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Abstract—We formulate a convex optimization problem for ap-
proximating any given spectral density with a rational one having
a prescribed number of poles and zeros (n poles and m zeros in-
side the unit disc and their conjugates). The approximation utilizes
the Kullback–Leibler divergence as a distance measure. The sta-
tionarity condition for optimality requires that the approximant
matches n + 1 covariance moments of the given power spectrum
andm cepstral moments of the corresponding logarithm, although
the latter with possible slack. The solution coincides with one de-
rived by Byrnes, Enqvist, and Lindquist who addressed directly the
question of covariance and cepstral matching. Thus, the present
paper provides an approximation theoretic justification of such a
problem. Since the approximation requires only moments of spec-
tral densities and of their logarithms, it can also be used for system
identification.

Index Terms—ARMA modeling, cepstral coefficients, convex op-
timization, covariance matching.

I. INTRODUCTION

F INITE-DIMENSIONAL models are central to most
modern-day techniques for analysis and design of control

systems. Yet many problems concerning modeling of linear
systems remain open. A case in point is ARMA (autoregressive
moving average) modeling of time-series. In ARMA modeling,
least-squares techniques often lead to inadmissible (unstable)
models while most other approaches require non-convex opti-
mization and are based on iterative procedures whose global
convergence is not guaranteed. Hence, at least from a theoret-
ical point of view, the problem of ARMA modeling remains
open [21, p. 103].

In the present paper, we formulate a convex optimization for
identifying a finite-dimensional approximant of a given power
spectrum. The formulation involves a frequency domain repre-
sentation and data which represent certain statistical moments of
the time series. In fact, for constructing an ARMA( ) model,
the data consist of autocorrelation lags and moments of the
logarithm of the power spectral density (cepstral coefficients).
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The approximation uses the Kullback–Leibler divergence as a
criterion of fit.

It is well known that model approximation and system iden-
tification are closely related subjects. In either, the objective is
to match to high degree of accuracy given data by a lower order
model. The difference between the two subjects is that in model
approximation the data is thought to be exact, whereas in system
identification their statistical nature is of paramount importance.
It is for this reason that some system identification techniques
rely on estimated statistics as the preferred form in which data is
to be supplied. Since the optimality conditions for our approx-
imation problem are only in terms of moments, our results are
relevant to system identification as well.

The present paper provides an approximation-theoretic justi-
fication of a procedure proposed in [3] and [4] that directly ad-
dressed the question of covariance and cepstral matching. This
previous work has been, in turn, part of a broad program on
convex optimization for interpolation and moment problems ini-
tiated in [8] (also see [9]) and continued in [5]–[7]. In a quite
different but yet related direction, in [15] we considered the
following problem. Find a spectral density that best approx-
imates an a priori spectral estimate in the Kullback–Leibler
sense and, at the same time, matches a window of prescribed
covariance lags. Though this earlier work uses related concepts
and methods, it does not lead to a model reduction procedure
since the solution in [15] is in general more complex than the a
priori estimate.

In Section II, we formulate and motivate the basic approx-
imation problem. The optimality conditions for the approxi-
mant are given in Section III. Some of the technical arguments
are deferred to Section V. Then, in Section IV, we consider
a regularized version of the approximation problem which is
more amenable to numerical computation. Connections to the
problem in [3] and [4] will be elaborated upon in Section VIII.
In a final section, Section VII, we illustrate the approximation
results with several examples.

II. FORMULATION OF THE PROBLEM

We begin by considering the Kullback–Leibler divergence
[18], [10]

as a distance measure between power spectral densities and
. The functional is convex [10] and, as-
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Fig. 1. Model matching problem.

suming that both arguments are normalized in the sense that

(1)

with equality if and only if . Although
this is not a bona fide metric, it induces a metric topology and,
in fact, a Riemannian metric structure on normalized positive
functions; i.e., on probability densities [1], [2] (also see [14]).
Therefore, it appears natural to consider the problem of approx-
imating a given by a belonging to a suitable class of admis-
sible spectral densities.

From a systems-theoretic point of view it is natural to con-
sider approximating by a rational spectral density

with trigonometric polynomials of at most degrees and
, respectively. In the special case of MA approximation, when

, this approximation problem reduces to minimizing
subject to normalization. This is a convex optimiza-

tion problem in coefficients of the trigonometric polynomial
. By way of contrast, while in general is a

convex functional in infinitely many variables, the functional
has finitely many variables but is not

convex. Therefore, to emulate the MA case, instead of mini-
mizing , we consider the problem to minimize

subject to normalization of and as in (1). This is a convex
optimization problem in variables.

This approximation problem can be regarded as a model
matching problem. We illustrate this in Fig. 1, where is the
outer spectral of ; i.e.

with analytic and invertible in the open unit disc

are transfer functions of two finite-impulse-response filters, and
is a stationary random process produced by passing

a white noise input through a filter with transfer function
. The approximation amounts to matching the power spectra

of the two outputs and .

To see this, first note that if , then the power
spectra of the outputs and will be the same and

(2)

More generally, we seek to determine the coefficients of
and so as to minimize the Kullback–Leibler divergence

between the power spectral densities and
of and , respectively, with the coefficients

of and being normalized so that the variances
and are both

equal to one. With this normalization, the Kullback–Leibler
divergence is nonnegative, and it is zero if and only if (2) holds,
as indicated earlier.

The above formalism has already been considered in the con-
text of least-squares estimation [19] (see also [20]). In this ear-
lier work, a model matching problem is also motivated based
on the configuration in Fig. 1. The matching criterion is to min-
imize the error variance , instead of a distance
between the power spectra of and , as done in the present
work. Interestingly, the authors of [19] discovered that this least-
squares model matching yields a stable filter. However, their
problem requires as data the Markov parameters of the filter in
addition to spectral moments. An interesting wrinkle to this con-
nection is that for minimum-phase filters there is a bijective re-
lation between Markov parameters and cepstral coefficients [4]
(i.e., moments of the logarithm of the spectral density). It is this
latter set of coefficients that enter in the present work.

As we shall see below, the problem of minimizing
the distance between the spectral densities and

becomes a convex problem when expressed in
terms of the coefficients of the pseudo-polynomials (trigono-
metric polynomials)

(3a)

and

(3b)

Also, as we shall see in the next section, the optimal rational
approximant turns out to be specified by a number of moment
constraints of the given power spectrum and of its logarithm,
which need to be matched (exactly or approximately in a suit-
able sense). Indeed, the optimality conditions are expressed in
terms of the covariance lags

(4a)
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and the cepstral coefficients

(4b)

where from this point on, for notational convenience, we use
to denote the normalized Lebesgue measure , and we

suppress the limits of integration, which will always be from
to . Interestingly, the optimality conditions (4) coincide with
those for a different optimization problem stated in [3], [4], as
we have already indicated, and will further elaborate upon in
Section VIII.

III. OPTIMALITY CONDITIONS

Let and be the closed convex sets

(5a)

and

(5b)

of nonnegative trigonometric polynomials. Then, the problem
at hand is to minimize the convex functional

over subject to the normalization condition

(6a)

The normalization

(6b)

also prescribed in Section II is already included in the definition
of .

We denote by and the subsets of and , respec-
tively, for which and for all . We also
denote by and the corresponding
boundaries. For future reference, we also define the hyperplane

and (7)

Moreover, we shall say that the pair has
maximal degree if either or or both.

Theorem 1: Consider the functional

defined on nonnegative trigonometric polynomials of de-
grees and , respectively, as specified in (5), and the set of
minimizing solutions

subject to (6a)

Then the following hold.
i) The set is nonempty.

ii) The ratio defines the same function for all
.

iii) If a pair is relatively prime and has maximal
degree, then contains only this one element.

iv) If a pair does not have maximal degree and
, then contains more than one element.

v) If a pair is not coprime and , then
contains more than one element.

The following observation is needed throughout.
Lemma 2: The sets and are compact.

Proof: Since the elements of are nonnegative and their
constant term is one, their remaining coefficients are also
bounded by one. Therefore, is compact. Next we show that

is also compact. Since is the power spectral density of
a purely nondeterministic process, the Toeplitz matrix formed
out of the first moments is positive definite,
and the corresponding th Szegö polynomial (see, e.g.,
[16]) is devoid of roots on the circle. Moreover, since

and is a trigonometric polynomial of degree , it follows that

where . Hence,
is bounded by and so are the remaining coefficients of .
Consequently, is compact as claimed.

We are now in a position to prove statements i)–iii) of
Theorem 1. Proofs of the remaining statements are deferred to
Section V.

Proof: [Proof of Theorem 1, statements i)–iii)] Since is
convex and is compact (Lemma 1), there exists
a minimizing point. This establishes statement i).

Since is a convex functional, the set of minimizers is
convex. If and are both in , then so is the
whole interval for . Therefore, the
second derivative of with respect to , at any point
of the interval, must be zero. In particular, for and for

and , we compute that the second
derivative is

If this integral vanishes, then, since the integrand is nonnegative,
. Hence, for any two

elements and in . This proves statement (ii).
If a pair is coprime and if at least one of them has

maximal degree, i.e., at least one of or
holds, then any other element must satisfy

. If and have a nontrivial common factor,
then one of the two must exceed the corresponding allowable
degree and contradicts the assumption that .
This completes the proof of statement (iii).
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The next theorem lists the appropriate optimality conditions
under the same assumptions and notation as in Theorem 1. The
proof will be deferred to Section V.

Theorem 3: Suppose a window of covariance lags
and a window of cepstral coefficients

are computed from as in (4). Then, any
satisfies the covariance matching conditions

(8)

If in addition , then satisfies the cepstral
matching conditions

(9)

Conversely, any which satisfies both sets
of the moment conditions (8) and (9) belongs to . In general,
allowing for the case where , any satisfies
the modified cepstral matching condition

(10)

where the slack variables and

(11)

take the same values for all . Moreover, ,
and, if for some , then for

. On the other hand, if with zeros
at , , then there are nonnegatve numbers

such that

(12a)

(12b)

Finally, for any , the optimal value is

(13)

In the last statement of the theorem we see that the minimal
Kullback–Leibler divergence equals the difference in entropy
gain between and or, equivalently, the difference be-
tween their respective zeroth cepstral coefficients, both modi-
fied by the slack variable whenever . Moreover,
we see from (8), that may not have a root on the unit circle
unless has the same root so that cancellation ensures integra-
bility of the fraction .

IV. REGULARIZATION AND CEPSTRAL SLACKNESS

The computation of the minimizer for is considerably more
complicated when has roots on the unit circle; i.e., when
belongs to the boundary of . There is therefore a need for a
suitable regularization that will keep the solution in the inte-
rior of . Such strategies have been considered for the
problem in [3] and [4] by Per Enqvist in his Ph.D. disserta-
tion [11], [12]. Here we consider the same regularization for
our Kullback–Leibler functional

(14)

By Szegö’s theorem [16] is integrable on the unit circle,
but its derivative is not. This forces the minimizing solution to
lie in the interior of .

Theorem 4: Suppose a window of covariance lags
and a window of cepstral coefficients
are computed from as in (4a) and (4b),

and let . The problem of minimizing the functional

subject to (6a) has a unique solution . This solution be-
longs to and satisfies the covariance matching con-
ditions

as well as the modified cepstral matching conditions

(15)

Moreover, the optimal value is

(16)

Proof: We compute the first variation of

and the second variation

The second variation is positive unless and .
Consequently, is strictly convex.
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The optimization problem in the theorem is equivalent to
finding a pair , with as in (7), that min-
imizes . We have shown earlier that is compact.
Since in addition is strictly convex the optimization problem
has a unique solution .

The functional remains finite on , yet its first
variation becomes unbounded on the boundary. This implies, in
fact, that lies in the interior . To see this,
we provide the following brief argument. Assume that for some

, with , one or both of vanish. Since the
set is obviously convex with a nontrivial interior,
there exist trigonometric polynomials and so that

and, in particular, and . But then,
perturbing in the direction

gives since the first term is finite, whereas at least one of
the other two terms gives . This argument can become more
rigorous by considering a path , with , which
starts at an interior point and ends at the assumed minimizing
point on the boundary. The contradiction is drawn by
evaluating the derivative of at the end point which
turns out to be . In a similar context, this is done in detail in
[8, p. 225].

In order to establish the moment conditions satisfied at the
minimizing point , we consider the Lagrangian

(17)

on all of , where is a Lagrange multiplier. For all
fixed , the Lagrangian has compact sublevel sets

with . To see this let with . Clearly,
. Then, since

if and only if

Comparing linear and logarithmic growth, this shows that is
bounded from above (and also bounded away from 0). This
shows that the sublevel sets are bounded. Since the Lagrangian
is continuous they are all also closed, and hence compact.

Because the Lagrangian differs from by a linear
term, it is strictly convex as well. Therefore, for each ,
the Lagrangian has also a unique minimizing point

. This minimizing point is not located on the boundary.
To see this note that the first variation

A similar argument as the one given above for the case of ap-
plies to show that . Therefore,
is the unique solution of the stationarity conditions

(18a)

(18b)

The set of (18a) can be rewritten as follows:

(19)

Using (18b), we can determine the unique value for which is
in harmony with the side condition (6a). To this end, we form

which equals zero due to (18b), and therefore

(20)

Conversely, for , the unique solution satisfying the sta-
tionarity conditions also satisfies (6a), and therefore

(21)

With the choice (18b) becomes

(22)

From the optimization of the Lagrangian, we have

for all . If in addition , then

and hence, from (21), we conclude that

(23)

for all .
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Finally, we establish (16). From (18a), we see that

which can be rewritten as

Therefore

from which (16) readily follows.

V. PROOFS OF THEOREMS 1 AND 3

In order to prove Theorem 3, we consider what happens to
conditions of Theorem 4 when . We then use Theorem 3
to complete the proof of Theorem 1.

We first note that, by Theorem 4, for each there is a unique
minimizer of in , which we denote by .
Since is compact (Lemma 2), there is a sequence
in the set that converges to a limit point

. For any point in this sequence, we have that

holds for all in . By continuity
and as . Therefore

for all

and hence, any such limit point , which need not be
unique, is a minimizer of . By Theorem 3, any such limit point

satisfies the covariance matching conditions (8); i.e.

(24a)
In view of Theorem 1, ii), any also satisfies (8). The
quantities

(24b)

are well defined, since the logarithms of trigonometric polyno-
mials are always integrable. These are the variables in (10) in

Theorem 3. Then, again by Theorem 1, ii), any sat-
isfies (10). Next, choose an arbitrary and suppose
that . Since the function

is convex and is a minimizing point, the stationarity condition

holds for and . Therefore (9) holds at
the point , and hence, whenever

.
Conversely, suppose that satisfies (8) and (10) for

some . Then, in view of (8)

(25)

which implies that . Next we show that . To
this end, define the Lagrangian

(26)

where is a Lagrange multiplier as is the constant term
in the trigonometric polynomial

(27a)

chosen so that

(27b)

A straight-forward inspection shows that, for
satisfied the stationarity conditions

(28a)

(28b)

and hence is a minimizer of the (convex) Lagrangian.
Forming the dual functional
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we have

(29)

By the assumption that satisfies (10) with
, the quantity within square brackets in the second

line of (29) equals zero. Therefore, in view of (25)

(30)

which should be maximized over all and satisfying
(27). Clearly, there is a unique maximum at , where
and

(31)

is chosen so that

(32)

By Theorem 1, ii), the first term in (31) takes the same value for
all , and so of course does the second term. Hence

is independent of the particular . This also establishes
(13).

Moreover, from (30) and (31), we have ,
as expected. Consequently, the Lagrangian (26) has a saddle
point at . In particular,

which proves that , as claimed.
To prove (12b), we first introduce the trigonometric polyno-

mials

(33)

. These satisfy

(34)

for any trigonometric polynomial of degree . We also de-
note by the nonnegative cone

with

Suppose now that and that for
. Then perturbing in admissible directions ,

we obtain

which, in view of the fact that the is a trigonometric polyno-
mial without constant term, is the same as

(35)

Since any variation of must preserve positivity,
the admissible perturbations are precisely those for which either

in all the points where vanishes or
with the extra condition that, when it vanishes at some of those

same points, the derivative vanishes as well. We only need to
consider the interior of the set of admissible perturbations. This
is

(36)

It is clear that is precisely the interior of the dual cone of
; i.e., . Since, therefore, (35) holds for all

, it follows that
, as claimed. This establishes (12b). Equation (12a) follows

by substituting the values of the optimal given by
(12b) into (11).

To wrap up the proof of Theorem 1 and explain some connec-
tions, we return to the regularized problem of Section IV. From
(16) we have

(37)

By taking limits as , and using (31), which of course in
particular holds for , we see that

(38a)

which of course is finite, since all other terms in (37) have finite
limits. The value of is also nonnegative as seen from (38a),
since . Similarly, from (15) and (24b), we also see that

(38b)

which certainly is consistent with (12b). From (38), we can
again deduce that, when for .
This concludes the proof of Theorem 3.

The remaining statements (iv) and (v) of Theorem 1 now
follow directly from the fact that any that satisfies the
moment conditions (8) and (9) is also a minimizer (Theorem 3).
Hence, if and either have
a common factor or they are both degree deficient, then we can
introduce or alter existing common factors without violating the
moment conditions or the normalization (6a) (which can be seen
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Fig. 2. High-order power spectrum and ARMA(4; 5) approximant (above) and
poles/zeros pattern (below).

as before, by summing the covariance moment conditions after
we multiply by , respectively). Notice that this may not be
possible when because of the slack variables. This
concludes the proof of Theorem 1.

VI. NUMERICAL COMPUTATION

The proof of Theorem 3 in the previous section, suggests a
numerical scheme for approximating the optimal solution. We
collect the relevant facts in the following proposition.

Proposition 5: Let be the unique minimizer of
in , as per Theorem 4. Then, as

where is a minimizer of in .
It is shown in Section IV that is the unique mini-

mizer of the strictly convex functional (Lagrangian)

where

Fig. 3. Power spectrum and AR(10) approximant (above) and poles/zeros pat-
tern (below).

is the vector of coefficients of and
. As indicated in (20), the Lagrange mul-

tiplier in (17) is set to the optimal value . The computa-
tion of the minimizer can be done using Newton’s method. More
specifically, choosing a suitably small , iterate

starting from initial conditions and a suitable
step size . Here, is the gradient

where the entries of the column vectors and are

with , and

with . Next, is the Hessian
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Fig. 4. Power spectrum and MA(10) approximant (above) and poles/zeros pat-
tern (below).

where take values in , and
, respectively, and have entries

with

with , and

with .

VII. SPECTRAL APPROXIMATION: CASE STUDIES

We begin with a power spectral density of high order shown
in Fig. 2, which corresponds to an ARMA model. The
poles and zeros of the corresponding canonical spectral factor
are also shown in the same figure. This is an example of a rather
tame “high order” power spectrum which can be easily approx-
imated by a low order one. For the appoximation we select

, and hence the approximant corresponding to

Fig. 5. Power spectrum and ARMA(2; 2) approximant (above) and poles/zeros
pattern (below)

an ARMA model. This indeed is capable of matching per-
fectly the set of the first five covariance samples as well as the
set of the first five cepstral coefficients. This “low order” power
spectrum and its corresponding pole/zero pattern are superim-
posed with those of in the same figures.

When a power spectrum has a number of poles and zeros near
the unit circle, then it may be impossible to match perfectly all
relevant cepstral coefficients with a low order model (i.e.,
of them for an ARMA approximant). We highlight the
ability of low order approximants to follow the “shape” of
in a series of representative cases. The power spectral density

that we have selected corresponds to an ARMA model
with pairs of poles and zeros near each other in the unit disc. We
display together with approximating spectra of lower order
ones, AR , MA , ARMA , and ARMA , re-
spectively, along with the corresponding pole/zero patterns su-
perimposed with those of , in separate graphs in Figs. 3–6.
In all these cases, the approximating power spectra have zeros
on the boundary and are unable to match the cepstral coeffi-
cients. This is examplified for the case that corresponds to an
ARMA model in Fig. 7 with the corresponding power
spectrum and poles/zeros pattern shown in Fig. 8. It is worthing
noting the improvement in matching the actual “shape” of
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Fig. 6. Power spectrum and ARMA(4; 5) approximant (above) and poles/zeros
pattern (below)

Fig. 7. Cepstral coefficients of power spectrum and of ARMA(2; 5) approxi-
mant.

while comparing these cases. Interestingly enough, the peak can
be reproduced relatively accurately with one pair of complex

Fig. 8. Power spectrum and ARMA(2; 5) approximant (above) and poles/zeros
pattern (below).

poles. This is not the case for the “valley” in because it is pro-
duced by two pairs of complex zeros. For matching the “valley,”
a higher order MA-part is needed. However, despite the fact that
the MA-part is of order five in the two examples in Figs. 6 and
8, the approximants do not match the specific zero pattern.

An alternative set of examples is displayed in Figs. 9 and 10.
In these, we observe the inability of AR models to match the
“shape” of a rather flat power spectrum with significant “val-
leys.” Despite the fact that the original spectrum now corre-
sponds to an ARMA model, relatively good fit is achieved
with an MA model, as shown in the last plot.

VIII. CONNECTIONS TO CEPSTRAL APPROXIMATION

We proceed to explain the connection between the approxi-
mation problem in the present work and a seemingly unrelated
problem in [3] and [4]. A central theme in [3] and [4] was to
determine a rational power spectral density which matches a set
of prescribed covariance lags while, at the same time, approxi-
mates a set of given cepstral coefficients. To this end, the func-
tional
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Fig. 9. Power spectrum and AR(16) approximant (above) and pole/zero pat-
terns (below).

was introduced in [3] and [4], to be minimized subject to the
matching conditions

for a given set of covariance lags and cepstral co-
efficients . This cost functional trades off maximiza-
tion of entropy gain against approximating the cepstral coeffi-
cients.

The connection to our present work is through the dual of this
optimization problem, namely to maximize the concave func-
tional

(39)

over . It was shown in [4, Th. 5.3] that there exists at
least one solution to this problem, and
is the solution of the primal problem. For any such maximizer

, we have and exact covariance matching. If
, there is also exact cepstral matching. In this case

Fig. 10. Power spectrum and MA(8) approximant (above) and pole/zero pat-
tern (below).

is unique, and this happens if and only if and are
coprime. Hence there is an analogous set of conclusions for this
pair of dual optimization problems to those in Theorem 1.

As explained in Section V, the optimal solution of the
optimization problem of Section III is obtained by minimizing

, where the Lagrangian is given by (26), and
is the optimal solution (31) of the corresponding dual problem.
However

which, in view of (4), can be written
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Since and are constant, minimizing
over is equivalent to maximizing

which is precisely the dual problem (39) with the cepstral co-
efficients appropriately modified to account for slack variables.
This explains the congruity of the optimality conditions between
the two problems.

IX. CONCLUDING REMARKS

We have presented a model matching approach to spectral
density approximation using the Kullback–Leibler divergence
as a criterion for goodness of fit. The approach yields a convex
optimization procedure for ARMA modeling. The optimality
conditions are given in terms of moments of the spectral density
and its logarithm. This fact makes the approach potentially
useful to system identification. Moments of spectral density
functions are routinely computed in applications requiring
spectral estimation [21]. While statistical estimation of covari-
ance lags is reasonably well studied [17], the estimation of
cepstral coefficients remains a topic of current research (see,
e.g., [13]).

The current paper provides a motivation for the study in [3]
and [4]. Indeed, while [3] and [4] focuses on covariance and
cepstral matching, the present work provides an approximation
theoretic justification.
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