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Kullback–Leibler Approximation of Spectral Density
Functions

Tryphon T. Georgiou, Fellow, IEEE,and Anders Lindquist, Fellow, IEEE

Abstract—We introduce a Kullback–Leibler-type distance be-
tween spectral density functions of stationary stochastic processes
and solve the problem of optimal approximation of a given spectral
density	 by one that is consistent with prescribed second-order
statistics. In general, such statistics are expressed as the state co-
variance of a linear filter driven by a stochastic process whose spec-
tral density is sought. In this context, we show i) that there is a
unique spectral density� which minimizes this Kullback–Leibler
distance, ii) that this optimal approximate is of the form 	

where the “correction term” is a rational spectral density func-
tion, and iii) that the coefficients of can be obtained numerically
by solving a suitable convex optimization problem. In the special
case where	 = 1, the convex functional becomes quadratic and
the solution is then specified by linear equations.

Index Terms—Approximation of power spectra, cross-entropy
minimization, Kullback–Leibler distance, mutual information, op-
timization, spectral estimation.

I. INTRODUCTION

I N this paper, we are interested in approximation of power
spectra of stationary stochastic processes and, in particular,

in the following type of problem. Suppose that ana priori esti-
mate of the power spectrum is available and that new data is
obtained that is inconsistent with this estimate. Then the basic
problem is to find another power spectrumthat is as close as
possible to in some suitable sense and is consistent with the
data. This is motivated by applications where one is called to
reconcile inconsistent sets of data and incorporate prior infor-
mation into the modeling process.

Thus, the starting point is a stationary stochastic process
with zero mean and spectral density. In this

paper, the spectral density will be regarded as a real-valued func-
tion on the unit circle .
The data for the approximation problem will be in the form
of second-order statistics of . These could be estimates of
autocorrelation lags or, more often,
cross correlations of outputs of different linear filters driven
by . Such filters could represent the dynamics of physical
or algorithmic devices used for measurement. A general
framework encompassing all such possibilities is to take as data
an estimate of the state covarianceof a linear system driven
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by . Thus, we require to be consistent with such a state
covariance.

As a distance measure between two spectral density func-
tions, and , we will use

(1.1)

where, for economy of notation, we often write simply
to denote integrals of the form . This is known
as theKullback–Leibler distance, originally applied to proba-
bility distributions [11], and possessing some rather useful prop-
erties. Although not symmetric in its arguments, it is jointly
convex. Assuming that and have the same zeroth moment,

with equality if and only if .
Given an arbitrarya priori spectral estimate and the

second-order statistics, the main result of this paper is that
the problem of minimizing subject to consistency
with has a unique minimum . It is worth noting that this
minimizing solution is unaffected by scaling , since this
modifies by a constant additive term and a positive,
multiplicative, and constant factor.

When there is noa priori spectral estimate, it is reasonable to
take , which corresponds to white noise. Then, since

minimizing the Kullback–Leibler distance amounts to maxi-
mizing the entropy gain. Consequently, the maximum-entropy
solution is the spectral density closest to white noise that is
consistent with the data.

The Kullback–Leibler integral has been studied intensively
in statistics, information theory, and communication, typically
optimizing with respect to the first argument[11]–[13], and
has been considered as providing a distance measure between
Gauss–Markov [29] and hidden Markov models [15]. In another
direction, estimating Markov models from covariance data has
a long history; see, e.g., [2], [8], [14], [17], [28], [30], [32], [36].
The approach taken here is based on ideas developed in [5], [6]
in the context of Carathéodory extension, in [3], [4] in the con-
text of Nevanlinna–Pick interpolation, and in [9], [10] in the
context of generalized moment problems with complexity con-
straint. In this paper, the theory is developed in the framework
of generalized analytic interpolation [21], [22].

II. STATE COVARIANCE STATISTICS

In this section, we explain the nature of the covariance data
of our approximation problem. We model the measuring device
as a linear system
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with transfer function

such that has all its eigenvalues in the open unit disc and
is a reachable pair, i.e.,

Now, a general framework for obtaining second-order data is
to pass the signal through the device until it is in steady
state and estimate the state covariance

In fact, if the input is a stationary stochastic process
the output process is a sta-

tionary vector process satisfying the state equation

(2.1)

Therefore, in order for the spectral densityof
to be consistent with the data, it must satisfy the constraint

(2.2)

Example 1: The simplest case is when the data consists of a
finite sequence of covariance lags

This corresponds to

... with
...

...
. . .

...
. . .

...

and the state covariance

...
...

...
...

(2.3)

is a Toeplitz matrix.

The problem of parameterizing the class of spectral densities
that satisfy (2.2) for this case is the classical trigonometric mo-
ment problem going back to Carathéodory, Schur, and Toeplitz
(see, e.g., [25]). This class is nonempty if and only if
(which here of course is always the case sinceis assumed to
be a covariance), and it contains infinitely many elements if and
only if . Such spectral densities correspond to infinite ex-
tensions of the finite covariance sequence and
hence the problem is also referred to as thecovariance exten-
sion problem.

In particular, the so-calledmaximum-entropy extension(see,
e.g., [26]) is the unique covariance extension that maximizes the
entropy gain

and is obtained in our framework as the minimizer of (1.1) when
. When ranges overarbitrary positive trigonometric

polynomials of degree, the minimizers of (1.1) are precisely
the coercive spectral densities of degree at mostthat are con-
sistent with the data, thus recovering basic results in [5]–[8],
[18], [20].

More generally, the measurement device could be a bank of
filters

with transfer function

...
(2.4)

The following are two examples of particular interest that have
been explored in the context of high-resolution spectral estima-
tion in [3], [4], [21].

Example 2: First, consider the case where

with distinct. Then

...
...

and the state covariancecan be shown to have the form of a
Pick matrix

...
...

. . .
...

(2.5)

with

(cf. Remark 7 later).

The problem of parameterizing the class of spectral densities
that satisfy (2.2) for this case now relates to the classical Nevan-
linna–Pick interpolation problem (see, e.g., [1], [40]). In this
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problem, one seeks an analytic functionon the unit disc that
has positive real part and satisfies the interpolation conditions

, . The data can be
recovered (modulo a common imaginary constant that plays no
role) from the measured covariance statistics, and the spectral
density can be obtained from via .

Following classical theory, the class of solutions is nonempty
if and only if (which again is guaranteed if is to be a
covariance), and it contains infinitely many elements if and only
if . The minimizer of (1.1) when is the so-called
central solution. Moreover, suitable choices of as a rational
function having the same poles as the filter bank, leads to a com-
plete parameterization of all rational spectral densities of degree
at most that are consistent with the data, thus recovering re-
sults from [3], [4], [19], [20].

Example 3: In the case where

the system matrices become

...
...

.. .
...

. . .

...

while the covariance matrix is now of the form

where is an upper triangular Toeplitz matrix, and is the
reachability gramian of [21, p. 33]. In the same way
as above, spectral densities consistent with the data do exist if
and only if , and there are infinitely many when
. Analogous results and parameterization of spectral densities

which are consistent with covariance data can be obtained in this
case as well.

The family of spectral densities consistent with the state sta-
tistics in this example, as well as in Example 2, strongly de-
pends on the choice of poles . In fact, by choosing
these filter bank poles appropriately, it is possible to give pref-
erence to selected frequency bands of the spectrum and allow
more accurate reconstruction of the spectral density in these par-
ticular frequency bands [3], [4], [21], [34].

These examples suggest that, besides being Hermitian,is
highly structured and that there is a redundancy in the formula-
tion of the constraint (2.2). In fact, is in the range of an integral
operator

(2.6)

which, in our present setting, it suffices to define on the space
of continuous functions on the unit circle. The range of

can then be described as follows [21], [22]. A matrixis in
the range of if and only if

(2.7)

has a solution , or, equivalently

(2.8)

Moreover, any positive semidefinite matrix which satisfies
(2.7) qualifies as a state covariance of the system (2.1) for a suit-
able stationary input process [22, Theorem 1]. In Section VII,
we shall need the following lemma.

Lemma 4: The range of the operator ,
defined by (2.6), has real dimension .

Proof: Since the linear map is invertible,
(2.7) has a solution for all , and this solution is zero
if and only if . Therefore, it only remains to
prove that the kernel has real
dimension one.

To this end, first note that any can be written as
, where and , and hence

if and only if

Now, it follows from that , which inserted
into yields . Consequently, if
and only if for some , proving that the kernel
has real dimension one, as claimed.

III. ON THE KULLBACK –LEIBLER MEASURE

The Kullback–Leibler distance has its roots in hypothesis
testing and represents the mean information per observation
for discrimination of a possible underlying probability density
function from another [31, p. 6]. It is also called cross-entropy
[24] or gain of information [37]. In this paper, we use
as measure of distance between spectral density functions. To
this end, several remarks are in order.

If equals , then, by Jensen’s inequality

with equality if and only if . Although is not a
metric, this property allows us to interpret it as a distance be-
tween and .

It is often the case that is part of the data . This happens
exactly when is a singular matrix. To see this, let
for some . Then

Thus, .
Therefore, in case is singular, can be scaled so that

. Then is a bona fidedistance measure, and
it is reasonable to consider the problem of minimizing
over subject to the constraints .

However, even in the case whereis nonsingular, the mini-
mization problem makes sense, and, as we shall see in the next
section, it has a unique solution. If we normalize , a poste-
riori , to the new function , then
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where and . Thus, the minimizing
would be the same in either case, and would retain a

distance-like character, being nonnegative except when the two
arguments are identical in which case it is zero.

IV. THE APPROXIMATION PROBLEM

Denote by the subset of positive functions in the space
of continuous functions on the unit circle. We now state

and prove our main result.

Theorem 5: Let be a reachable pair with the eigen-
values of in the open unit disc, and let .
Moreover, let be defined by (2.6), and let

Given any and any which satisfies (2.8),
there is a unique that minimizes

(4.1)

subject to , i.e., subject to

(4.2)

This minimizer takes the form

(4.3)

where is the unique solution to the problem of minimizing

(4.4)

over all . Here denotes the trace of the matrix .

The techniques used in proving this theorem are based on
duality theory of mathematical programming and are motivated
by the ideas in [5], [6], [3], [4], [9].

We begin by forming the Lagrangian

Here is the Lagrange multiplier. Next, we con-
sider the problem of maximizing the dual functional

Note that

The dual functional will take finite values only if

Therefore, without loss of generality, we restrictto the set

For each , the function is strictly convex.
Hence, if this function has a minimum in , then the di-
rectional derivative

will be zero for all continuous variations at the minimum.
Therefore, the possible minimizer must be of the form

and the dual functional must be

with defined by (4.4). Hence, the dual optimization
problem amounts to minimizing over . The following
key lemma will be proved in the next section.

Lemma 6: The functional has a unique minimum
. Moreover

We now use this lemma to complete the proof of the theorem.
We first note that the function in the lemma, given by

belongs to and is a stationary point of ,
which is strictly convex. Consequently

for all

or, equivalently, since

for all satisfying the constraint . The
above holds with equality if and only if . This completes
the proof of the theorem.

Remark 7: The connection between the approximation prob-
lem of this section to analytic interpolation problems described
in [3], [4] is in terms of the function

which is analytic in and takes values in the open left half of
the complex plane. This so-called Carathéodory function can be
continuously extended to the unit circle, where is contin-
uous, and

there. This is the content of the Riesz–Herglotz theorem [27].
Now, since
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where the middle term is zero since is analytic in . There-
fore, satisfies (2.7) if and only if

(4.5)

Consequently, the constraint (4.2) in terms ofis equivalent to
the constraint (4.5) in terms of [22].

V. THE DUAL PROBLEM

To prove Lemma 6, we need to consider the dual problem
to minimize over . To this end, form the directional
derivative

(5.1)

in any direction , as well as the second derivative

(5.2)

From these expressions we observe two things. First, any sta-
tionary point of must satisfy the equation

(5.3)

where the map between and
is defined as

Second, is strictly convex, and therefore there is at most
one such stationary point, which would then be the unique min-
imum. This is an immediate consequence of (5.2) and the fol-
lowing lemma. In particular, the map is injec-
tive.

Lemma 8: Suppose is such that
on . Then .

Proof: Without loss of generality, we assume thatis
normalized so that . This can be achieved by a sim-
ilarity transformation of the system matrices . Suppose

. Then

for all

Since , and therefore for some
, this can be written

By changing the order of integration and using the fact that
for , we deduce that

A similar argument, exchanging for , shows that

also for negative . Thus, on . By reachability of
, on , and hence, , and so is .

Next, we prove that in fact is also surjective,
thus establishing the existence of a unique solution to (5.3), and
hence a unique minimum of the dual functional. To this end,
we first note that both sets and are nonempty, convex,
and open subsets of the same Euclidean space, and hence dif-
feomorphic to this space. Besides being continuous, the map
is also proper, i.e., the inverse image is compact for
any compact in . To see this, first note that each
must be bounded. In fact, as , and sim-
ilarly as tends to the boundary of . Since,
therefore, is a proper and injective contin-
uous map between connected spaces of the same dimension, it
follows from [9, Lemma 2.3] that is a homeomorphism. This
completes the proof of Lemma 6.

Consequently, the dual problem provides us with an approach
to computing the unique that minimizes the Kullback–Leibler
distance subject to the constraint .

VI. THE MAXIMUM ENTROPY SOLUTION

We now turn to the case where . As we explained be-
fore, this represents the situation when noa priori spectral es-
timate is available, and the selected spectral densitycorre-
sponds to white noise. The Kullback–Leibler distance

now has the interpretation of entropy rate of the underlying
process [26].

In this case, the solution of the dual problem is particularly
simple, and we shall derive a closed-form solution along similar
lines to those in [16], [33]. In fact, the dual functional becomes

(6.1)

where the first term can be rewritten as

To simplify the stationarity conditions of we use an alterna-
tive representation for

which is the content of the following lemma.

Lemma 9: If for , then there is a
such that is an outer function and

Proof: We first introduce notation. Let
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and define

where denotes the Hardy space of square-integrable
functions on the unit circle with analytic continuation in the
open unit disc . We remark that is an inner function and
that is finite-dimensional with the elements of forming
a basis. Hence, , where is the space of
integrable Hardy functions.

Since on , there is an outer function
such that . Moreover, since ,

. Therefore, the outer part of equals . Since the ele-
ments of are orthogonal to , it follows that van-
ishes at the origin, and so does . Hence, , where

is inner and . In view of the fact that ,
it readily follows that is orthogonal to . Therefore,

and can thus be expressed as for some .

Although we are here interested in functions that are rational,
the lemma actually holds in greater generality.

Returning to the dual functional, we now have

where in the last step we used the fact that is an outer
function and thus that is harmonic in [38]. Since

, the dual functional only depends on, namely

which we now differentiate to obtain the equation

for the minimizer. Therefore, , and hence
. Consequently, the maximum-entropy

spectral density is given by

(6.2)

A version of this formula, valid for multivariable processes, ap-
pears in [23].

VII. ON THE NUMERICAL SOLUTION OF THEDUAL PROBLEM

The case when is very special, and, as we have seen, it
can be solved in closed form. In general, whenis an arbitrary
rational, or even irrational, function, one needs an iterative al-
gorithm for solving the dual problem. Since the dual functional

is convex, such an algorithm could be based on Newton’s
method. For this, we first need a global coordinatization of
that preserves convexity.

To this end, given a , let be the unique solution of
the Lyapunov equation

(7.1)

Then, since

and , we have

(7.2)

where . Let be the space of all such
that on the unit circle . Since

must be real, has real dimension .

Lemma 10: The linear map , defined by (7.1)
and , is a bijection.

Proof: By Lemma 4 , has real dimension , the
same as that of . Therefore, and are both nonempty
open convex sets in and hence diffeomorphic to .
Since is a linear map between Euclidean spaces of the same
dimension, it just remains to show thatis injective. However,
this follows immediately from (7.2) and Lemma 8.

To express the dual functional in the new coordinates, we
also observe that

by (7.1), which, in view of (2.7), becomes

Consequently, the dual problem is equivalent to minimizing the
convex functional

(7.3)
over . Differentiating with respect to the complex vari-
ables , remembering that for all ,
we obtain the gradient

(7.4)

with given by (7.2), which can also be written as

(7.5)

in terms of the Carathéodory function

(7.6)

(see Remark 7). To see this, observe that
. We note that the gradient equals zero when

the condition (4.5), or, equivalently, the condition (2.2), holds,
in harmony with Theorem 5.

Now, the function is strictly convex, and there-
fore Newton’s method can be used to determine its minimum.
Such a method was developed in [4] for an analogous problem.
The drawback seems to be that the gradient (7.4) becomes un-
bounded near the boundary of , often causing numerical in-
stability.
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The alternative parameterization in terms of, used in the
previous section, is also applicable to the case of a general.
To see this, replace by and by
in (4.4). The dual functional is now expressed in terms ofin
the form

(7.7)

and the gradient

(7.8)

where , is zero whenever condition (2.2) holds.
This parameterization has two advantages. It avoids a time-con-
suming spectral factorization problem in each iteration, and also
is better behaved at the boundary. However, is not glob-
ally convex. Such parameterizations have been explored in [16]
for Carathéodory extension problems and in [33] for Nevan-
linna–Pick interpolation. In these papers, a homotopy contin-
uation method was used to compensate for the loss of global
convexity.

VIII. C ONCLUDING REMARKS

Given generalized covariance data of a stationary sto-
chastic process and an initial estimatefor its spectral density,
which may be inconsistent with the data, we formulated and
solved the approximation problem of determining a closest
approximant to in the sense of Kullback–Leibler which is
also consistent with the data. In particular, we have shown that
the minimizing function is unique.

This problem is relevant when statistics is specified in the
form of a state covariance of a linear system driven by the
unknown process. This is a rather general situation which,
in particular, encompasses spectral analysis in linear arrays
[39] with ordinary partial autocorrelation function, as well as
spectral analysis using filter banks [3], [4].

The basic techniques that we have developed here should
carry over to the case of a vector-valued stochastic processes,
where the distance measure is replaced by the matricial Kull-
back–Leibler–von Neumann generalization [35]

In this case, the data can again be encapsulated as the state co-
variance of a multiple-input system [22]. This is the topic of a
forthcoming paper.
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