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Kullback—Leibler Approximation of Spectral Density
Functions

Tryphon T. GeorgiouFellow, IEEE,and Anders Lindquistrellow, IEEE

Abstract—We introduce a Kullback—Leibler-type distance be- by y(¢). Thus, we requireb to be consistent with such a state
tween spectral density functions of stationary stochastic processescovariance.

and solve the problem of optimal approximation of agivenspectral - ag 5 distance measure between two spectral density func-
density ¥ by one that is consistent with prescribed second-order .. :
tions, ¥ and®, we will use

statistics. In general, such statistics are expressed as the state co
variance of a linear filter driven by a stochastic process whose spec-

tral density is sought. In this context, we show i) that there is a S(Y||®) := /\Iflog (—)
unique spectral density® which minimizes this Kullback—Leibler . o

distance, ii) that this optimal approximate is of the form ¥/Q h f f notati ft ite simol
where the “correction term” @ is a rational spectral density func- WHere, Tor economy ol notation, we ofién write simpfy2

tion, and iii) that the coefficients of Q can be obtained numerically t0 denote integrals of the fO”j‘:r Q(ew)%- This is known
by solving a suitable convex optimization problem. In the special as theKullback—Leibler distanceoriginally applied to proba-

case where® = 1, the convex functional becomes quadratic and pijlity distributions [11], and possessing some rather useful prop-
the solution is then specified by linear equations. erties. Although not symmetric in its arguments, it is jointly
Index Terms—Approximation of power spectra, cross-entropy convex. Assuming thab and® have the same zeroth moment,
minimization, Kullback-Leibler distance, mutual information, op- S(T||®) > 0 with equality if and only if® = .
timization, spectral estimation. Given an arbitrarya priori spectral estimatel and the
second-order statistics, the main result of this paper is that
I. INTRODUCTION the problem of minimizingS(¥||®) subject to consistency

N this paper, we are interested in approximation of powg\f'_th_ E has a um_que_mm|muni>. It is worth _notlng_ that th.'s
I spectra of stationary stochastic processes and, in particuiﬁwmlzmg solution is unaffected by scaling, since th_'?
in the following type of problem. Suppose thatapriori esti- mod_|f|gs§.(\11||¢>) by a constant additive term and a positive,
mateV of the power spectrum is available and that new datarigultlphcatlve, gnd coqstgnt factor. . .
obtained that is inconsistent with this estimate. Then the basi When there IS ha prior spectral esgmate_, itis reasonable 0
problem is to find another power spectrdnthat is as close as takeW = 1, which corresponds to white noise. Then, since
possible to¥ in some suitable sense and is consistent with the
data. This is motivated by applications where one is called to S([|®) =~ / log @

reconcile inconsistent sets of data and incorporate prior infor- . . the Kullback—Leibler dist s t .
mation into the modeling process. minimizing the Kullback-Leibler distance amounts to maxi-

Thus, the starting point is a stationary stochastic proce@ézm_g the entropy gain. Consequently, the r_naxmum-entr_opy
{y(t), t € Z} with zero mean and spectral densiy In this solution is the spectral densify closest to white noise that is

aper, the spectral density will be regarded as areal-valued fuﬁ%DSiStem with the _data.. .. .
tF;orF:e” L, tI)rEe“’) on the u}:]it circIeTg: (e | -7 < 0 < 7} The Kullback-Leibler integral has been studied intensively

The data for the approximation problem will be in the forniun statistics, information theory, and communication, typically

of second-order statistics gf¢). These could be estimates ofPPtimizing W|th_respect o the_f'TSt argu_me‘ﬁt[ll]—[13], and
autocorrelation lagsy, :— E{y(¢)y(¢ + k)} or, more often has been considered as providing a distance measure between

cross correlations of outputs of different linear filters drive .auss—Markov [29] and hidden Markov models [15]. In another

) - - tion, estimating Markov models from covariance data has
by y(¢). Such filters could represent the dynamics of physic rectior
or a(lg)orithmic devices used for measurement. A gene |ong history; see, e.g., [2]’ [8]. [14]. [1.7]’ [28], [30], [32]’. [36].
framework encompassing all such possibilities is to take as d ¢ approach taken here is based on ideas developed in [S], [6]

an estimate of the state covarian¢ef a linear system driven in the context (_)f Cara_theqdory exte_.\nsmn, |n_[3], [4]in the con-
text of Nevanlinna—Pick interpolation, and in [9], [10] in the
context of generalized moment problems with complexity con-
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Y z In particular, the so-callecthaximum-entropy extensigsee,
— Gk |— e.g., [26]) is the unique covariance extension that maximizes the
entropy gain
with transfer function /log<I> = —S(1/|®)
G(z)=(I—-24)"'B, AeC™™", BeC"! and is obtained in our framework as the minimizer of (1.1) when

g = 1. WhenV¥ ranges ovearbitrary positive trigonometric
polynomials of degree, the minimizers of (1.1) are precisely
the coercive spectral densities of degree at r2oshat are con-
rank [B, AB, A’B, ... A" 'B] = n. sistent with the data, thus recovering basic results in [5]-[8],
[18], [20].
Now, a general framework for obtaining second-order data isMore generally, the measurement device could be a bank of
to pass the signaj(¢) through the device until it is in steadyfilters
state and estimate the state covariance

such that4 has all its eigenvalues in the open unit disc an
(A, B) is a reachable pair, i.e.,

T
S = E{z(t)z(t)*}. * Gi(2)
In fact, if the input is a stationary stochastic process y +—* Ga(2) _2.
{y(t),t € Z}, the output procesguz(t), t € Z} is a sta- -
tionary vector process satisfying the state equation : T,
> Gp(z) b—>
x(t) = Az(t — 1) + By(t). (2.1)

Therefore, in order for the spectral densityof {y(t), t € Z}  \yith transfer function
to be consistent with the data, it must satisfy the constraint

Gl(Z)
* Go(z
/G@G =. (2.2) G(z) = 2_( ) ) (2.4)
Example 1: The simplest case is when the data consists of a Gn(2)
finite sequence of covariance lags The following are two examples of particular interest that have
been explored in the context of high-resolution spectral estima-
a. =E{y®)y(t+k)},  k=0,1,....n-1 tion in [3], [4], [21].
This corresponds to Example 2: First, consider the case where
1
1 010 -0 0 Gr(z) = , k=1,2,...,n
2 001 --- 0 0 1 —prz
G(z)= : with A= |+ .|, B=|: with py, po, ..., p, distinct. Then
22 00 0 1 0 P1 1
n-l 1 D2 1
0 0 0 A _ Copo |
and the state covariance - :
Pn 1
Co C1 vee Cp—1 .
1 o ... Cnoso and the state covarianégcan be shown to have the form of a
Y= . : i ) (2.3) Pick matrix
: : T : 1+ v w +ﬂjz wi +ﬁi‘n
Col Cn-z oo Co wabh, ustos wa bion
ol e PR -
is a Toeplitz matrix. o= | "M e par (2.5)
The problem of parameterizing the class of spectral densities wniﬂgl mnir@ _ 'll)n-i—17jn
that satisfy (2.2) for this case is the classical trigonometric mo- 1=pnpr 1=Pnp2 L=pnpn
ment problem going back to Carathéodory, Schur, and ToepIWtth ‘
(see, e.g., [25]). This class is nonempty if and onhgif> 0 1 [T e 4 pp

wy, ®(e*)ds, k=1,2,...,n

(which here of course is always the case siids assumed to = Ur _emif _pp
be a covariance), and it contains infinitely many elements if a
only if ¥ > 0. Such spectral densities correspond to infinite e
tensions of the finite covariance sequenggy, ..., c,_1, and The problem of parameterizing the class of spectral densities

hence the problem is also referred to asdbeariance exten- that satisfy (2.2) for this case now relates to the classical Nevan-
sion problem linna—Pick interpolation problem (see, e.g., [1], [40]). In this

ggf. Remark 7 later).
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problem, one seeks an analytic functiBion the unit dis® that  has a solutior € C'*", or, equivalently

has positive real part and satisfies the interpolation conditions .

F(py) = wg, k =1,2,...,n. The dataw,, ws, ..., w, can be rank (E_A*EA B) = rank ( 0* B). (2.8)
recovered (modulo a common imaginary constant that plays no B 0 BT 0

role) from the measured covariance statisticand the spectral Moreover, any positive semidefinite matri which satisfies
density® can be obtained fronf via ®(e'?) = 2Re{F(e®)}.  (2.7) qualifies as a state covariance of the system (2.1) for a suit-

Following classical theory, the class of solutions is nonempgple stationary input process [22, Theorem 1]. In Section VII,
if and only if ¥ > 0 (which again is guaranteedXf is to be a we shall need the following lemma.
covariance), and it contains infinitely many elements if and only
if X > 0. The minimizer of (1.1) whew — 1 is the so-called  -€mma 4: The range of the operatdr : C(T) — C"*",
central solution Moreover, suitable choices df as a rational d€fined by (2.6), has real dimensian — 1. o _
function having the same poles as the filter bank, leads to a com- Proof: Slnc_e the linear ma? = - AZ_A* IS mver_tlble,
plete parameterization of all rational spectral densities of degrge’) N@s @ solution for alll € €™, and this solution is zero

at mostn that are consistent with the data, thus recovering ré-2nd only if BI + H*B* = 0. Therefore, it only remains to

sults from [3], [4], [19], [20]. prove that the kerndlH € C'*" | BH + H* B* = 0} has real
e dimension one.
Example 3: In the case where To this end, first note that anif € C'*" can be written as
1 H = (f+ia)B*+w, wherea, f € RandwB = 0, and hence
Gk(z)zm» k=1,2,...,n BH + H*B* = 0 if and only if
the system matrices become Q2 :=26BB" + Bw+ w"B* = 0.
p 1 0 --- 0 0 Now, it follows from B*Q2B = 0 that3 = 0, which inserted
0 p 1 0 0 into QB = 0 yieldsw = 0. ConsequentlyBH + H*B* = 0 if
A= |: = SO B=|: and only if H = 1aB* for somea € R, proving that the kernel
C ] N has real dimension one, as claimed. O
000 . 1 ?
000 - p I1l. ON THE KULLBACK—LEIBLER MEASURE
while the covariance matrix is now of the form The Kullback—Leibler distance has its roots in hypothesis

testing and represents the mean information per observation

for discrimination of a possible underlying probability density

where W is an upper triangular Toeplitz matrix, ardis the function fr_om a_mother [31, p. 6]. It is_also called cross-entropy

reachability gramian of A, B) [21, p. 33]. In the same way [24] Or gain of information [37]. In this paper, we uSe||®)

as above, spectral densities consistent with the data do exi§fmeasure of distance between spectral density functions. To

and only if S > 0, and there are infinitely many when > this end, several remarks are in order. _ _

0. Analogous results and parameterization of spectral densitied! J ¥ equalsh := | @, then, by Jensen’s inequality

which are consistent with covariance data can be obtained in this ] i d
ATA

1
S =g (WE+EW?)

case as well. S(U||®) = AS( )>0
The family of spectral densities consistent with the state sigith equality if and only if® = ¥. AlthoughS(¥||®) is not a

tistics ¥ in this example, as well as in Example 2, strongly demetric, this property allows us to interpret it as a distance be-
pends on the choice of polgs, ps, . . ., p.. Infact, by choosing tween® and V.

these filter bank poles appropriately, it is possible to give pref- |t is often the case that is part of the dat&:. This happens

erence to selected frequency bands of the spectrum and allg¥ctly whend is a singular matrix. To see this, letA = 0

more accurate reconstruction of the spectral density in these gaf-somev € C™. Then

ticular frequency bands [3], [4], [21], [34].

These examples suggest that, besides being HermXias, v* ¥y = /v*Gd)G*v = /v*B(DB*v = ||lv*B|? /(I).

highly structured and that there is a redundancy in the formula- ‘

tion of the constraint (2.2). In fact; is in the range of an integral Thus, A\ = v*Yv/||v* B||%.

operator Therefore, in cased is singular,U can be scaled so that
J ¥ = \. ThenS(V||®) is abona fidedistance measure, and

r:o—%= /G(I)G* (2.6) itis reasonable to consider the problem of minimiz&{@ ||®)

over ® subject to the constrainiy®) = X.

which, in our present setting, it suffices to define on the spaceHowever, even in the case whedeis nonsingular, the mini-

C(T) of continuous functions on the unit circle The range of mization problem makes sense, and, as we shall see in the next

I" can then be described as follows [21], [22]. A mafilxs in  section, it has a unique solutidn If we normalizel, a poste-

the range of if and only if riori, to the new functionl = ([ &/ [ ¥)W, then

Y. — AYA* = BH + H*B* (2.7) S(U|®) = oS(V]|®) + 3
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wherea = [ <I>/j Uandj = | $ log . Thus, the minimizing For eachA € £, the functiond — L(®, A) is strictly convex.
& would be the same in either case, &id||®) would retaina Hence, if this function has a minimum i, (T), then the di-
distance-like character, being nonnegative except when the tigstional derivative
arguments are identical in which case it is zero. N

SL(®, A;69) / <Q——>

IV. THE APPROXIMATION PROBLEM
will be zero for all continuous variation8d at the minimum.

Denote byC, (T) the subset of positive functions in the spac herefore, the possible minimizer must be of the form

C(T) of continuous functions on the unit circle We now state

and prove our main result. ®— v
Theorem 5:Let (A, B) be a reachable pair with the eigen- Q
values ofA in the open unit disc, and I€¥(z) = (I —zA)~'B. and the dual functional must be
Moreover, lefl” be defined by (2.6), and let W
, | L) = ~du(h) + [0
£, :={A € range (I') | G(e!)*AG(e?®) > 0,6 € [, 7]} Q :

with Jg(A) defined by (4.4). Hence, the dual optimization
problem amounts to minimizindy (A) over £ . The following
key lemma will be proved in the next section.

Given any? € C,(T) and anyX > 0 which satisfies (2.8),
there is a uniqué e C(T) that minimizes

™ 6 N
S(V||®) = / \p(@if’) log qj(ew) ﬁ (4.1) Lemma 6: The functionally (A) has a unique minimum €
- @(e) 2m £, . Moreover
subject tol'(®) = %, i.e., subject to N
- (=)=
/ G@%@M%mawggzz (4.2) GrAG
r ™
S We now use this lemma to complete the proof of the theorem.
This minimizer takes the form We first note that the function in the lemma, given by
A v
b =— 4.3 v ~ .
GAG (4.3) b=y Q=G
whereA is the unique solution to the problem of minimizin -
g P g belongs toC4(T) and is a stationary point b — L(®,A),
Jo(A) := tr(AX) — /q, log G*AG (4.4) which is strictly convex. Consequently

L(®,A) < L(®,A), forall® e C (T)
overallA € £, . Heretr M denotes the trace of the matuiA.

The techniques used in proving this theorem are based 0 Th equivalently, sincé'(® ) >

duality theory of mathematical programming and are motlvated S(\IJH(I)) < S(V||®)
by the ideas in [5], [6], [3], [4], [9].
We begin by forming the Lagrangian forall ® € C(T) satisfying the constrairf(®) = X. The
above holds with equality if and only # = $. This completes
L(®,A) = S(¥||®) + tr(A(F(‘P) - E)) the proof of the theorem.
HereA € range (I') is the Lagrange multiplier. Next, we con- Remark7: The connection between the approximation prob-
sider the problem of maximizing the dual functional lem of this section to analytic interpolation problems described
in [3], [4] is in terms of the function
A~ inf L(®,A). L 4if
deCy (T) Pz) = / + Z(I)(e”)d&
Note that im - Z
which is analytic inD and takes values in the open left half of
L(®,A) = /\I’ log — > + tr < [/ GOG™ — D the complex plane. This so-called Carathéodory function can be
- continuously extended to the unit circle where® is contin-
= /\Illog 3t /G*AG@ —tr(AY). uous, and
The dual functional will take finite values only if ® =2Re{F}=F+F"
Q") == G(e)* AG(e?) > 0, 0 € [-m,7). there. This is the content of the Riesz—Herglotz theorem [27].

Now, sinceG = B + zAG
Therefore, without loss of generality, we restricto the set

e (h e ()| QN s 00y, ] OFE=([re e[ racrnea( fare)a
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where the middle term is zero sin€d is analytic inD. There- also for negativé:. Thus,||G||?© = 0 on T. By reachability of

fore, X := [ GOG* satisfies (2.7) if and only if (A, B),||G|l # 00onT, and hence® = 0, and so isA. d
. Next, we prove that in fact : £, — &, is also surjective,
H= / FG". (4.5) thus establishing the existence of a unique solution to (5.3), and

hence a unigue minimum of the dual functiodal. To this end,

we first note that both set8, and & are nonempty, convex,

and open subsets of the same Euclidean space, and hence dif-
feomorphic to this space. Besides being continuous, theunap

V. THE DUAL PROBLEM is also proper, i.e., the inverse image!(K) is compact for

. in G, T his, fi h YK
To prove Lemma 6, we need to consider the dual probleany compack in 6. To see this, first note that eagiT (K)

L X S fust be bounded. In factet w(A) — 0as||A|| — oo, and sim-
goe:?vlgxéze\h(/\) over £.. To this end, form the directional ilarly det w(A) — oo asA tends to the boundary & . Since,

thereforew : £, — &, is a proper and injective contin-

) _ v uous map between connected spaces of the same dimension, it
605 (A;6A) = tr <5A [Z B /GQG D G2 foliows from [9, Lemma 2.3] that is a homeomorphism. This
completes the proof of Lemma 6.

inany directiordA € range (T"), as well as the second derivative Consequently, the dual problem provides us with an approach

Consequently, the constraint (4.2) in termsbaf equivalent to
the constraint (4.5) in terms df [22].

) v ) to computing the uniqué that minimizes the Kullback—Leibler
6" Jy(A;60) = / @(G SAG)”. (5.2) distanceS(¥||®) subject to the constraidit(®) = X.
From these expressions we observe two things. First, any sta- VI. THE MAXIMUM ENTROPY SOLUTION

tionary point ofJy (A) must satisfy the equation )
We now turn to the case whelle = 1. As we explained be-

w(A) =X (5.3) fore, this represents the situation whenanpriori spectral es-
timate is available, and the selected spectral densitorre-
where the mapy : £, — &, betweenf; and&, := gponds to white noise. The Kullback—Leibler distance
{¥ € range(I') | ¥ > 0} is defined as

S(1|®) := —'/ log ®

A~ / GEG*.
@ now has the interpretation of entropy rate of the underlying
SecondJy (A) is strictly convex, and therefore there is at mogtrocess [26].
one such stationary point, which would then be the unique min-In this case, the solution of the dual problem is particularly
imum. This is an immediate consequence of (5.2) and the fgimple, and we shall derive a closed-form solution along similar
lowing lemma. In particular, the map: £, — &, isinjec- lines to those in [16], [33]. In fact, the dual functional becomes
tive.

Ji(A) = tr(AX) — [ log G*AG 6.1
Lemma 8: Suppose\ € range (I') is such thatG*AG = 0 1(A) = t(A) / o8 (61)

onT. ThenA = 0.
Proof: Without loss of generality, we assume thGitis

where the first term can be rewritten as

normalized so thaf GG* = I. This can be achieved by a sim- tr(AY) = tr(A / GOG*)
ilarity transformation of the system matricéd, B). Suppose
G*AG = 0. Then = /tr(AG@G*)

—ik6 vk _
/e G*AG =0, forallk. _ /G*AG(I).

SinceA € range (T), and therefore\ = [ GOG* for some 1 simplify the stationarity conditions af; we use an alterna-
© € C(T), this can be written tive representation for

/e—ikeG(eia)* (/G(eitp)@(eW)G(eW)*dso) G(e®)d6=0. 0 = G*AG

. . . ) which is the content of the following lemma.
By changing the order of integration and using the fact that

[e=*GG* = A* for k > 0, we deduce that Lemma 9:If Q(¢*®) > 0 for § € [—m,7], then there is a
' ' i C € C™*! such thatlC*G is an outer function and
0 :/G*A"’GG) :/e’i’“eG*G@ = /e’ik9||G||2®. Q= C*GarC.
A similar argument, exchanging for A*, shows that Proof: We first introduce notation. Let

; det(2] — A*)
—1k6 2 _ —
[ ere o 2 = G T —2a)
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and define Then, since

K= H2('|]') o <pH2(T) G*AG =G*MG - G*A*MAG
where H?(T) denotes the Hardy space of square—integrab?@dAG = 271G — B), we have
functions on the unit circld with analytic continuation in the P 1o« « 1
open unit disdD. We remark thatp is an inner function and Qi=GAG=(G- §B) K+ K (G- 53) (7:2)
that K is finite-dimensional with the elements 6f forming \yherek = MB. Let &, be the space of alk € C"*! such
a basis. HencepQ € HY(T), where H!(T) is the space of thatQ > 0 on the unit circleT. Since
integrable Hardy functions.

Since@ = Q* > 0 onT, there is an outer function € B*K = B*MB = /Q

H?(T) such that) = a*a. Moreover, sincép| = 1, |pQ| = ~
la|®. Therefore, the outer part ¢fQ equalsa®. Since the ele- must be realf; has real dimension — 1.
ments ofp* G are orthogonal té7%(T), it follows thatpG* van-
ishes at the origin, and so do@§). Hence pQ = #a?, where
6 is inner andd(0) = 0. In view of the fact thatpa* = fa,
it readily follows thaty*a is orthogonal ta/?(T). Therefore,
a € K and can thus be expressed &7 for someC. O

Lemma 10: The linear map: : £, — K, defined by (7.1)
and K = M B, is a bijection.

Proof: By Lemma 4 ,£, has real dimensio2n — 1, the
same as that of ... Therefore £, and&. are both nonempty
open convex sets iR?"~! and hence diffeomorphic ®>"1!.

Although we are here interested in functions that are ration&incer is a linear map between Euclidean spaces of the same
the lemma actually holds in greater generality. dimension, it just remains to show thais injective. However,
Returning to the dual functional, we now have this follows immediately from (7.2) and Lemma 8. O

To express the dual functiondl, in the new coordinates, we

Ji(A) = '/C GGTO® _/IOgC GG*C also observe that

= /C*G(I)G*C— 2/log|C*G| tr{AX} = tr{ M2} — tr{ MAD A"}
=C*2C — 2log C*G(0) by (7.1), which, in view of (2.7), becomes
where in the last step we used the fact th&iG is an outer tr{AY} =HK + K*H".

function and thus thatog C*G is harmonic inD [38]. Since

G(0) = B, the dual functional only depends 6h namely Consequently, the dual problem is equivalent to minimizing the

convex functional

Ni(C) 1= C"RC = 2log C° B Jg(K) ::HK+K*H*—/\IJ log((G—%B)*K—FK*(G—%B))

which we now differentiate to obtain the equation (7.3)
1 over &;. Differentiatingfﬂ\p with respect to the complex vari-
20 -2-5B=0 ablesKy, K>, ..., K,, remembering thag% =0 forall 5, ¢,
o we obtain the gradient
for the minimizer. ThereforeC' = B}CZ—lB, and hence )
(B*C)? = B*%~'B. Consequently, the maximum-entropy Mo _ o / E(G— lB)* (7.4)
spectral density is given by oK Q 2 '
. B*Y-1RB with @ given by (7.2), which can also be written as
P(e") = . - . (6.2) .
B*Y-1G(e?)G(e?)*L-1B ENS - /FG* 75)
A version of this formula, valid for multivariable processes, ap- oK '
pears in [23]. in terms of the Carathéodory function
6 0
VII. ON THE NUMERICAL SOLUTION OF THE DUAL PROBLEM F(z)= L/ ¢tz qj(e. )dH (7.6)
4 e — 2z ) Q(e)

The case whe = 1 is very special, and, as we have seen, it )
can be solved in closed form. In general, whieis an arbitrary (S€€ Remark 7). To see this, observe th#t*G* = [ F*B* =
rational, or even irrational, function, one needs an iterative al-f' B* = F'(0)B*. We note that the gradient equals zero when
gorithm for solving the dual problem. Since the dual functiond® condition (4.5), or, equivalently, the condition (2.2), holds,
Jy is convex, such an algorithm could be based on Newtor{ harmony with Theorem 5.

method. For this, we first need a global coordinatizatiogqf ~ NOW, thefunctiony : &, — Risstrictly convex, and there-
that preserves convexity. fore Newton’s method can be used to determine its minimum.

To this end, given & € £, let M be the unique solution of Such a method was developed in [4] for an analogous problem.
the Lyapunov equation The drawback seems to be that the gradier_1t (7.4) be_com_es un-
bounded near the boundary 81, often causing numerical in-
M=A"MA+A. (7.1) stability.
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The alternative parameterization in termsof used in the
previous section, is also applicable to the case of a gederal

To see this, replace (AX) by C*X.C andG*AG by C*GG*C
in (4.4). The dual functional is now expressed in termg’ah
the form

Jg(C) = C*2C — /\Iflog(C*GG*C) (7.7)

and the gradient

aJ‘P_ * v T _ E *
SE—cmy ./G*CG —C (2 /GQG> (7.8)

whereQ := C*GG*C, is zero whenever condition (2.2) holds.
This parameterization has two advantages. It avoids a time-coft0]
suming spectral factorization problem in each iteration, and also

is better behaved at the boundary. Howevky, is not glob-

ally convex. Such parameterizations have been explored in [16]1]
for Carathéodory extension problems and in [33] for Nevan-
linna—Pick interpolation. In these papers, a homotopy contin*
uation method was used to compensate for the loss of global3)

convexity.

VIIl. CONCLUDING REMARKS
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[5] C. I. Byrnes, S. V. Gusev, and A. Lindquist, “A convex optimization
approach to the rational covariance extension probl&#M J. Control
and Opt, vol. 37, pp. 211-229, 1999.

[6] —, “From finite covariance windows to modeling filters: A convex
optimization approach,SIAM Rev.vol. 43, pp. 645-675, Dec. 2001.

[7] C. I. Byrnes, H. J. Landau, and A. Lindquist, “On the well-posedness
of the rational covariance extension problem,"Garrent and Future
Directions in Applied Mathematic$/. Alber, B. Hu, and J. Rosenthal,
Eds. Basel, Switzerland: Birkhaser, 1997, pp. 83-106.

[8] C. I. Byrnes, A. Lindquist, S. V. Gusev, and A. S. Mateev, “A com-
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[9] C. I. Byrnes and A. Lindquist, “Interior point solutions of variational

problems and global inverse function theorems,” manuscript submitted
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at http://www.math.kth.se/alg/, submitted for publication.

——, “A convex optimization approach to generalized moment prob-
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21st CenturyK. Hashimoto, Y. Qishi, and Y. Yamamoto, Eds. Basel,
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T. M. Cover and J. A. Thomaglements of Information Theary New
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12] I. Csiszar, “I-divergence geometry of probability distributions and min-

imization problems,’Ann. Probah.vol. 3, pp. 146-158, 1975.
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2001.

P. Dewilde and H. Dym, “Schur recursions, error formulas, and conver-
gence of rational estimators for stationary stochastic sequer&&f”
Trans. Inform. Theoryol. IT-17, pp. 446—461, July 1981.

Given generalized covariance dataof a stationary sto-
chastic process and an initial estimatdor its spectral density,

(18]

which may be inconsistent with the data, we formulated and®!

approximant to¥ in the sense of Kullback-Leibler which is

also consistent with the data. In particular, we have shown th
the minimizing function is unique.

solved the approximation problem of determining a closest

(17]

at

(18]

This problem is relevant when statistics is specified in the

M. N. Do, “Fast approximation of kullback-leibler distance for depen-
dence trees and hidden markov models,” Univ. lllinois at Urbana-Cham-
paign, preprint.

P. Engvist, “A homotopy approach to rational covariance extension with
degree constraint/ht. J. Appl. Math. and Comp. Sgvol. 11, no. 5, pp.
1173-1201, 2001.

T. T. Georgiou, “Partial realization of covariance sequences,” Ph.D. dis-
sertation, CMST, Univ. Florida, Gainesville, 1983.

——, “Realization of power spectra from partial covariance sequences,”
IEEE Trans. Acoust. Speech Signal Processwvg. ASSP-35, pp.
438-449, Apr. 1987.

form of a state covariance of a linear system driven by thé19] —, “Atopological approach to nevanlinna-pick interpolatio8/AM

unknown process. This is a rather general situation which[20
in particular, encompasses spectral analysis in linear arrays

J. Math. Anal, vol. 18, pp. 1248-1260, 1987.
——, “The interpolation problem with a degree constraitiEEE Trans.
Automat. Contr.vol. 44, pp. 631-635, Mar. 1999.

[39] with ordinary partial autocorrelation function, as well as[21] ——, “Spectral estimation by selective harmonic amplificatidftEE

spectral analysis using filter banks [3], [4].

The basic techniques that we have developed here shou
carry over to the case of a vector-valued stochastic processes,
where the distance measure is replaced by the matricial Kulf23]

back—Leibler—-von Neumann generalization [35]

i

Trans. Automat. Contrvol. 46, pp. 29-42, Jan. 2001.
——, “The structure of state covariances and its relation to the power
spectrum of the input,’JEEE Trans. Automat. Contrvol. 47, pp.
1056-1066, July 2002.

entropy spectrum and linear fractional parameterizatitli?E Trans.
Automat. Contr.vol. 47, pp. 1811-1823, Nov. 2002.

——, “Spectral analysis based on the state covariance: The maximum

S(U||®) = tr (/llllogllf - ./\Illog(I’) .

In this case, the data can again be encapsulated as the state co-
variance of a multiple-input system [22]. This is the topic of al®®
forthcoming paper.
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