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On the  Structure of State-Space Models 
for Discrete-Time Stochastic 

Vector Processes 
ANDERS  LINDQUIST AND MICHELE PAVON 

Abstract-From  a  conceptual  point of view,  structural  properties  of 
linear  stochastic  systems  are  best  understood  in  a  geometric  formulation 
which  factors  out  the  effects of the  choice of coordinates. In this paper we 
study  the  structure of discrete-time  linear systems with  stationary  inputs  in 

, the  geometric  framework  of  splitting  subspaces set up  in  the  work by 
Lindquist  and Picci. In  addition  to  modifying  some of the  realization 
results of this Kork  to  the  discrete-time setting, we consider some problems 
which  are  unique to the  discrete-time setting. These include the relations 
between  models  with  and without noise in  the  observation  channel,  and 
certain  degeneracies which  do not occur  in  the  continuous-time  case.  One 
Qpe of degeneracy is related to the  singularity  of  the  state  transition 
matrix,  another  to  the  rank  of  the  observation  noise  and  invariant  direc- 
tions of  the  matrix Riccati equation of Kalman filtering. We  determine  to 
what extent  these  degeneracies are  properties  of  the  output  process. The 
geometric framervork also accommodates  infinite-dimensional  state  spaces, 
and  therefore  the  analysis is not  limited to finite-dimensional  sgstems. 

I. INTRODUCTION 

T HIS paper is concerned with stochastic  realization of dis- 
crete-time  stationary  vector  processes  and  the  structural 

properties of the  resulting  stochastic systems. Although  our re- 
sults  provide new insight  into  the  finite-dimensional case, the 
analysis is not restricted to finite-dimensional  systems.  The sig- 
nificance of a  state-space  theory  for  infinite-dimensional  systems 
has  been  stressed  by  many  authors in the  deterministic  context 
[11-[41. 
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The stochastic  realization  problem is the  centerpiece of any 
theory of stochastic  systems.  The  early results in this field of 
study were developed  in  the  context of spectral  factorization  and 
the  positive-real  lemma [5]-[8]. In more  recent  years, however, 
there  has  been  a  trend  toward  a  more  geometric  approach 
[14]-[39]. This  has  several  advantages  from  a  conceptual  point of 
view. First,  there is no need to restrict the  analysis to finite-di- 
mensional  systems:  the  geometric  properties  are  in  general (but 
not always) independent of dimension.  Second, it allows us to 
factor  out,  in  the first analysis. the  properties of realizations 
which  depend  only  on  the  choice of coordinates. In fact, the 
geometric  approach is coordinate-free.  Structural  properties which 
look very complicated  in their coordinate-dependent  form  are 
given geometric  descriptions.  Third,  systems-theoretical  concepts 
such as minimality.  observability. constructibility, etc., can  be 
defined  and  analyzed in geometric  terms. We hasten to stress, 
however, that such theory  does  not replace the classical results. 
Indeed, we shall still need to do spectral factorization. The 
emphasis in the  geometric  approach is on  the  structural  aspects of 
the  problem  rather  than on the  algorithmic  ones,  although  the 
insights  gained  by this analysis may be  helpful  in  providing  better 

In this paper we use the  geometric  format laid out  by  Lindquist 
and Picci  [19]-[24] to develop  a  theory of stochastic  realization 
for  discrete-time processes.  Since much of the  basic  geometry is 
the  same in continuous  and  discrete time. and hence is covered in 
[19]-[24], our emphasis  here is on  structural  properties which are 
unique to the  discrete-time setting, and which  have not  been 
covered elsewhere (such as in the work  by Ruckebusch [28]-[32], 
which  deals  mainly  with  the  discrete-time case). In addition  to 
woiking  out  the details on  difference-equation  representations, 
we consider  questions  concerning  the  manner  in which noise 
enters  into  the  observation  channel  and  the  relations  between 
models with and  without  observation noise. We study  the  types 
of degeneracy which manifest themselves either by  the  transition 
function  being  singular or the observation noise being  deficient  in 
rank. The first type of degeneracy  occurs in the important class 
of moving-average  processes,  whereas  the second one is related to 

algorithms. 
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the  concept of invariant  directions, a  topic which has generated  a 
rather  extensive  literature [40]-[43], [ll]. 

The outline of the  paper is as follows.  The  purpose of Section 
I1 is  to define  basic  concepts  and to motivate  the  reader  for  what 
is to follow. In Section I11 we  review some  basic  geometric  theory 
from [19]-[24], and  in Section IV we introduce  the  noise  processes 
by  means of Wold  decomposition.  Section V is devoted to the 
construction of realizations. We  follow the  same  pattern  as  in  the 
continuous-time  work [23],  [24], but here  the  differences  between 
continuous  time  and  discrete  time  are nontrivial, The  discrete-time 
case  has  also  been  studied  by  Ruckebusch [28]-[32], but his work 
contains no explicit construction of realizations. In Section VI we 
consider  singularity in the  observation noise, and  Section VI1 
contains  a  discussion of models  without  observation noise. In 
Section VI11 we introduce  Hardy  space  theory  and,  among  other 
things, reformulate  some of the results of  [20]-[24] in  the  unit 
circle form  required  for  the  discrete-time case. We do this at a 
later  point  in  the  theory  than  in [20]-[24], and  there is a  reason 
for this. The  purpose of the  spectral  theory is to provide  the 
state-space  description  with  more  structure  and to  obtain a tool 
for deriving  additional results, but  the  basic  structural  properties 
do not  depend  on this particular  representation.  Section X is 
devoted to a  general  discussion of the  degeneracies  mentioned 
above. We sort  out  to  what  extent  these  are  properties of the 
given output process or merely of the  individual  realization 
(modulo coordinate  transformations).  Finally, in Sections IX and 
XI we illustrate  the  various results by examples. 

This  paper is a revised version of [a]. 

11. PRELIMINAFUES AND MOTIVATION 

Let us, for the  moment,  consider  a  finite-dimensional  stochas- 
tic system 

x ( t + l ) = A x ( t ) + B u ( t )  (2.1a) 
y ( t ) = C x ( t ) + D u ( t )  (2.lb) 

where x is the  n-dimensional state  process, y the  m-dimensional 
output  process, and u is p-dimensional  white noise,  i.e., 

E {  u ( s ) u ( t ) ' }  = I6,, (2.2) 

is the  Kronecker  symbol which is one when s = t and  zero 
otherwise, and prime (') denotes  transpose), and where A ,  B ,  C, 
and D are  constant  matrices of appropriate  dimensions,  with A 
having all its  eigenvalues  inside  the  unit circle. All processes  are 
zero  mean. The recursions (2.1)  evolve forward  in time t ranging 
over all integers (H), so that,  for  each t ,  y( t )  and x ( t  +1) are 
linear  functions of the  past  noises { u ( t ) ,   u ( t  - l), u(  t - 2), . . . } 
and consequently  uncorrelated to the  future  noises { tl( t + l), 
u( t + 2), . . . }. Therefore,  the ( n  + m)-dimensional  vector  process 
(;) is (wide sense)  stationary  and  (wide sense) Markov. For each 
t E H, define  the  finite-dimensional  space 

of all linear  functionals (linear combinations of the  components) 
of the  state x( t )  at time t. The  dimension of X is at most n. 

The stochastic  realization  problem is the  inverse  problem  in 
which  the  process y is given and we want to construct  systems of 
type (2.1), called stochastic  realizations, having y as  its  output.' 

whether J is a (strict  sense)  stochastic  process  defined on a  probability 
'There  are two versions of this  problem  which  are  distinguished  by 

s ace  or  merely a weak stationary process  characterized  by  its  spectral 

presented  in this paper  provides  solutions of both problems. 
Jnsity. Although  we  shall  take  the  first  point of \5ew  here, the theory 

Let fi be  the  space of all finite linear  combinations 

N m c c .,jY,(t,) (2-4) 
i = o  j = 1  

ofthestochasticvariables{~~i(t);tEH,i=1,2,.. . ,m}.Thisisa 
pre-Hilbert  space if  we endow it with  the  inner  product ( 5 ,  q )  = 

E { ( q } ,  where E {  .} denotes  mathematical  expectation.  Now 
closing H by- amending to  it all limit points of convergent 
sequences  in H we obtain  a  Hilbert  space H (whose dimension is 
countably infinite). Since y is stationary  there is a  unitary  opera- 
tor U: H -+ H, called the shift, with  the  property 

y i ( t+ l )=Uyi , ( t )  (2.5) 

for all t E Z and i = 1,2,. . . ,m [47]. (A unitary operator is such 
that U-' = U*, the  adjoint of U.) 

Since y is the  only  thing given, it is reasonable to require  that 
X ,  c H for all t E Z. A realization  with this property is called 
internal or output-induced. Since a'x(0) E H,  a'x(0) = lim, - mqk, 
where { ql ,  q2,  q3 , .  . . } are  random  variables of the  form (2.4). 
Then,  by  stationarity, a 'x ( t )  = lim, = i j k  where 4, is obtained 
from q, by  exchanging  each y, ( t , )  in the  corresponding  expres- 
sion (2.4) by y,( ti + t ) .  Hence, i, = U r q k ,  and  consequently,  by 
continuity, a'x( t )  = U'[a'x(O)]. Therefore, 

X, = U'X (2.6) 

for  each t E 72, where, to simplify  notations, we write X instead of 

Next  define two subspaces of H ,  the past space H -  and  the 
future space H'. Let H -  be  the  subspace  generated  by 
{ y (  - l), y (  -2), y( - 3), . . . }, i.e., the closed linear  hull of all 
expressions (2.4) ,with  each ti negative,  and similarly, let H +  be 
the  subspace  generated  by { y(O), y(l), y(2), . . . }. We shall in- 
vestigate  the  relations  between  the  spaces H -  , H + ,  and X .  To 
this end we shall need  some  notations. For each A E H and 
subspace Z ,  let E Z A  be  the  orthogonal  projection of A onto Z .  
(we use this notation since, if 2 is generated  by  a  random 
variable or process z, E Z A  is the wide  sense conditional  mean of 
A given z [47].) Moreover, we define  the  vector sum Y v 2 of two 
subspaces Y and Z as the closed linear  hull of all sums q + 5 with 
q E Y and S E 2. Finally, let Y I Z denote  the fact that Y and Z 
are  orthogonal. It is clear  from (2.1) that  each X E H+ has the 
form 

X,. 

cc 
A = V X ( O ) +  f i ' u ( i )  (2.7) 

i = O  

where b ,  f i ,  f2, . . . are  constant  vectors. Since X and b'x(0) both 
belong to H,  so does  the  last  term of (2.7). Now,  due to the 
forward  property of (2.1), this last term is orthogonal to both H -  
and X ,  and is therefore  canceled  by  the  projections E X  and 
E H -  V .X' . Hence, E H -  'A = b'x(0); consequently 

Q A  E H + ,  E H - "  = E'h. (2.8) 

This is equivalent to (A - E x A )  I H -  v X, or, since A - E xX is 
orthogonal to X by definition, ( A  - E X A )  1 H- , Therefore, ( A  - 
E 'X, p )  = 0 for all A E H' and p E H- , or,  equivalently, 

( E X p , E X h ) = ( p , A )  f o r a l l p E H - ,  A E H ' ,  (2.9) 

i.e., H- and H' are conditionally orthogonal given X; we write 
this as H- I H- IX. Tracing  the  previous  argument  backwards it 
is easy to see  that (2.8) and (2.9) are  in  fact  equivalent  and,  by 
symmetry,  also  equivalent to 

VA E H - ,  A = E X A .  (2.10) 
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A subspace  X  satisfymg  one of the  three  equivalent  conditions 
(2.8)-(2.10) is called  a splitting subspace. Clearly  X serves as a 
"sufficient statistic" in  the sense that it contains all the  "infor- 
mation"  about  the  past of y needed in prediction of the future of 
y and vice-versa. 

It is by now  well known [lo], [ll] that to each realization (2.1) 
of y there  corresponds  a backward realization 

i x_(t)=Alx_(t+l)+Bu(r) 
y ( t ) = G ( t + l ) + D G ( t )  

(2.11a) 

with  the  same X-space as (2,1), i.e., 

{a 'x_(t) laEIW"} = x , .  (2.12) 

This system evolves backwards  in time in  the sense that  X(t) and 
y (  t )  are  linear  functions of { G( t ) ,  E( t + l),  . . . } and  are  uncorre- 
lated to {a( t - l), C( t - 2), . . . }; A has all its eigenvalues inside 
the  unit circle. This realization is related to (2.10) as (2.1) is 
related to (2.8), and we can use  (2.11) to derive (2.10) directly. 

We define a shift U( X) on the  subspace  X by restricting the 
domain of U to X and projecting  the image back to X,  Le., 

U(X):=E"Ulx (2.13) 

is a  linear  operator  X-,  X  defined as U(  X)[ = ExU[. We call 
U(  X )  the Markov operator of  X. It is an  abstract  counterpart  to 
A'. In fact, if [:=a'x(O) is an arbitrary  element  in X, U( X)[ = 
EXa'x(1) = a'Ax(O), since a ' ~ u ( O )  I X. Likewise, u(x)*[ = 
Exa'Ax(l) = a'A'x(O), etc., in  general,  for r 2 0, 

u( X)'[ = a'A'x(0). (2.14) 

On the  other  hand, if we project U'[ = a'x( t )  orthogonally onto 
H -  V X we also  obtain (2.14), since  the  components of 
u(O), ~(1); .  -, and u ( t )  are  orthogonal to H -  V X .  Hence, 

Q[EX, E H - V X  u[=u(x)'[ for t=0.1,2;- .  . 
(2.15a) 

By applying  the  same  procedure to the  backward system  (2.11) 
we obtain  the  symmetric  condition 

V S E X ,  E H ; V X U - ~ < =  [ u ( x ) * ] ' [  f o r t = 0 , 1 , 2 , - - .  

(2.15b) 

where 

u( X)* : = EXU-11 X (2.16) 

is an abstract  representation of z. It is easy to see that 
(U(  X)[, y)  = (6, U(X)*q) for all [ and y in X ,  and  therefore 
U ( X ) * :  X-, Xis the  adjoint of U(X). The two conditions (2.15) 
are not equivalent. 

As we shall see below, (2.9) and (2.15) together  completely 
characterize  the  Markovian  property of the system  (2.1), or  that 
of (2.11), and therefore we shall call a splitting subspace  X 
Markovian if it satisfies conditions (2.15). Just as we derived (2.8) 
and (2.9),  we can show that 

where V r  E ,Z, denotes  the  vector  sum of the  spaces { Z,; t E I } .  
In fact, it  can  be  shown  that  (2.9)+(2.15) is equivalent to (2.17) 
(also  for  noninternal realizations). Here we  have chosen  to ex- 
press  the  Markov  property  in  terms of the  Markov  operator 
U( X). 

To solve the  stochastic  realization  problem we shall first de- 
termine  the  Markovian splitting subspaces  of x; this is a geomet- 
ric problem  in  the  Hilbert  space H generated  by  the given 
process.  There  are  several  reasons for adopting this procedure. 
First  the  system 

i R ( t + l ) = T A T - ' I ( t ) + T B u ( t )  (2.18a) 
v ( t ) = C T - 1 I ( t ) + D u ( t )  (2.18b) 

where T is an  arbitrary  nonsingular n X n-matrix,  has  the  same 
splitting  subspace X as (2.1). The  two  systems  can  be  obtained 
from each other  by  a trivial change of coordinates in X .  In the 
first analysis we want to take  a coordirrate-free approach  to  the 
problem,  and  factor  out  properties of realizations connected  with 
choice of coordinates  in X. 

Second,  and  more  importantly, we want to consider  also in- 
finite-dimensional  realizations  in  the same framework.  In  order 
for y to have a  finite-dimensional  representation (2.1) it is neces- 
sary that y has  a  rational  spectral  density. However, we wish to 
consider  realizations of arbitrary  stationary  processes  (subject to 
some  technical  conditions to be  introduced below). This leads to 
infinite-dimensional  X  in  general,  and  although we can  construct 
systems of type (2.1) in this situation also  (see Section V). it does 
require  some care, and we need to decide how to define  the  state 
process x. In the  basic  geometric  theory these difficulties do not 
occur. 

Finally, we have  the  concept of minimalig. In the classical 
(finite-dimensional)  theory we say that  a  realization (2.1) of y is 
minimal if the  dimension n of the  state  process is as small as 
possible.  It is well-known that this requires  that  i) (.4, B )  is 
reachable, ii) (C, A )  is observable,  and iii) the spectral  factor 
W ( z )  = C(z1- A ) - ' B  + D is minimal in the  sense  that  its 
McMillan  degree is as small as possible [6]-[13]. Note  that it is 
not sufficient that ( A  ~ B ,  C,  D )  be  a  minimal  realization of W in 
the  deterministic sense  (i.e.. that i) and ii) hold).  but we must  also 
have  condition iii) fulfilled. Condition i)  is equivalent to x(0) 
being  a  basis  in X .  This can  be seen  by noting  that  the  compo- 
nents of s(0) = -,A'BBu(k) are  linearly  independent if and 
onlyif(B,AB,A;B;..}hasfullrank,i.e.,rankn.If(A,B)is 
not  reachable, rz > dim X. Consequently  reachability  does  not 
enter  into  the  basic splitting subspace  geometry.  Once  X  has  been 
determined,  one is expected to choose x(0) as a basis, and this 
will automatically  take  care of condition i). Now. having  thus 
removed  condition i) from  consideration,  the most natural way of 
defining  minimality is simply to require  that  X is minimal in the 
sense  that it  contains  no  other  Markovian splitting subspace as a 
proper  subset. This is simple  and  has  the  advantage of also 
working  in  the  infinite-dimensional case. Conditions ii) and iii) 
will then  occur  as  geometric  conditions which confine  the size of 
X. In Section V we shall see that ii)+iii) is equivalent to requiring 
that both (C, A )  and (c. x) are  observable. 

111. A &WEW OF BASIC GEOMETRIC THEORY 

The  problem of determining all Markovian splitting subspaces 
Xleads to a  geometric  theory on Hilbert  space [18]-[33].  We shall 
review some of the  basic results from [21]-[24], mostly  without 
proofs. 

It  should  be  noted  that  the  theory reviewed in this section  does 
not  depend on the  process?.  other  than  through H, H - ,   H + ,  and 
U .  Hence. we could start out  by merely assuming a  Hilbert  space 
H endowed  with  a  unitary  operator U :  H -+ Hand two subspaces 
H -  and H -  uith the  properties U * H -  C H - ,  UH-  c H - ,  and 
H -  V H +  = H. This remark may  seem a bit displaced  in this 
paper since we have a  particular  application in mind,  and  indeed, 
H ,   H -  , H' , and U mill have  the  meanings assigned to them in 
Section I1 for  the rest of the  paper. However. in Section VI1  we 
shall redefine H -  remporarill, to be L ' X .  Le.. the  space  defined 



LINDQUIST AND PAVON: STRUCTURE OF STATE-SPACE MODELS 421 

Fig. 1. 

symmetrically to H +  over the  past,  and we shall need to know 
that  the results of this section  hold  also with this choice,  as 
indeed  the  remark  above  implies. Such a  symmetric  choice of H -  
and H' will lead to models (2.1) in which D = 0, cf.  [26]. 

Perpendicular intersection is a  fundamental  concept  in  the 
geometry of splitting subspaces.  Two  subspaces A andB are  said 
to intersect pependicularb if E A B  = A n B or, equivalently, EBA 
= A  n B. It is shown  in [22],  [24], that A and B intersect per- 
pendicularly if and,  provided A V B = H ,  only if B ' c A :  or. 
equivalently A ' c B. (Here A is the  orthogonal  complement of 
A in H and E"B = { E.4p1p E B } . )  

Theorem 3.1 [21], [22]: A subspace X is  a splitting subspace if 
and on& i f  X =  S n S for some pair ( S ,  ,!?)-of perpendicularly 
intersecting subspaces such that S 2 H -  an_d S 3 H - .  The corre- 
spondence X -  ( S ,  S )  is one to one, ( S ,  3 )  being uniqueb de- 
termined by the relations S = H -  V X and S = H' V X, 

We shall use  the  notation X -  ( S ,  S )  to recall this correspon- 
dence.  The  theorem is illustrated in Fig. 1 with obvious restric- 
tions on dimensions. 

From this geometry we immediately  have  the following 
corollary,  in  which 8 denotes  orthogonal  direct sum and A e B  is 
the  space C such  that A = B e  C. 

Corollary 3.1: Let S and S be subspaces such that S c S and 
set x=snS. Then 

Equation (3.1) should  be  compared to  the  orthogonal  decom- 
position  in  terms of incoming  and  outgoing  subspaces  in 
Lax-Phillips  scattering  theory [&I. We say  that  the  splitting 
subspace X - ( S ,  s) is proper if both S' ands' are full rank. (A 
subspace A c H is full rank if VE - ,U'A = H.) 

The Markovian  property  can now be  characterized  by  simple 
invariance  conditions on S and S. In this paper we have a 
different  definition of Markovian  than in [21], and  therefore we 
shall provide a proof of the  next  theorem,  although it can  be 
found  in [21]. A proof  can also be  based on Lemma 0 in [48]. 

Theorem 3.2: Let X - ( S ,  g )  be a splitting subspace. Then X is 
Markovian i f  and only if S and s satisl5, the invariance conditions 

u-'s c s 
us c s. 

(3.2a) 

(3.2b) 

Proof 
I f  Let t = 0,1,2,. . . and [ E X be  arbitrary. Since S = X@ 

g' (Corollary 3.1), ESU'[ = E"U'[ + ES-U'[ .  However, the  last 
term  in this-expression  is zero,  for since 5 E X c S, (3.2b) imvlies 
that U'[ E?. Moreover, iptview of (3.1), ExU'-'[ = U( X )  E' U'[ 
+ EXUES U'[ + EXUES U t [ .  Here  the last term is zero  for  the 
same  reason as above,  and  the  second term is zero  because,  by 
(3.2a), US ' c S I X. (Here we have used the easily proven fact 
that if a subspace is invariant  under  some  transformation,  then 
its orthogonal  complement is invariant  under  the  adjoint trans- 
formation.)  Then,  by  induction, we see that ESU'[ = U(  X)'[ for 
all [ E X and t = 0,1,2, . . . . This is precisely (2.15a). In the  same 
way  we  see that (2.15b)  holds. 

Only I f  Since S = X e s '  (Corollary 3.1 , EsU[ = E"U[ + 
E''U[. But, if [ E X, (2.15a) implies  that E 2 U[ E X ,  and  hence 
E"' U[ = 0. Consequently, U X c  S, from which we see that (3.2b) 
must  hold,  for S= H' V X and UH+ c H + .  In the  same way  we 
see that (3.2a) must  hold. 0 

The class of Markovian splitting subspaces is very  wide. In 
fact,  from  Theorems 3.1 and  3.2 we  see that H ,   H - ,  and H +  are 
all Markovian splitting subspaces  (although  they are not  proper). 
However, we want X to be as small as possible in some sense. A 
(Markovian) splitting subspace is said  to  be minimal if it  contains 
no proper  subspace which is also  a  (Markovian) splitting sub- 
space. It can  be  shown that a  minimal  Markovian  splitting 
subspace is also a  minimal splitting subspace [22],  [24],  [27], and 
therefore  the  two  properties  "Markovian"  and ''minimal'' can be 
studied  separately. 

In analogy with deterministic  realization  theory [45, p. 521  we 
say that [ E X is unobservable if [ I H -  and unconstructible if 
[ L H - .  The  subspaces X n ( H T ) I  and X n ( H - ) '  are  the 
unobservable  and  unconstructible  subspaces of X ,  respectively. 
The  splitting  subspace is said to be observable if X n( H+ ) ' = 0 
and constructible if X n( H -  ) = 0. The  simple  proof of the 
following  theorem is included  for  the  benefit of the  reader. 

Theorem 3.3 [2I]: A splitting subspace X - ( S ,  S) is obseruable 
if and on41 if 

S = H +  V S '  

and constructible if and onb if 

S =  H -  Vs'. (3.4) 

Proof: The observability  condition X n ( H +  ) ' = 0 is equiv- 
alent  to XI V H +  = H. But,  by  Corollary 3.1, X' = S 'ep. 
Therefore,  since s' 1 H i ,  observability is equivalent to S ' 
e(S ' V H +  ) = H ,  which is the  same  as (3.3). The  constructibil- 
ity condition is derived in  the same way. 0 

Conditions (3.3) and (3.4) are  minimality  conditions  for 5 and 
S, respectively. In fact, s:= H +  V S ' is the  smallest  subspace 
containing H -  which intersects S perpendicularly. Likewise, 
S:= H -  v s' is the  smallest  subspace  containing H -  which 
intersects S perpendicularly.  Therefore,  as X = S n S, the follow- 
ing  theorem  should  come as no surprise. Ruckebusch, who was 
the first to use  the  terms  observable  and  constructible  in  the  sense 
described  above,  proved  a  version of this theorem  in [30]. 

Theorem 3.4: A splitting subspace is  minimal if and only if it is 
both obsercable and constructible. 

Now, let us consider  a splitting subspace X - (S, S) with 
S = H - .  In view of (3.4), such  an X-is always constructible 
because,  by  perpendicular intersection, S C S = H -  . Then,  for 
X to  be  minimal,  the  observability  condition (3.3) needs to be 
satisfied, i.e., we must  have s = H +  V ( H -  ) ' = ( N -  ) ' , where 

N - : = H - ~ ( H + ) ' .  (3 5) 

(It  is easy to see that,  for  any two subspaces A and B, ( A  V B )  
= A n B ' .) Hence, we have  defined  a  minimal  splitting  sub- 
space X- - ( H - , ( N - )  I )  which satisfies (3.2); therefore X- is 
Markovian. By the  definition of perpendicular intersection, X -  = 

EST= E H -  [ H +  V ( H - )  '1, i.e., by  orthogonality, X- is the 
closure of E H - H +  (which in the  infinite-dimensional  case  may 
not  be closed); we write this 

X -  EH-H'.  (3 4 
Therefore we call X- the predictor space. Similarly, X +  - 
((PI+)', H + ) ,  where 

N I = H + n ( H - ) '  (3.7) 

is a  minimal  Markovian splitting subspace, called the backward 
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predictor  space  with  the  property  that 

X+  EH'H-  

Now,  for  an  arbitrary  m-dimensional white noise  process { w( t); 
t E Z}, define H,( w) to be  the  (finite-dimensional)  space  con- 

(3.8) sisting of all linear  combinations of the  random  variables 

Let X - ( S ,  s) be  any splitting subspace.  Then, in \4ew  of (3.3) 
a n d t h e f a c t t h a t S ' c ( H - ) ' , w e m u s t h a v e s c ( N - ) ' f o r X  
to  be  observable.  Similarly, we see that X constructible  implies 
that S c (N' ) ' . Hence,  any  minimal splitting subspace must  be 
contained in Ha. Moreover,  from (3.1) and (3.9) it is easy to see 
that 

H u = X - v X -  (3 .lo) 

and therefore H n  is the closed linear hull of all minimal splitting 
subspaces; it is called  the  frame  space.  Consequently, N -  and W' 
contain  no  useful  information  about  the  process y and  could  be 
discarded. 

To have  a  nontrivial  realization  problem, N -  and N +  need to 
be  nontrivial so that  there is  some data reduction. In this case we 
say  that y is noncyclic. If N -  and N +  have full rank, we say that p' 
is strictly nonqclic. This is  the  same as H0 being proper.  Under 
this assumption  any minimalTlitting subspace X - ( S .  S )  is also 
proper,  since S - 2 .V+ and S ' 2 N - .  

In the  sequel  quantities  corresponding to the two splitting 
subspaces X -  and X -  nil1 be marked by a  plus or minus 
subscript. 

S = H - ( u )  (4.5) 

and (4.4) as H( u )  = H ,  i.e., u_ E g. 
Then, as above, we see that dimI/= m ,  that 

Similarly,  (3.2b) gives  us US c S. Set 1/: = %Us and E: = U'V. 

s= @I3V1@F2€B . ' .  (4.6) 
- 

and that H = -,VI. Hence, we can  proceed as above to 
construct  a  normalized white noise  process { a (  t ) ;  t E Z} of class 
Q, such  that 

s= H +  ( a ) .  (4.7) 

Consequently, to any  proper  Markovian splitting subspace 
X -  ( S .  S )  there  corresponds  a  pair ( u ,  a )  of normalized  white 
noise  processes of class Qsuch  that S = H -  ( u )  and s= H -  (a ) .  
These  processes, which are  called  the  generating processes of X, 
are  unique  modulo trivial coordinate  transformations  in V and V. 
In particular, let ( u -  , U- ) and ( u -  , U + )  be the  generating 
processes of X -  and X+ , respectively. Then H -  ( u -  ) = H -  i.e., 
u -  is the  (steady-state) innooation  process of 1, and H' (E- ) = 
H +  , i.e., U, is the  (steady-state) backward innwation process. 

IV. GENERATING PROCESSES V. REALIZATIONS 

From now on we shall assume  that  the given process 1 is 
strictly noncyclic  and full rank, i.e., it has  a  spectral  density 
8( elw) which  is full rank  for  almost all o [47]. These  assumptions 
are  actually mo'e than we need  but  they  are  convenient. 

Let X - (S, S )  be a proper  Markovian splitting subspace.  In 
view of (3.2), X being  proper is equivalent to 

i np,-,(u's) = o (4.la) 
n;..,,(uts) = 0. (4.lb) 

Since X is Markovian, S c US,  and it can  be shown that 
V: =(us)eS is a  finite-dimensional  subspace [49]. In fact. since?. 
is full rank,  dim V = m ,  the  dimension of the  process y .  Define 
V , :  = U'V for all t E Z. Then we immediately have 

s=v-l@v-2@ ... @v~,@(u- ' s )  
and,  in view of (4.la), it can  be shonm that 

s = V_l@v_2@v-,@ . . . . (4.2) 

Also, because of the full rank  property of S ,  

H = . . .  @V-,@V_1@VO9Vl@V~@ . . .  . (4.3) 

This is the  so-called Wo/d decomposition  [49]. 
Next  choose an orthogonal  basis { u1, L!, , . . . , r,,, } in V and. for 

each t E Z, define  the  m-dimensional  random  vector u ( t )  with 
components u,(t):=U'o,, i=1,2;- . ,m.  Then, since L~"vIc:'v 
for all s # t ,  E {  u i ( s ) u , ( r ) }  = (U'u,, U'c,) = U'-%,) = &8,,. 
Consequently, 

E {  u ( s , u ( t ) ' }  =IS,, ,  (4.4) 

i.e., { u( t ) ;  t E Z} is a  normalized  white  noise  process. 

Let X - ( S ,  s) be  a  proper  Markovian splitting subspace  with 
generating  processes ( u ,  a). We want to represent  the given 
process y in terms of_ X .  

Lemma 5.1: Set X :  = (L7S)n s. Then 2 - (US ,  2) is a (non: 
minimal 1 proper MarkoLlian splitting subspace  such that y1 (0) E X 
for i=1,2;.- ,rn.  Moreocer. 

k = X @ H , ( u ) = ( U X ) @ H , ( u ) .  (5.1) 

Proofi  Since s' c S c US, US and s intersect perpendicu- 
larly. -$so US 2 S 3 H -  and $3 H+. Therefore,  by  Theorem 
3.1, X -  (US, s) is a splitting subspace.  Clearly, it is also 
Markovian  (Theorem 3.2) and  proper, since X - ( S ,  s) is.  Since 
( U H - ) n H + c ( U S ) n s ,  y,(O)~-k for i=1,2:.-,m. Now,  by 
Corollary 3.1, X:=SBs'  and X = ( U S w s - .  Inserting U S =  
H,( u)QS into the  second  relation  and p i n g  the first we obtain 
k= H,(u)@X. Likeyise, X = s e S L ,   X = S e ( U S ) ' ,  and s= 
H o ( B ) @ ( U s )  yield X =  H,(U)@(UX). 0 

Therefore,  using  the first representation (5.1), 

yi(o) = EXyl (0 )  + EH@'y, (0) .  (5.2) 

The  last  term  can  be  written Z"=,d,,u,(O) for  some real numbers 
dl,, dl,;. . ,d in] .  Sincey~(O)-d~=,d,,u,(O) is orthogonal to u h ( 0 )  
f o r k = 1 , 2  ;.., m.weha~~e(~i(0),u,(O))=C;'=,d, (u,(O),u,(O)) 
for i, k = 1.2,. . . , m ,  and  therefore. In  vlew  of (4.4j, 

dl, = ( Y I ( O ) ?  .,(O)). (5.3) 

Then,  applying  the  operator U' to (5.2). we obtain 

. ~ ( r ) = q ( t ) + D u ( t )  (5.4) 

ahere~,(r):=U'EXy1(0),i=1,2;~~,mandDisthemxnz-matrix 
nith components (5.3). 
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We  need  a  representation  for  the  vector  process { q(t); t E Z}. 
The components q,(O), q2(0); . . ,qm(0) E X.  Therefore, in anal- 
ogy with  the  deterministic  case [1]-[4],  [50], we construct  a shift 
realization  with  respect to X.  In doing so we follow the  pattern of 

Lemma 5.2: For any 6 E X and r E Z, we haoe  the  representa- 
W I ,   ~ 4 1 .  

tion 

1 - 1  m 

U'[= (E,[u(X)*]'-k-lEXUl(-l))Ul(k). 
k = - m  j - 1  

(5.5) 

Proof:  Since 6 E X c S = H -  (u),  5 = ELL - &'& f k l u , (  k )  
forsomerealnumbers{fki;i=1;~~,m,k=-1,-2,-~~,},and 
therefore 

- 1  m I - 1  n1 

f k l U l ( k + t ) =   f k - r . l u ~ ( k ) .  
k = - x  i - 1  k = - a ,  i - 1  

(5 4 
Now, (2.15a) can  be  written ESU'[ = U(X) ' [  for t = 0,1,2,-. ., 
and therefore, since S = H -  ( u ) ,  

-1 m 

u ( X ) ' 6 =  f k - ( , ! u l ( k ) .  
k = - m  i = l  

Consequently, (u(Xlr-'[, ~ ~ ( - 1 ) )  =f-,.,. Since [uk( - l ) -  
E ~ u ~ (  - I)] I X ,  we may  write this 

(We  can  interpret (., .) in (5.7) as the  inner  product (., .)x on 
X.) Then (5.7) inserted into (5.6)  yields  (5.5). 0 

If we set A : =  U ( X ) *  and  define B: R "  X to  be  the 
operator Ba: = Ex[ a'u( - l)], (5.5) can  be  written 

where e, is the i:th unit axis vector  in Kim. Since both  arguments 
of the  inner  product  belong to X ,  we have  chosen to write (. , .)x 
instead of (. , . ). From  a  computational  point of  view this makes 
no difference, {. , .)x is merely the restriction of (. , . ) to X .  
However, X is a  Hilbert  space  in  its own right with inner  product 
(-,  .)X, and we want  to  emphasize  that (5.8) is a  factorization 
over X and  that the  space H plays no role whatsoever  in (5.8) 
once  the  operators  have  been  defined. Since q,(O): = Exyi(0) E X 
and  q,(t)=U'q,(O)  for  i=1,2;--,m, (5.4) and (5.8)  yield 

y ( t ) =  CA'-"-'Bu(k)+Du(k)  
t - 1  

(5.9) 
k =  - x  

where C: X + R is defined  by (CC), = ( Exyl(0), [)x. 
Now, (5.9) looks  much like what we want to have. However, 

there is a  possible  source of confusion in this expression  since X 
is used  both as a state space, i.e., the  space on which A is defined 
and takes  its  values, and as  a splitting subspace, i.e., the  space of 
all linear  functionals of the  state  at t = 0. With  regard to the 
finite-dimensional  example in Section 11, this means  that X 
serves both as the  state space W" and as the  space X = { a'x(0)la 
E R "  }. This is of course all right, since R " and X are  isomor- 
phic, and therefore, in  an  abstract sense, identical. However, in 
interpreting (5.9), we must  remember  that B: R" + X operates 
on the  vector  structure of u ( k ) ,  i.e., the  projection E X  in the 
definition of B should not operate on the random  variables 
u , ( k ) ,  u 2 ( k ) , -  . ., u k (  k ) .  There is no ambiguity  in  the definitions; 
we only  need to work  with  two copies of the  space X. 

To avoid this confusion, we may  choose  any  Hilbert  space S 
of the  same  dimension as X as the  state  space.  It is well known 
that 3 and X are  isomorphic, i.e., there is a linear operator T 
which  maps X onto 3 such  that (TC, T V ) ~ =  ([,q),y; see, e g ,  
[51, p. 2131. Then  define  the  operators A :  S + X, B: R --f 3 
and C: S + R m  as 

A : = TU( X)*T- l  (5.10a) 

Ba = a,TExu,( - 1) (5  .lob) 

( C X ) , = ( T E ~ Y ~ ( O ) , ~ ) ~ .   ( 5 . 1 0 ~ )  

m 

i = l  

The m X m matrix D is defined as before, i.e., by (5.3). 
It is now a simple  matter to check that (5.9) remains valid with 

this new choice of ( A ,  B , C ,  D). If dim X= n < co, we may 
choose  the state space %to be  Euclidean n-space R " and  interpret 
A ,  B ,  and C as matrices  (choosing  the  usual axis vectors  as a 
basis). In the  same way  we can  choose S to  be l z  if X is 
infinite-dimensional. (Since H ,  and  hence X ,  is separable,  the 
dimension is always countab[y infinite.) In Section VI11  we shall 
make  another  choice of 3 which is more  suitable  for  analytic 
work. 

It follows from (2.15b) and &e fact  that U and T are  isometric 
that IIA'[ll= IIESU-'611 = IIEL"SIII, and therefore, in view  of (4.lb), 
A' tends  strongly to zero as t + co. 

For the  moment, let us assume  that dim% 03. Then, it 
follows  from  the  previous  paragraph  that all the eigenvalues of A 
are strictly inside  the  unit circle, and therefore we may  define  the 
state process {x(  t); t E Z} given by 

t -  k 
x ( t ) =  A'-k - 'Bu(k )  ' (5.11) 

k = - m  

which is an %-valued random  process. It is then  easy to see that 

x ( t + l ) = A x ( t ) + B u ( t )  (5.12a) 
y ( t ) = C x ( t ) + D u ( t ) .  (5.12b) 

Since X I H -  ( u )  (Corollary 3.1), this is a  forward  system  and we 
shall call it the  standard  forward realization with respect to X. 
Moreover, in view  of (5.Q each [ E X can  be  written [ = 
(T6, ~ ( 0 ) ) ~ .  Therefore, since f := T.$ varies over all of 3 as 6 
varies over all of X ,  

{ ( f 9 x ( O ) ) , l f  € 3 1  =X, (5.13) 

i.e., the splitting subspace X consists of the  linear  functionals of 
the  state  vector  at t = 0, precisely as required. (If 3 = R", (5.13) 
is the  same as (2.3) for t = 0.) 

When  dim X= co we must  be  more  careful when defining  the 
state process.  Then (5.12) and (5.13) must  be  interpreted  in  a 
weak sense; we refer the  reader to [24] for details. Here it suffices 
to  point  out  that (5.9) and (5.8) hold  without restriction on 
dimension and  that (5.13) and (5.12) may  be  interpreted  via 
these. 

To construct  a  backward re_alization with  respect to X we use 
the  second  representation of X in Lemma 5.1 to  obtain 

y ( t ) = q ( t ) + D n ( t )  (5.14) 

where b is the  m x m  matrix with components 

~ i / = ( ~ 1 ( 0 ) ~ ~ / ( 0 ) )  (5.15) 

and~l(t):=U'E~'Xy,(O)=U'+'EXyj(-1).Thebackwardcounter- 
part of Lemma 5.2 is as follows. 
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Lemma 5.3: For any [ E Xand t E Z we haw the representation 

k - I  x E U l ( 0 ) ) , y a l ( k ) .  (5.16) 

( a ) ,  U'[ has  a  representation 
x n~ 

u'[= C f k - r . , a , ( k )  (5.17) 
k = r l = l  

and therefore (2.15b), i.e., EH*(')U- '[= [U(X)*]'[. for t = 

0,1,2;. ., yields 

[u(x)*1'5= c e f k + r . r w ) r  

x r n  
(5.18) 

k = 0 1 = l  

Le., proceeding as in  the  proof of Lemma 5.2, 

fk, = ([,U(X)kE"u,(0)),y (5.19) 

which  together with  (5.17) yields  the  desired result. 0 
Now, taking EXyl( - 1) to be [ in (5.16).  (5.14)  yields 

X 

y ( t ) =   c p - ' - ' % ( k ) + D u ( t )  (5.20) 
k = r + l  

where  the  operators x: X ---* X ,  B: R n' +. X, and T: 3 + R nJ  are 
defined as 

i x= TU( X) T -  1 (5.21a) 
- 

m 

Ba = a,TE"O,(O) (5.2lb) 
1 = 1  

(C.);=(TEX~~'(-l),X),. (5.21c) 

Note that x= A* and  that  tends  strongly to zero as i + cc. 
Then,  keeping  in  mind  the  comments we made  above  about  the 
infinite-dimensional case, we may write (5.20) as 

{ X ( t ) = A . T ( t + l ) + B u ( t )  (5.22a) 
y ( t ) = C x ( t + l ) + D D u ( t ) .  (5.12b) 

Since X I H -  ( a )  (Corollary 3.1), this is a backward system; we 
shall call (5.22) the standard backward realization with respect to 
X. From (5.16) we see that 

{ ( f , W > , l f E X }  = x  (5.23) 

as required. 
We have seen that to each proper Markoilan splitting subspace 

there  corresponds  two  realizations of y ,  one evolving forwards 
and  one  backwards  in time. We have  made  no  assumptions  about 
the  minimality,  observability,  and  constructibility of X. and we 
need to determine how  these properties  manifest themselves in 
the two systems (5.12) and (5.22). To this end, first recall that  the 
forward  system (5.12)  is said to be obsemable if n ?==,ker CA' = 0 
(where  ker  denotes  null  space),  and reachable if the  operator R 
given by Rf = ,XF=oAJBfl has  a  domain which  is dense  in the l I  
space of rn-vector sequences f :  = { /o,/i,/i. ' . . } and  a  range 
which is dense in X .  If R is defined  for all 1'-sequences and its 
range is all of X ,  we say  that (5.12) is exact!,* reachable [50. p. 
2431. In the  finite-dimensional  case  there is no  difference  between 
these two reachability  concepts.  Since  direction of time is re- 
versed in the  backward  system (5.22). it is consistent with stan- 
dard  notation [45] to say  that (5.22)  is cor~structible if 
n zo k e r c z  = 0, controllable if the  operator R given  by Rf = 

CT==,zBf, is densely  defined  and  has  dense  range,  and e.uact!v 

controllable if i? is defined everqwhere and  maps onto X .  Mod- 
ulo details which depend on the  particular  problem  formulation 
of this paper,  the  following  theorem  can  be  found  in [23],  [26]. 

Theorem 5.1 [23], [26]: The standard forward realization with 
respect to a proper :Vtarkoc*iarr splitting subspace X is always exactfj 
reachable and it is obsemable i f  and on!y if X is obsemable. The 
standard backward rea1i:ation n:. r. t .  X is always exactly controlla- 
ble and it is constructible if and on!y if X is constructible. 

This theorem tells  us that we need never worry  about  reachabil- 
ity and controllability  in the standard realizations. (In the finite- 
dimensional  case this corresponds to the fact that x ( 0 )  and ~ ( 0 )  
are  bases in X.) This is consistent with the fact that  these 
properties do not  occur  in  the  geometric  theory.  Moreover, to test 
whether (say) the  forward  realization is minimal, it is not  enough 
to ensure  that it is observable,  but we  need also check that  the 
backward  realization is constructible. If this is not so, the  state 
space Xis too  large  and  can  be  reduced. 

The reachability/controllability part of the  theorem  can  be 
found  in [26]. The observability/constructibility part was first 
proven  in  the  continuous-time  case in [23] and  modified  for  the 
discrete-time setting in [26]. Another observability/constrctibil- 
ity theorem was given by  Ruckebusch [32] somewhat earlier, but 
his definitions of the C and C operators  are  not  the  ones used 
here. The setting  and  the  problem  formulation  are here a bit 
different  from  that  in [23], [26] and therefore, for the  benefit of 
the  reader. we shall provide  a proof of the  theorem.  Although it 
does  not  contain  any new ideas, there  are  a few details which 
need to be worked  out. 

Proof of Theorem 5.1: Applying EX to both  members of 
(2.15b) we obtain  [U(X)*]'[ = EXU-'[ for all [ E  X and t = 

0,1,2;.. . Therefore, A'Be,=TEXU-'E"u,(-l)=TEXu,(~t 
- 1). The last step  follows from-the fact that u,( - 1 E S Xes 
(Corollary 3.1) and U-'S' c S' I X. In fact, E -  2- U - 'E  =Y u,(- l )  
= E"U-'ESu,( - 1) = ExU- 'u i (  - 1). Hence.  since E X  is con- 
tinuous, Rf = TE"Z~="=,'u( - t - 1). Since the  elements of S are 
precisely the  sums of type Z;"=ofl'u( - t ~ l),  and  since X c S ,  the 
operator R is defined  for all I2-sequences f and is surjective. This 
proves that (5.12) is exactly  reachable. To prove  the  observ- 
ability result, first note  that,  for  any 5 E X, ( C A T [ ) ,  
=(TE- \ : , , (0) ,TIU(X)*] ' [ ) ,=(O' (X) 'E~yyl (O) ,~) , .  But,  by 
a  similar  argument as applied  above [now instead  using (2.15a) 
and the fact that y,(O) E S = Xes' 1. we have U( X)'E.'y,(O) = 
E.'y,( t ) .  Therefore, (CArT[) ,  = ( y I  ( t ), t ) .  and  consequently 
n ?=,, ker CA' = T{ X n( H -  ) }. This  proves  the  observability 
result. The  proofs  concerning  the  backward  system  are  analogous. 

0 

VI. SINGULARITY AND THE ERROR SPACES 

Given  a  finite-dimensional  stochastic  system (2.1), the Kalnlan 
filtering problem consists  in  determining recursively the  linear 
least-squares  estimate of a'x( t )  given { y(  fo), y( to f 1); . - ?  y( t 
-l)} for all a E R "  and all r > to. Now, let ro 4 -E .  Then, 
settinp [ = a'x(O), we need to find ECfH-L' ' [ .  Since E C r H - U r [  = 
U'E' [, the  problem is reduced to finding E N - [  for all [ E X. It 
can  be  shown [24] that, if XI X - ,  all such  estimates  span  the 
predictor  space X-, i.e., E " - X =  X-. (This holds  also in the 
infinite-dimensional  case if  we only  add  a  bar  over  the E to 
denote  closure.  and hence we shall consider  the  general  case  from 
now on.) Hence,  the  standard  forward  realization with respect to 
X- is. modulo trivial coordinate  transformations  in X, the 
steady-state  Kalman filter of all systems (2.1)  such that X 1 N - .  

Now consider  the  space Z generated  by all estimation  errors 
{ [ - E"-[1[ E X}. i.e.. Z : = E ' H - ) L X .  (We no longer  need to 
assume that X 1 X: .) Then, in view  of the  relation S = H -  v X, 
we have Z =  E'"-'LS. But H -  c S. and  therefore ( H - )  and S 
intersect perpendicularly.  Consequently, 

Z = ( H - ) ' n S = S e H -  (6.1) 
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(Corollary 3.1). Hence,  in  analogy with X,  Z has the  forward 
generating  process u (same  as X) and  the  backward  generating 
process u- , since H- ( u - )  = ( H - )  '. Then, as in Section V, we 
can  construct  a  forward  representation 

z ( t + l ) = F z ( t ) + G u ( t )  (6.2) 

where z( t )  takes  values  in  some  copy %"of Z and  the  operators F: 
2 -+ 2' and G: R + 2' are  unitarily  equivalent to U( Z)* and 
a r-) E z [  a'u( - l)], respectively. The  system (6.2) has the  property 
that {(S, ~ ( 0 ) ) ~ l S  E 2 )  = Z. We can also  construct  a  backward 
representation  in  terms of the  innovation  process u- , but here  we 
shall have no use of that. We s h d  call Z  the  fonvard  error  space 
of x. 

Similarly we can  show  that, if X I N +  , the  estimates { EH-(l(  
E X} generate  the  backward  predictor  space X + .  Even without 
the  condition  X I N+-l we can  define  the backward error  space  of 
X, namely z: = E ' H  ) X?  and see that  it satisfies 

Z = ( H + ) ' n $ = S e H + .  (6.3) 

As  above,  there is a  backward  representation 

r ( t ) = E ( t + l > + c , ( r )  (6.4) 

with  analogous  properties as (6.2); we could  also  construct  a 
forward  system  generated  by  the  backward  innovation G1. Note 
that (6.2) and (6.4) are not a  forwardfiackward  pair  in  the  sense 
of (5.12) and (5.22) but represent  different  spaces  Z  and 2. 

We can now express  the conjitions of observability  and  con- 
structibility in t e r n  of 2 and Z. 

Proposition 6.1: Let  X b_. a  proper  Markocian splitting subspace 
with g r o r  spaces Z and Z. Then X is obsemable if arld onb; if 
X n Z = 0 and constructible if and on!y if X n Z = 0. 

Proof:  By definition, X is constructible if and  only if X n 
( H -  ) = 0. But,  since  X c S ,  this condition is equivalent to 
Xn( H - )  ' n S = 0, which,  in view  of (6.1):  is the  same as 
X n Z = 0. The  proof of the  observability  part is analogous. 0 

In some  appljcations it is required  that  one of the m X m 
matrices  D and D  in  the  standard  realizations nith respect to Xis 
nonsingular.  Such is the  case  in  the  usual  implementation of the 
Kalman filter. We shall say that  the  standard  fonvard  [backward] 
realization  with  respect to X is singular if D [03 is singular. If 
either  the  forward  or  the  backward  standard  realization is singu- 
lar, we say that Xis singular.-The  next  theor_em shows that D has 
the  same nullity as F*,  and D  the  same as F*. For  any  operator 
P, ker P denotes  the  null  space of P ,  i.e.. the space of all X with 
PA = 0. 

Theorem 6.1: Let  X be: proper  Markocian splitting subspace 
with error  spaces  Z and Z and  standard realizations (5.12) and 
(5.22). Then 

rank D = m -dimkerU(  Z) (6.5a) 

rankD = n7 -dimkerU(Z)*. (6.5b) 

For the  proof we need  the  following  lemma. - 
Lemma 6.1: The null spaces of U( Z )  and U( Z)* are 

k e r U ( Z ) = Z n H - , ( u )  (6.6a) 

k e r U ( Z ) = Z n H , ( G ) .  (6.6b) 

Proof: Let { E Z.  Then EZU{  = 0 if and  only if UT I Z, i.e., 
5 1 U*Z. Hence,  ker U( Z )  = Z n (U*Z) I. However.  by (6.1), 
(U*Z)' =U*H- @ U * S L .  Here U*H- c H- I Z,  and U*S' 
= S ' @ H_ 1( u ) ,  where S I Z. Hence, (6.6a) holds.  The proof 
of (6.6b) is analogous. 0 

ProofofTheorem6.1: S i n c e Z = ( H - ) ' n S a n d H _ , ( u ) c  
S, (6.6a) implies  that ker U( Z )  = ( H -  ) ' n H- 1( u). the  &men- 
sion of which  equals  the  number p of linearly independent 

a,.az;..,a,EIWm such  that 

a i u ( - l ) L H -   f o r k = l , 2 ; - - , p .  (6.7) 

But,  since H- u )  I U*S 3 U*H-, (6.7) is equivalent to 

a ; u ( - l )  I H-,(y)  for  k=1,2;. . ,p (6.8) 

which in  turn is equivalent to ( y, (- l ) ,  u (  - l)'a,) = 0 for all 
i=1,2; . - ,m and k= l ,2 ; . . , p , i . e . ,   Dak=Ofork=1 ,2 ; - . , p ;  
cf. definition (5.3). This proves (6.5a). The proof of (6.5b) is 
analogous. 0 

Note  that although in general  Z is infinite-dimensional  the  null 
space of U ( Z )  is finite-dimensional. Also note  that,  since  the 
forward  error  space of X- andthe backward  error  space of X+ 
are trivial, i.e., Z- = 0 and Z+ = 0, D- and D+ are always 
nonsingular. In  other  words,  the  (forward  and  backward)  steady- 
state Kalman filters are always nonsingular. 

Singularity  plays  a key role  in  the  theory of invarialtt directions 
[40-[43], [ll]. In K h a n  filtering some  linear  combinations of 
the  columns of the  solution  matrix of the  Riccati  equation  may 
become  constant  after  a  finite  number. of steps. This happens if 
and only if X is singular. This follows from  the fact, proved in 
Section X, that X is singular if and only if F ,  is invertible and 
Theorem 3.2 in [ll]. (Note  that  in [ l l ]  is a  matrix  representa- 
tion of F;  .I 

VII. MODELS WITHOUT OBSERVATION NOISE 

There is a  certain  lack of symmetry in our  definition of H- 
and H+. If  we redefine H- so that  it is the  subspace  generated 
by  the  components of { y(t) ;  t = 0, -1: -2, . . . }, we obtain 
complete  symmetry  between  the  past  space  and  future  space. 
Theorem 3.1 still holds  with this choice (as-we pointed  out  in 
Section 119, and therefore H- n H+ c S n S = X for  any split- 
ting  subspace.  However, now H- n H -  contains  the  components 
of y(O), so that y,(O) E X for i =1,2;. .,m. Consequently,  the 
construction  in  Section V will lead to a  forward  model of type 

i 

i 

x ( r + l ) = h ( t ) + B u ( t + l )  (7.la) 
y( t )=Cx(t)   (7 . lb)  

and a  backward  model of type 

x ( t - l ) = X x ( t ) + B u ( t - l )  (7.2a) 
y ( t ) = & ( t )  (7.2b) 

in lieu of (5.12) and (5.22), Le., realizations  without  observation 
noises (cf.  [26]). 

Clearly  any splitting subspace in the new setting is also  a 
splitting subspace  in  the old, but  the  converse is not true. To fix 
notations,  let  us  retain  the  old  definition of H -  given in  Section 
11, and refer to  the two types of splitting subspaces as 
(H- , H+ )-splitting and  (UH- , H+ )-splitting, respectively. We 

co_nsLruct a  proper  Markovian ( U H -  , H+ )-splitting subspace 
X - (S, S )  from  any  proper  Mgrkovian ( H -  H- )-splitting sub- 
space by merely shifting S to S: = US. According to Lemma 5.1 
this amounts  to  amending  the  state  process  by  including  the 
observation noise. in it. This is a  standard  construction in the 
finite-dimensional  theory.  The  question is whether  minimaljty is 
preserved  under this transformation.  (Note  that,  although  X is a 
nonminimal ( H - ,  H-)-splitting subspace, it may  very  well be  a 
minimal (UH- , H- )-splitting2ubspace.) 

Theorem 7.1: Let X -  ( S ,  S) be_ constructible (obsemable) in 
the ( H -  , H+ ) franzework.  Then X - (US,  s), given by Lemma 
5.1, is constructible (obsenlable) in the (UH- H +  ) framework if 
and onbj if the standard  forward  (backward) realization w. r. t .  X is 
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nonsingular. Hence, i f x i s  minimal, k ik minimal if and on& if X is 
nonsingular. 

Prooj Let us first  prove  the  statement  about  constructibil- 
ity. In view of Theorem 6.1, Lemma 6.1, and Proposition 6 2 ,  we 
need to- prove  that Z n H-l (  u )  = 0 if apd  only if Xn Z = 0, 
where Z: = U S 8  UH- = UZ. Recall  that X:  = X @  H o (  u )  (Lemma 
5.1). If Z n H -  1( u )  # 0, -then ths shifted  space Z n Ho( u )  # 0. 
But  then,  since Ho( u )  c X ,  Z n X # _O. T? prove  the  othgr direc- 
tion,  assume  that  there is a A # 0 in Z n X. Then,  sinse X = X @  
H o ( u ) , X = 5 . + q w i t h 5 . E X a n d T J E H o ( u ) . B u t X E Z I U H - ~  
H - a n d q ~ H ~ ( u ) l S ~ H - . H e n c e , t = X - q I H - , i . e . , t ~ X  
n( H -  )I. Therefore,  since X is constructible, 6 = 0, i.e., X E 
Ho( u).  Then, X E Z n Ho( u), and  consequently Z n H -  1( u )  # 0, 
for  it  contains U*A # 0. This proves  the first part of the  theorem. 
In the  obseryability part we need to p r p e  that z n Ho( 16) = 0 if 
and only if X n = 0. Since Ho(ii) c X (Lemma 5.1), the if-parJ 
is immediate. To prove  the  only-if-part assume that X n 2 
contains h # 0. Then,  since X =  UX@ Ho( a )  ( L e e a  5.1), A = Ut 
+ TJ where 6 E X ang q E Ho( E). Then,  since X E Z I H +  2 UH- 
and TJ E Ho(i i )  I US =I UH+ , we have Ut 1 UH- , i.e., 5.1 H -  . 
But X is observable, and therefore X n ( H +  ) = 0. Hence, 5. = 0, 
and consequently X E Ho(E). Since, in addition X E 2, it follows 
that Z n H,( 8 )  # 0. This concludes  the  observability  part of the 
proof.  Then  the minima& part follows from  Theorem 3,4. 

In Section IX we shall give an  example  in which X is non- 
minimal. 

n I I .  STATE-SPACE REPRESENTATION IN HARDY SPACE 

In Section V we let the  state-space 3- be an  arbitrary  Hilbert 
space of the  same  dimension as X; in fact we could  have  chosen 
(another  copy of) the  space X itself. In order to get more 
structure,  in this section we shall choose X to be  a  space of 
functions. 

First  note  that  any  normalized  white  noise  process { u ( t ) :  
t E h }  has a spectral  representation 

where b is a Wiener  process on [ - 8, 7r] with incremental  covari- 
ance 

E {  dii &*} = -1dw 
1 

27r (8.2) 

[47]. (Here * denotes  transposition  plus  conjugation.)  Now, all 
white  noise  processes in which we are interested have the  prop- 
erty H( u )  = H-we  have  denoted  the class of such  processes 9 
-and  therefore  any TJ E H c G  be  written  as 

X 

TJ= c f L , u ( k )  (8.3) 
k = - m  

for some I,-sequen? { fk}Eoc of m-dimensional vectors. This, 
together  with (8.1), yelds the  representation 

where f ,  the sum of the  Fourier series 
X 

f ( z ) =  c f k Z + ,  (8.5) 
k = - m  

belongs to  the space L,(B) of all m-dimensional  vector  functions 
square-integrable on the  unit circle T with respect to the  measure 
(1/27r) d o  [47]. It is well known and easy to show  that (8.4) 
defines  a  unitary  operator Tu: H + L,(T) such  that TUq = f. 

Next  define  the Hardy spaces 2; and 2: in the  following 
way. Let X2- be  the  space of all functions (8.5) in L,(T) such 
that f k  = 0 for k 0 and 2; the  space of functions in L,(T) 
for which f k  = 0 for k > 0. These  Hardy  functions  can  be ex- 
tended to the complex plane so that  the  functions  in 3; are 
analytic  outside  the  unit circle and  those  in 2; are  analytic 
inside T [49],  [50]. Then  from (8.3) it is easy to see that 

and  that TuUTu-' = z, where here z denotes  multiplication  by e'-. 
The fact that  the shift becomes  a  simple  multiplication  operator 
is one of the  advantages  with  the  Hardy  space setting. 

Let W be  the m X m matrix  function whose i : th column is 
Tuyf (0). Then 

and therefore 

W( z) 'W(l /z )  = 4r ( z )  (8.9) 

is the  spectral  density of y .  and W is a spectral factor. Conversely, 
under  the given assumptions, y has  a  spectral  representation 

(8.10) 

where E {  c-@c-@*} = (27r)-'@(ei") dw. Then  to  any m X m spec- 
tral  factor W ,  there  corresponds  a  normalized  white noise (8.1) 
with dic = ( W ' ) - ' d j .  (Since 4r is full rank,  then so is W.) Hence, 
there is a one-bone correspondence  between m X m spectral 
factors  and  processes  in 9. 

Now  consider a proper  Markovian splitting subspace X with 
generating processes( u,  8). Since these processes belong to Q, 
there&  a  pair ( W ,  W) of spectral factors, W corresponding to u 
and W corresponding to U. However,  by  Theorem 3.1, it is 
required  that H -  c H - ( u )  and H +  c H + ( O )  and  that H - ( u )  
and H +  (ii) intersect  perpendicularly.  Using (8.6) it is easy to see 
that  the first condition is equivalent to W having its columns  in 2 c ,  i.e., 

X 

w =  wkz-k.  (8.11) 
k = O  

Such a spectral factor is called stable because it is a n a l p c  
outside  the  unit circle. The  second  condition is equivalent to W 
having all its  columns  in X;, i.e., 

- 0 
w(z)= W k z - k .  (8.12) 

k = -  X 

Such  a  spectral  factor is called strictly unstable. Finally, it is 
shown in [21],  [22] that perpendicular  intersection is equivalent to 

having all its  columns in 2.;. In addition, it is clear  from (8.9) 
that K( elo) is a  unitary  matrix  for all w .  A function K with this 
property is called inner, or  in engineering  language, stable allpass. 
The  last  name is motivated  by  the fact that K is a  stable  transfer 
function  transforming white noise into white noise, more specifi- 
cally u to a. 

The m X m matrix  function K is called  the structural function of 
X. It is a  rational  function if and  only if dim X 33. If the 
process y is scalar ( m  = 1) all minimal  Markovian splitting sub- 
spaces  have  the  same K ,  but this is not  true  in  the  vector  case 
~ 5 1 .  
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Following  the  procedure  in [21]-[23] we can  now  transfer  the 
splitting  geometry to the  Hardy  space setting. Set X: = TUX. 
Then,  applying Tu to X = H -  ( u ) 8 H -  ( a )  (Corollary 3.1), it is 
not  hard  to see that 

X = Z - ' [ ~ E O ; ~ ( K X ~ ) ] .  (8.14) 

To see this merely  use (8.6) and  the fact that T,TG' is multipli- 
cation  by K. 

Hence, we have  reconstructed (in our discrete-time setting) one 
of the results of [21],  [22]. The  proper  Markovian  splittingsub- 
spaces  are  in  one-to-one  correspondence to the  pairs ( W ,   W )  of 
spectralfactors  such  that W is stable, W is strictly unstable, and 
K:  = WW-' is inner. The splitting subspace X satisfies 

X = j71 Xdfi   (8.15) 

where Xis given by (8.14) and di2 = (W7-l  dj. Similarly, we can 
show  that 

- v  

x=/" Zdi (8.16) 
-71 

whereg:=T,X=.YfTB(K*Xq)_and&=((W?-'dj,. 
We can now  use either X or X as the  state  space. In fact, 

choosing T to be Tu in  Section  V we have Af = P"z-'f,  Ba = 
P"zpla, Cf = (2a) - ' /T ,W(e1") f (e iw)dw,  and D =  W,, where 
P"is the  orthogonal progction  onto X. MoreoIer,  choosing T to 
be T,, we obtain Af = c T z f L  Ba = Pya,  Cf = (2m)-' 
Ilic;elw W( e lw)  f (e'")   dm, and D = Wo. 

We recall from  Section VI that  the  forward  error  space Z of a 
proper  Markovian splitting subspace is the  intersection  between 
the  perpendicularly  intersecting  subspaces H -  ( u )  and H -  ( u -  ). 
Hence,  as  in  the  case of X ,  Q: = WW:' is inner. Therefore, we 
have  the  well-known  decomposition 

- 

W=QW_ (8.17) 

of a  spectral  factor as a  product of an  inner ( Q )  and an outer 
( W- ) factor. The  engineering  name  for  outer is minimum-phase; 
in  the  finite-dimensional case, this is the  spectral  factor  with all 
its poles and zeros  inside  the  unit circle- Appljring a  symmetric 
argument to the  backward  error  space Z we obtain  the  decom- 
position 

- __ 
W=QW+ (8.18) 

where Q is conjugate inner, Le., its  inverse g* is inner,  and w, is 
the strictly unstable  minimum  phase  spectral  factor  (having all its 
poles  and  zeros  outside  the  unit circle in the  finite-dimensional 
case). It was  shown in [22] that X is observable if and  only if K 
and g* are right coprime (i.e., they do not have any right inner 
factor  in  common)  and  constructible if and  only if K and Q are 
left coprime. (In fact, this is easy to see by  applying  the  map .Tu 
to either (3.3) or Xn z= 0 (Proposition 6.1) and & to either 
(3.4) or X n Z = 0.) Henceforth, we shall refer to Q and Q* as 
the forward  and  backward spectral inner factors of X .  

As may be  expected,  singularity  can  also be characterized in 
terms of Q and Q. 

Theorem 8.1: Let X be a proper Markouian splitting subspace 
with spectral inner factors Q and Q*. Then  the standard forward 
[backwardJ realization w .  r. t .  X is singular if and on& if Q( co) is 
singular [Q*(oc) is singular]. 

For the  proof we need  the following lemma, which is a  varia- 
tion of 153, Theorem 131. It d l  be used in Section X also. 

Lemma 8.1: Let u and L' be two processes of class 62 such that 
H -  ( u )  and Hi ( E )  intersect perpendiadar&, let W, and W,. be the 
corresponding spectral factors, and let R be the inner function 
R :  = W u y r  '. Set Y: = H -  ( u ) n  H +  ( E ) .  Then  the three conditiom 

i )  ker U( Y )  = 0, i i )  ker U( Y)* = 0, and iii)  R (co) nonsingular are 
equivalent. 

Proof: As we have  pointed  out  above,  the  perpendicular 
intersection is equivalent to R being  inner; see [21]-[24]. In 
exactly  the  same way as in Lemma 6.1 we see that ker U( Y) = Y 
n H-'( u )  and  ker U( Y)* = Y n H,(u) .  Eliminating Y in  these 
expressions, we obtain ker U ( Y )  = H +  ( u )  n K 1 (  u )  and 
ker U( Y)*  = H -  ( u ) n  Ho(v) .  Condition ii) fails if and  only if 
there is a vector a E R such  that a'u(0) E H -  ( u ) .  Since T,c;' 
is multiplication  by R and q,[a'u(O)] = a ,  the  isomorphic  ima  e 
of this under Tu is Ra E z-'.Yf;. But,  since R ( z )  = CP=,R,z- , 
this  happens if and  only if Roa = 0, i.e., if and only if R(co)  is 
singular. This  establishes  the  equivalence  between ii) and iii). In 
the  same way we see that i) fails if and only if there is a  vector 
a E R" such  that a'u( - 1) E H' ( u ) ,  the  isomorphic image of 
which  under q, is z-'R*a E 2' because T,[a'u(-1)] = 2-'a 
and T,T;' is multiplication  by R* = R-'. But this is equivalent 
to Rba = 0, for R * ( z )  = R'(z- ')   =XT=,Rizk.  Since R ( m )  = R,, 
this establishes  the  equivalence  between i) and iii). 

Proof  of Theorem 8.1: Let ( u ,  Ti) be  the  generating  processes 
of X.  Then,  taking  the  two  processes  in  Lemma 8.1 to be u and 
the  innovation  process u- , Y and R become Z and Q ,  respec- 
tively. By Theorem 6.1, the  standard  forward  realization w.r.t. X 
is singular if and  only if ker U( Z )  f 0, which, in view of Lemma 
8.1, happens if and  only if Q(o0) is singular. The  "backward" 
part of the  proof is analogous, taking-ij- and ij for  the  two 
processes. This yields Y = Z and R = Q* so that  the  required 
result follows from (6.5b) and  the  equivalence  between ii) and iii) 
in Lemma 8.1. 0 

9 

IX. A SIMPLE EXAMPLE 

Let us consider  a  scalar  process y with  spectral  density 

The minimum  phase  spectral  factor W- must  have all its  poles 
and zeros  inside  the  unit circle. Moreover, it must  have  the  form 
(8.11) with D = Wo f 0 (Theorem t i l ) ,  Le., W(co) f 0. Conse- 
quently, W -  must be 

z ' ( z - + ) ( z - + >  
( z - + )   ( z - + ) '  7 .  

w- ( Z )  = 
2 

In the  same way, the  backward minimum phase  spectral  factor 
W ,  has all its poles and zeros  outside  the  unit circle and  has  the 
form (8.12) with = wo = w(0)  # 0, and  therefore 

w, ( 2 )  = 
( 1 - + z ) ( 1 - + z )  

(1 - $ z ) 2 ( 1  - + z ) 2  
(9.3) 

Note  that w, ( z )  = W- ( l / z ) .  This always holds  in  the  scalar 
case - but,  in general,  not in the  vector case. Now,the quotient 
W; W- is not an  inner  function,  and  hence ( W- , W ,  ) does  not 
define a splitting subspace.  (In  geometric  terms this is equivalent 
to saying that H L  and H' do not  intersect  perpendicularly.) 
Instead  choosing W- to be 

- z ' ( z - + ) ( z - + )  
W-  ( z )  = 

(1 - + z )  2 (1 - + z ) 2  

we obtain  the  structural  function 

(9 .5 )  
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which is inner.  Hence, ( W- , w- ) defines  a  Markovian splitting 
subspace. Since K- and Q -  =1 are  coprime, it is constructible. 
Moreover, K -  and 

05 (1 - +z)(1-   az)  

z 2 ( z - + ) ( z - i )  

are  coxrime,  which  establishes  observability.  Hence,  the  pair 
(W-  , W - )  corresponds to a  minimal splitting subspace which 
must  be X-. Then, since y is scalar, all minimal  Markovian 
splitting  subspaces will have  the  structural  function (9.5). 

To pursue this point  a bit further let us choose  another  stable 
spectral  factor, say 

and  pair it with w-. Then 

(1 - q ( 1 -  iZ)'(1 - + Z )  

Z(Z-+)'(Z-s)'(z-a) 

2 b  K ( z )  = (9.7) 

which is an inner  function.  Therefore, ( W , w -  ) defines  a 
Markovian  splitting  subspace X, However, K and D? are not 
coprime,  nor  are K and 

Hence, X is neither  observable nor constructible,  and  therefore 
not  minimal (dim X= 6). 

To obtain  the  minimcsplitting subspace  corresponding to the 
conjugate  outer  factor W-,  we merely multiply it by K-.  This 
yields 

WT ( z )  = 
(1 - $z) ( l -  az) 

(z  - +)2( ,  - +)? 
(9.9) 

which is the maximum  phase stable  spectral factor. (NotetJat 
W ,  has all its zeros  outside  the  unit circle.) Of course. ( W -  , W ,  ) 
corresponds to X,. 

Now, if X is a splitting subspace with a  rational  structural 
function K = $/I$, and where 5 and 4 are  coprime  polynomials. 
then it can  be shown [50] that  %consists of rational  functions 
p/$, where p is an arbitrary  polynomial with degree less than 
n: = deg 4. We shall mite this 

X= - Idegp<n . 

This is clearly on n-dimensional  space. Now. by  Lemma 5.1 
(apply Tu to the  relation y,(O) E Ho( u ) @ X ) ,  the  forward  spectral 
factor W of X is the sum of a  constant  and an element in F. 
Therefore, 

G i (9.10) 

W = a/# (9.11) 

for  some  polynomial m such  that  deg a < n. Hence,  in view of 
(8.151, 

X=/( degp n} 4. (9.12) 

i.e., X is uniquely  determined  by  the  numerator  polynominal z 
and the degree of the  denominator  polynomial 4, as was pointed 
out  in [18]. In particular, a- (z) = z2(z  - $)(z - $), and  conse- 
quently,  by  partial  fraction  expansion, (9.12) yields X- = 

span{{i-'4, {z - '@,  j ( z -$ ) - '@,  j ( z - l $ ) - l d j } ,  i.e., X -  is 
the linear span of ~ ( - l ) ,  ~ ( - 2 1 ,  x;:=c,=-,(2/3)-'-')?(k), 
and xF:=E,: -,4'-'y(k). (To see h s ,  use the  geometric series 
expansion.) In the  same way  we see that X- is the linear span of 
?..(I), ~ ( 0 ) .  X; :=xF=0(2 /3 )k~(k ) ,  and x: :=E~="=,4-'y(k).  

Consequently,  the  frame  space is the  eight-dimensional  space 

H0=span{y(1),y(O),y(-1),)?(-2).x, .x: &x;}. 
- -  

(9.13) 
We know that all minimal X are  contained  in Ho, but  what 
subspaces  are  they? To answer this, first note  that all minimal X 
have  the  same K (since m = l),  and  consequently W- and w, the 
stable  spectral  factor of X, have  the  same 4. Therefore,  since  they 
both satisfy (8.9). 

z ( z ) m ( z - ' ) = a - ( z ) a - ( z - 1 ) .  (9.14) 

Conversely,  any  of degree <-deg+ = 4 satisfymg (9.14) pro- 
vides  a  pair ( W ,  y) = ( z/+, m/#) defining an X with  structural 
functions K- = +/$, i.e., a minimal X .  There  are  exactly 12 
minimal  Markovian splitting subspaces,  and we list them below 
together  with  the  corresponding a. 

X- =span{y(-1) ,y(-2) ,x; ,x ,}  a - ( z ) = z ' ( z - $ ) ( z - $ )  

X,=span{y(o) .y(- l ) .x; ,x~} a2 (z )=z (z -$ ) (z - - : )  

x~=span{y(l) .r ' (O).x; ,x ,}  z , ( z ) = ( z - - '  ; ) ( Z  - a) 
X 4 = s p a n { ~ ( - 1 ) , y ( - 2 ) , x ; , x ; }  a 4 ( z ) = z ~ ( z - + ) ( 1 - $ z )  

x5=span{y(0),J(-1),x;,X;} r 5 ( z ) = z ( z - '  4 1  - $ 4  

x, = span{ y ( l ) ,  y(0). x; 3 x; } z 6 ( z ) = ( z - 2  m- $ 4  

X:=span{?..(-l).J(-2),x;,X,} a , ( z ) = z ~ ( l - ~ z ) ( z - ~ )  

X,=span{y(o),?.(-l),.r:.x~} 7ig(Z)=Z(l-$Z)(z-$) 

~ u , = s p a n { ( y ( l ) , ~ ( o ) , x ~ , x , }  z , ( z ) = ( l - j z ) ( z - $ )  

X , , = s p a n { y ( - l ) , r . ( - 2 ) , x ; . x f }   r l o ( z ) = r ' ( l - f z ) ( l - ~ z )  

X,, = span{ y ( O ) ,  y (  - l), x;, .x; } m,,(z) = z(1-   $z)( l  - 1 4 4  

x- =span{? . . ( l ) ,~(o) ,x; ,x;}  a _ ( z , = ( l - + z ) ( l - a z ) .  

Now let us use this example to illustrate the results of Section 
VII. To each X , ,  i = 1,2; . .,12. in the  above list there  corre- 
sponds a (UH- .  H-)-splitting subspace &:=span{ X,, ~ ( 0 ) ) .  
However. none of these  are mininzal (UH-, H+ )-splitting sub- 
spaces. &fact, Q ( x ) =  0 for Xl, X,, X,, X,. X,, X,,  X,,, and 
X +  and Q*(m)-= Ojor _X-. X?, -X,,  X,, X,, X,, Xl0, and <ll. 
Cons_equently, X,, X,, X,. and X+ fail to be cogstqctible, X-, 
X,, X,, and X,, fail to be  observable, and X?, X,,  X,, and g,, 
are  neither  observable  nor  constructible  (Theorems 7.1 and 8.1). 

To obtain  the  minimal  Markovian ( U H - ,  H' )-splitting sub- 
spaces we clearly need to pair  the  spectral  factors differently. It is 
not  hard to  see that Xz. X , .  X,, X,? X,. X,, X,,, and X -  are all 
( U H -  . H' )-splitting as well. This is manifested  in  the facts that 
their a-polynomials  are of degree less than  three and that they all 
contain ~ ( 0 ) .  

It should  be  noted  that,  in  general,  the sets of minimal X for 
the two formulations will not  overlap as here, since  they  may not 
even  have  the  same  dimension. 

X. DEGENERACY 

We shall say that  a  proper  Markovian splitting subspace X is 
degenerate if its  structural  function K is singular  at infinity, i.e., 
det K ( x )  = 0; nondegenerate otherwise. By Lemma 8.1, X is 
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nondegenerate if and only if the two equivalent  conditions 
ker U( X )  = 0 and  ker U( X)* = 0 hold. If so, both U( X )  and  the 
adjoint U( X ) *  are quasi-invertible, i.e., they  map  one to  one  and 
onto a  dense  subset of X [50]. This is the  appropriate infinite- 
dimensional  generalization af invertible and  reduces to this when 
dim X <  E. 

If X is nondegenerate, both A and x are  quasi-invertible,  for 
they  are  unitarily  equivalent to U( X)*  and U( X ) ,  respectively. In 
the  finite-dimensional  case this implies  that both  the forward and 
the  backward  standard  realization w.r.t. X can  be reversed in  the 
deterministic sense. The  forward  one,  for  example,  can  be  written 

i, ( X ( t ) = A - ' x ( t + l ) - A - ' B u ( t )  (10.la) 
t ) = C A - ' x ( t + l ) + ( D - C A - ' B ) # ( t ) .  (10.lb) 

However,  the  reader is warned  that  such a reversed system is not 
a  backward  system in the  stochastic sense,  since X is not  orthogo- 
nal to H- ( u ) .  Nevertheless,  in  some  analysis it is useful to 
perform this transformation.  One  case  in  point is the  transforma- 
tion from  realizations w.r.t. X to realizations w.r.t. X as discussed 
in  Section VI; see [ l l ]  for details. Another is the  theory of 
invariant  directions of the  matrix  Riccati  equation of Kalman 
filtering [40-[43], [ l l ] .  

The following  lemma,  the  proof of which is analogous to that 
of Lemma 6.1, spreads  some  further light on the  concept of 
degeneracy. 

Lemma 10.1: The null spaces of U( X )  and its adjoint U( X)*  
are given by 

k e r U ( X ) = X n H - , ( u )  (10.2a) 
k e r U ( X ) * = X n H , ( a ) .  (10.2b) 

Consequently, a degenerate X contains  some  linear  combina- 
tions of the  components of u(- 1) and t i (O),  i.e., some  linear 
functional of the  state  process x ( t )  is white noise.  (We can see 
this directly  from  the  standard  realizations  by  "premultiplying" 
by  a  vector in the  null  space of A* or x*, respectively. For 
example, if [ ~ k e r A * ,   ( t , ~ ( t + l ) ) ~ = ( [ , B u ( t ) ) ~ ,  which is 
white noise.) 

One  reason  for  considering  degeneracy of splitting subspaces is 
that such a phenomenon  occurs in an  important  subclass of 
finite-dimensional  systems,  namely  those  modeled  by  a moving- 
average process. As a  simple  example let us  consider  a  process y 
with  spectral  density 

i 

Q ( z )  = 5+2(z + z-'). (10.3) 

There  are  only two minimal  Markovian splitting subspaces, 
namely X - ,  corresponding to W- (z )  = z-' + 2  and W - Q )  =1 
+2z ,  and X + ,  corresponding to W-(z)=1+2z- '  and W+(z)  
= z + 2. As must  be, since y is scalar, X -  and X ,  have  the  same 
structural  function K(z) = z-'.  Note  that K(m) = 0; hence both 
splitting subspaces  are  degenerate.  The  state  space T, which 
again is the  same  for  both X -  and X - ,  consists of all functions 
f ( z )  = az-',  where a is a real number.  Hence, Af = P2zf = PFa 
= 0, i.e., kerA* # 0. 

We shall now  assume that y is strictly noncyclic.  Then the 
frame  space H n  is  proper,  and a  fortiori so are all minimal 
splitting  subspaces.  The  frame  space  being  degenerate is a 
property of the  process y, and  therefore we shall say  that y is 
degenerate (nondegenerate) when Hn is. Since the  generating 
processes of H' are u ,  and s i - ,  Lemma  10.1  and  the facts that 
H , ( u + ) c  N +  ana H - , ( L ) c  N - ,  consequences of (3.9), imply 
that y is degenerate if and  only if the two equivalent  conditions 
( UHn)n N +  # 0 and ( U*H')n hr- # 0 hold.  Now recall that 
H' is the closed linear  hull of all minimal splitting subspaces  and 
that a  state-space  element in N -  is unobservable and one  in N' 
unconstructible.  Therefore, N -  and N +  are  the parts of H that 
we normally  want to discard  in  state-space  construction. As we 

can see from  the two conditions just derived,  degeneracy of y 
means  that, if we shift one  step  forward or backward in time, 
some  elements of the  discarded  spaces become part of the new 
frame  space. 

Degeneracy of minimal splitting subspaces is a  property of the 
process y ,  as the following theorem shows. 

Theorem 10.1: If one minimal  Markovian  splitting subspace is 
degenerate,  then all are. 

Proof: It was shown in [25] that minimal  Markovian  split- 
ting subspaces  have  quasi-equivalent  structural  functions. In  par- 
ticular, this means  that  the  structural  functions  have  identical 
determinants, which consequently  vanish  simultaneously at infin- 
ity. 0 

We  say that y is state-space degenerate if the  minimal  Markovian 
splitting subspaces  are  degenerate. 

Next we shall tie up  these  concepts  with  the  concept of 
singularity introduced  in  Section VI. Recall  that X is singular if 
and only if D or  or  both  are singular  and _that this is connected 
to  the  observability  and  constructibility of X in Section VII. 

Theorem 10.2: If one minimal  Markovian  splitting subspace  is 
singular,  then all are. 

Proof: By definition, Qg*K+ = W W I ' w + ~ ' W + w I '  and 
Q+ K = W, WI'WW-', where quantities  marked by+ correspond 
to X +  and  those  unmarked to an  arbitrary X.  Now,  writing  the 
determinants of these  products as products of determinants, we 
obtain 

det  Qdet  Q*det  K+ = det  Q+det  K. 

But det  K = det  K+ (see the  proof of Theorem  lO.l),  and  there- 
fore 

de tQdetg*=detQ+.  

Then the  theorem  follows  from  Theorem 8.1 0 
Consequently,  singularity of minimal  Markovian splitting sub- 

spaces is also a property of the  process y .  We say  that y is 
error-spaces degenerate if the  minimal X are singular. It is known 
[ll] that conditions  for  invariant  directions  can  be  expressed  in 
t e r n  of F,. (Note that  in [ l l ]  is a  matrix  representation of 
F+. )  Theorem  10.2  explains why this is so. It is easy to see that 
the  process in the  example of Section IX is error-space  degener- 
ate. In fact, this is the  reason why the  spaces X are nonminimal. 

To establish  a  connection  between  degeneracy,  state-space 
degeneracy,  and  error-space  degeneracy of a  process y ,  first note 
that there  are  several ways in which H n  can  be  written as a  sum 
of a minimal splitting subspace and an error  space.  Two  are given 
by 

as  the  reader  can easily check. Another is given by  the following 
lemma 

Lemma 10.2: The  frame space is given by the nonorthogonal 
decomposition 

H ' = X + V Z + .  (10.5) 

Proof: Since X -  is observable, 2- f l  X -  = 0 (Proposition 
6.1). Hence,  taking  orthogonal  complements  in HO and  using 
(10.4), we obtain  the  desired result. 0 

In the  finite-dimensional case, Lemma 10.2. suggests  that we 
construct  a  forward  realization  with  respect to Hn by  combining 
(5.12a) for X +  and (6.2) for Z+ to  obtain 

In fact, since X +  is constructible, X +  n Z +  = 0 (Proposition 6.1). 
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Hence,  in view of Lemma 10.1, {x+ (0), z, (0)} is a  basis  in HC.  
Moreover,  both X, and 2, have u, as their forward  generating 
process.  Hence, y is degenerate if and  only if either A or F ,  is 
singular, i.e., if and  only if y is either state-space or error-space 
degenerate. This argument  works  only  in  the  finite-dimensional 
case,  but  the  next  theorem  says  that  the  conclusion  holds  in 
general. 

Theorem 10.3: The process y is degenerate if and only if it is 
either  state-space or error-space degenerate or both. If y is scalar 
( m  = 1) both cannot  happen  at  the  same time. 

Proof: The first statement follows from  the fact that  the 
structural  function of H n  can  be  written K ,  = K -  Q, . Hence. 
K,(m) is singular if and  only if either K- (03) or Q+ ( x )  or  both 
are singular. The first condition is equivalent toy being  state-space 
degenerate,  and, since Q ,  = I, the  second is equivalent toy being 
error-space  degenerate. To prove  the  second  statement,  observe 
that, when m = 1, H -  1(  u ,  ) is one-dimensional.  Therefore, if 
ker U( X? ) # 0, we must  have H- 1( u+ ) c X, (Lemma 10.1). In 
fact,  if X +  n X 1 (  uT ) contains an element 6 # 0, then it must 
contain a[ for all a~ R which is all of H - l ( u + ) .  Likewise, if 
ker U(  Z +  ) # 0, H- 1(  u ,  ) c 2, (Lemma 6.1). However, this can- 
not happen at the  same  time, for, since X, is constructible, 
X- n 2, = 0 (Proposition 6.1). 0 

At least in the  rational  case we can develop criteria for degen- 
eracy  in  terms of the  spectral  density. If m =1, it is not  hard to 
show  that y is state-spaces  degenerate if and  only if @ ( x )  = x 
and  error-space  degenerate if and  only if @(m) = 0 [MI. The 
corresponding  vector results only  hold in one  direction [44], but if 
y is not  state-space  degenerate, it  can  be  shown  that @(m) is 
singular if and only if y is error  degenerate [ll].  

XI. ANOTHER EXAMPLE 

Consider a vector  process y with spectral  density 

@ ( z )  

['. - - (z -+) (z- ' -+)  - 1  1-$z 

(z-+)(z-')(z-'-')(z-") 1 

1 1 1 
l-az-l ( Z - $ ) ( z - l - + )  

(11.1) 

The minimum  phase  spectral  factor is 

I ( z - $ ) ( z - + )  

Z ( Z  - 5) w- ( z )  = (11.2) 

and the  backward  minimum  phase  spectral  factor is 

-4z3+52z2-l32z+1O2  -242 
(1 - f z ) ( l -   t z )  

(1 - +z)(1- I 4 4  1 -$z  
- Z >  - 5 5 1  +86 96 

1 ( l - + z ) ( l - I  4 4  1 -$z  1 
(11.3) 

The  predictor  space X- is defined  by W- and the strictly 
unstable  spectral  factor 

To see this check that K- = W -  WI ', given  by 

K- ( z )  = 

0 
1-$z  
z - 4  
- 

(11.5) 

is inner  and  that K-  and g?: = W ,  WT1 are right coprime. ( K -  
and Q- = I are of course always left coprime.) 

Note  that K(oo)= [: - s]  is singular, and  consequently 

X- is degenerate.  Hence, in view  of Theorem 10.1, we expect all 
other minimal X to be  degenerate also. Let us check  with X,. 
The  stable  spectral  factor of X+ is 

- -  

1 c II- 

In fact, W+ wI1 is  given  by 

and W- W I '  by 

I (1 - $ Z ) ( l -  42) 

Q+ ( 2 )  
( z - + ) ( z - $ )  (11.8) 

l o  
and  from this we can check that K- is inner  and  the  required 
coprimeness  conditions  are fulfilled; note  that Q? = I .  We now 
see that 

which is singular as we expected. 
Moreover, Q - ( CG) = [IC :] is singular. Hence, X, is sin- 

gular, and  by  Theorem 10.2, so are all other  minimal X. This 
example shows that  a L?ector process J can be both state-space  and 
error-space  degenerate. 

Routine  calculations show that K-  (or K , )  has  McMillan 
degree 3, and  therefore all *mal realizations  are  three-dimen- 
sional. The  corresponding X-spaces have  dimension 5; see  Sec- 
tion VII. However, due  to error  space  degeneracy,  none of them 
is a  minimal (UH-, H')-splitting  subspace. In fact, it can be 
seen  that  the  minimal  ones  are  four-dimensional, which is con- 
sistent with the fact that ker Q ,  (m) is one-dimensional. 

XII. CONCLUSIONS 

In this paper we have  investigated  structural  properties of 
discrete-time  linear  stochastic  systems in geometric  terms. This 
study  has  been  undertaken in the  framework of Markovian 
splitting subspaces laid out  in the  work  by Lindquist  and Picci. 
Some of the results of the  latter work  have been  modified to the 
discrete-time setting, but  to  a  large  extent we have  dealt  with 
problems which are  unique to the  discrete-time setting, such as 
degeneracy, singularity, and their connections to models with and 
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without  observation noise. We have  expressed  properties of sto- 
chastic  systems in geometric  terms and determined to what  extent 
they  are  properties of the  individual splitting subspace or of the 
given process. Our results are  conceptual  rather than  computa- 
tional  in  nature,  but we hope  that  the  insights  gained  on  the 
conceptual level will prove  useful in  better  understanding  algo- 
rithmic  problems. 
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On Controllability and Observability of 
Time Delay  Systems 

DIETMAR SALAMON 

Abstruct --This paper  deals  with  contronabfity  and obsenability proper- 
ties of time delay  systems  in  the  state  space W" X Lp.  In particular,  we 
prove  the  equivalence of spectral controllability  and  approximate null-con- 
trollability.  Moreover,  it  is  shown  that  the  necessary condition for  ap- 
proximate F-controllability-obtained recentiy by Manitius-is  also  suffi- 
cient, and a verifiable  and  matrhx type criterion for F-controllability is 
derived for systems with commensurate  delays.  Finally,  we  introduce  the 
dual obsenability notion of approximate  controllability  and  prove  that  the 
control system X is exactly  null-controllable if and  only if the transposed 
delay  system 2' is  continuously  finally  observable. 

INTRODUCTTON 

C ONTROLLABILITY and observability of systems  with 
delays in the  state  variables has become an  area of active 

research in the last few  years. On one  hand,  the  algebraic  systems 
theory,  in  particular  that of linear  systems over rings, has led to a 
clear  connection  between  controllability over a  ring  and a spec- 
trum  assignability via feedback [12],  [20],  [28]. On the other hand, 
the functional analytic theory of infinite dimensional linear sys- 
tems led to criteria for  approximate controllability and  observ- 
ability in a  function  space [16]-[18], which are  related to the 
ideas of state  feedback  and  observers [4],  [22],  [24],  [25]. In spite 
of this progress,  there  are still several gaps  in  the  relations 
between  the  various  concepts of controllability, stabilizability, 
and observability. In particular, some  duality  relations  have  not 
yet  been clarified. 
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In this paper we study  linear  control  systems  with  delays  in  the 
state variables  within  the  framework of the  state  space R" X LP 
(1 < p < 30). The aim is to establish  relationships  between  the 
exact  and  approximate  null-controllability  and  certain  notions of 
observability  and to generalize and  extend  recent results of 
Manitius [17] on approximate F-controllability. This latter  effort 
is motivated in part  by  the  fact  that  the  F-controllability  provides 
via duality  a  clear criterion for observability of retarded  systems. 
For more  motivation of the  F-controllability  concept  the  reader is 
referred  to [14] and [17]. 

One of the key features of this paper is the use of the  structural 
operators F and G [2],  [15] associated nith retarded systems. 
These  operators give a clear  characterization of the  structure of 
the  semigroup  operator  and  eliminate  the  burden of cumbersome 
notation  often  encountered in some work on functional  differen- 
tial equations. As will  be  seen in this paper.  the use of these 
operators allows us to obtain very  concise proofs of all the 
results. 

Function  space  controllability of retarded  systems  has  been 
studied via several  approaches. Banks et al. [ l ]  considered  the 
exact  controllability  in W'.2 and showed that  it led to a very 
restrictive condition on system  matrices.  Pandolfi [22] has  proved 
a  criterion  for  feedback stabilization in the  state  space V. Analo- 
gous results on spectral  observability have been  derived  by  Bhat 
and Koivo [3]. The  null-controllability  has  been  investigated  by 
several Soviet authors (see, e.g., [19]) and  also in [ l l ] .  Manitius 
and Triggiani [18] and Manitius [14],  [16],  [17] have characterized 
the  approximate  controllability and F-controllability in the  prod- 
uct  space R X L', and  a  dual  concept of observability.  Dynamic 
observers  for  retarded  systems  have  been  investigated  by  Bhat 
and Koivo [4], Olbrot [21], and Salmon [24],  [25]. 

The main results of this paper  are  as follows. In Section I1 it is 
shown that  a  general  retarded  functional differential system is 
spectrally  controllable if and  only if it is approximately  null-con- 
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