates the
true system well. Fig. 10 plots the magnitude and the phase
of the frequency response of each input/output pair in the
true spectral factor and estimated one with degree 4. The first
column of plots shows the response from the first input to
each output. The second column shows the response from the
second input to each output. The first and the third line are
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Fig. 9: Estimated singular values and the true ones

the magnitudes of the frequency response, and the second and
the fourth line are the phases of the frequency response.

VI. CONCLUDING REMARKS

We have shown that the modified Riccati equation intro-
duced in [5] for solving the covariance extension problem
can be used for very general analytic interpolation problems
(with both rationality and derivative constraints) by merely
changing certain parameters computed from data. A robust and
efficient numerical algorithm based on homotopy continuation
has been provided. There are still some open questions in
the multivariable case. The most general formulation of the
multivariable analytic interpolation with rationality constraints
has been marred by difficulties to establish existence and,
in particular, uniqueness in the various parameterizations [2],
[42], [43], [44], [45], [46], [25], [47], [48], and we have
encountered similar difficulties here. Our approach attacks
these problems from a different angle and might put new light
on these challenges. Therefore future research efforts will be
directed towards settling these intriguing open questions in the
context of the modified Riccati equation (114).

APPENDIX

A. Proof of Proposition 7

From (50), (45) and (49) we have

u =
[
0 In

]
V −1Te, (131)

where

T = diag (D0, . . . , Dm) = (W + 1
2I)−1(W − 1

2I). (132a)

with

Dj =


dj0
dj1 dj0

...
. . . . . .

djnj−1 · · · dj1 dj0

 (132b)

Consequently,
u = Md, (133)

where d is the n-vector

d =
[
d′0 d′10 d′1 · · · d′m0 d′m

]′
,
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Fig. 10: Bode plot

and M is the nonsingular n × n matrix obtained by deleting
the first row and the first column in V −1. We want to establish
a diffeomorphism d = ϕ(w) from the n-vector (54), i.e.,

w = (w′0, w10, w
′
1, w20, w

′
2, . . . , wm0, w

′
m)′,

to d. To this end, we compute Dj to obtain

Dj :=(Wj +
1

2
I)−1(Wj −

1

2
I)

=

[
(wj0 + 1

2 )−1(wj0 − 1
2 ) 0

C−1j wj(wj0 + 1
2 )−1 C−1j (Cj − I)

]
.

Therefore, [
dj0
dj

]
=

[
(wj0 + 1

2 )−1(wj0 − 1
2 )

C−1j wj(wj0 + 1
2 )−1

]
from which we have wj = Cj(wj0 + 1

2 )dj , wj0 = 1
2 (1 +

dj0)(1 + dj0)−1 and

Sj := C−1j (Cj − I) =

 dj0
...

. . .
djnj−2 · · · dj0

 . (134)

Hence, we have the smooth maps

wj = (I − Sj)−1(1− dj0)−1dj

dj = (wj0 + 1
2 )−1C−1j wj

(135)

defining a diffeomorphism d = ϕ(w) from w to d. Thus,
since the matrix M in (133) is nonsingular, u = Mϕ(w) is
the sought diffemorphism ω.

Finally, it follows from (132) that there is a linear map N
such that D = N(d) = N(M−1u), and hence there is a linear
map L such that U = Lu, as claimed.
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