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Universal Regulators for Optimal Tracking
In Discrete-Time Systems Affected
by Harmonic Disturbances

Anders Lindquist,Fellow, IEEE and Vladimir A. YakubovichMember, IEEE

discrete-time linear system by output feedback so as to have a — Z-T
second outputz, track an observed reference signat.. First, as a m
preliminary, we consider the problem of asymptotic tracking, i.e., y
to design a regulator such that|z, —r¢|— 0. This problem has
been studied intensely in the literature, mainly in the continuous-
time case. It is known that only under very special conditions
does there exist a linear regulator which achieves this design Regulator /\/\/
goal and which is universal in the sense that it works for all

reference signals and does not depend on them. On the other ] )

hand, if r, is a harmonic signal with known frequencies but Fig- 1. Feedback configuration.

with unknown amplitudes and phases, there exist such regulators
under mild conditions, provided the dimension ofr, is no larger

Abstract—The authors consider the problem of controlling a
/\/\/ — = bt

than the number of controls. This is true even if the plant itself yr =Cxy (1b)
is corrupted by an unobserved additive harmonic disturbancew; 2z =Hxe + Jus (1c)
of the same type asr, if the dimension of w. is no larger than

the number of outputs available for feedback control. with a stater, € R™, two vector outputy, € R™ andz, € R*,

However, if the first dimensionality condition is not satisfied, gnd two vector inputs, namely a contra} € R* and an

asymptotic tracking is not possible, but a steady-state tracking : ¢ .
error remains. Therefore, the authors turn to another approach unobserved disturbance, < R® which we shall take to be

to the tracking problem, which also allows for damping of harmonic with known fr_equencies but unknown amplitudes
other system and control variables, and this is our main result. and phases. More precisely

The measure of performance is given by a natural quadratic N

cost function. The object is to design an optimal regulator . () it >
which is universal in the sense that it does not depend on the Wt Z wrre (2)
unknown amplitudes and phases ofrs and w; and is optimal Jj=1

for all choices ofr; and w;. The authors prove that an optimal .

universal regulator exists in a wide class of stabilizing and where the frequencies

possibly nonlinear regulators under natural technical conditions <O << <On< 3)

and that this regulator is in fact linear, provided that the second

dimensionality condition above is satisfied. On the other hand, if
it is not satisfied, the existence of an optimal universal regulator is
not a generic property, so as a rule no optimal universal regulator

are known, but the complex vector amplitudes®, w(®),
-, w™ in which the phases have been absorbed, are either

exists. completely unknown or zero. Consequently, some frequencies
The authors provide complete solutions of all the problems (3) may not be represented i, and have been included for
described above. notational purposes to be explained shortly.
Index Terms—Internal model principle, optimal tracking, op- In this paper we consider the problem to control the system
timal universal regulators, sinusoidal disturbance. (1) by feedback from the outpyt so as to have the outpui
track an observeg-dimensional real reference signal
I. INTROD N
- O UC-TION = Z 7 () g5t (4)
CONSIDER a discrete-time linear control system =
Typ1 = Axy + Buy + Ewy (1a) which is harmonic with the known frequencies (3) but with
complex vector amplitudes, @, ...  +(N) which are
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the presence of wind shear [19], [23], [31], and control of the satisfies the weak stability condition
roll motion of a ship [14]. 1

For notational convenience we use a common set of fre- 7 |lze| — 0, ast — oo (11)
quencies (3) forw; andr,, forcing us to set certain complex i ) ) .
vector amplitudes equal to zero. To formalize this we introduce 2) OPtimal in the sense that the cost function (8) is

the index set<,,, Z, C {1, 2, ---, N} of j for which w® minimized; o
and ), respectively, are nonzero and arbitrary. Then 3) universalin th(_a sense Fha.\t it _smultaneously solves the
o o complete family of optimization problems correspond-
wy =Y wWe®' and r=Y rOet (5) ing to different values of the complex vector amplitudes
jeTu jeT, {wW} ez, and {rW},c7, and thus does not depend

on these amplitudes.

Such a regulator will be referred to as aptimal universal

7,01, ={1,2,---, N} regulator (OUR), and the class of regulators (10) satisfying
conditions 1) and 2) will be denoted. The stability condition
(11) may at first sight seem somewhat unnatural, but, as we
shall see in Section VI, it is the natural mathematical condition
gefining the largest clas§” for which statements of necessity
and sufficiency can be made.

We assume thatd, B, C, E. H, and J are constant Removing the last term of (8) related to tracking we obtain
real matrices of appropriate dimensions such that B) some special cases of this problem which were studied in [21]
is stabilizable and(C, A) is detectable. Without loss of @nd in [22] for the cases of complete and incomplete state

generality we may also assume that information, respectively. _ _
In this paper we show that, under suitable technical con-

rankC' =m and rank E = /. (6) ditions and provided < m, the problem stated above has
solution in A/, and this solution happens to be a linear
abilizing regulator of type

Without loss of generality we assume that

Accordingly, we define the clasg/ of disturbances and the
classR of reference signals consisting of all signalsandr,
respectively, obtained by lettinguw?)};c7, and {r0}, 7.
vary arbitrarily subject to the constraint that the signals (
are real.

In fact, if the first condition is not satisfied, some componen%
of y; could be eliminated. Moreover, £ has linearly depen-

dent columns, these could be combined without restriction. M(o)w = N(o)y: + L(o)re (12)
Clearly, (6) implies thatn < n and¢ < n. where o is the backward shiftoy, = 341 and M()),
Now, a possible criterion of performance for the tracking\r()\), and L()\) are real matrix p0|ynomia|s, of dimensions
problem described above is given by k x k, k x m, andk x p, respectively, with the property that
LT det M(\) £ 0 and M—'N and M~'L are proper rational
®g = limsup — Z {lze — r)*} (7) functions so that the regulator is nonanticipatory in the sense
-0 T4 that u; does not depend on future values mf and r;, in

but, to allow for damping of internal system variables anBarmony with (10). We shall denote bg the subclass of

the energy of control, we shall also consider a more gene?éd?h linear regulators_. Existence of an OUR n the subcl_ass
criterion of the type L itself can be established under somewhat milder technical

conditions. The dimensionality conditioh< / is important.
] 1 & ) As in [22], it can be shown that if it fails, then the existence of
¢ = limsup T Z {Mo(ze, w) + 12—} (8) an optimal universal regulator becomes a nongeneric property.

T—o0
=0 It means that no optimal universal regulator exists from a
where Ao(z, u) is a real quadratic form practical point of view if¢ > m.
2\ s . The cost function (7) would of course be minimized if we
Aoz, u) = < ) <g£ RO )( ) (9) could control (1a) so that
U 0 U
0 |ze — 7| — 0 ast — oco. (13)

with properties to be specified in Section V. [To ensure that the , : .
infimum of ¢ is not —oo, we must of course introduce somén fact, it would be zero. Therefore, asymptotic tracking

condition on the quadratic form (9).] We note that the secoftppears as a special case in our analysis. This problem has been
functional (8) becomes a measure not only of the tracki udied intensely in the literature, at least in the continuous-
accuracy but also of the forced oscillations in the closed-lodf€ case; see, e.g., [1], [4]-(8], [13], [16], and the references

system. For the classes of admissible regulators to be defifidgren: The connection to this earlier work, developed in

next, these cost functions do not depend on initial condition(\s‘?m'nuoust'me’_'S made evident by noting that the disturbance
The object is to find, for suitablg, ¢ € Z, a regulator and reference signals (5) can be modeled as the output of a
critically stable system

e = 0e(Yt, Ye—1, 5 Ytqs Tty Tt—15 77 Ttp) (10) spy1 =Fs;
which is: [wt} s
A . . - t

1) stabilizing in the sense that any procegs;, u;) sat- Tt

isfying the closed-loop system equations (1), (10) alsesith £ having all its eigenvalues on the unit circle.
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Therefore, we begin by developing our optimization pro- MMV, =NV, (15b)
cedure in this well-known setting of asymptotic tracking, v, =CV, (15c)
thereby obtaining alternative formulations in the discrete-time
case. Using a very short and simple proof, we are ak#e, in particular,
to give a complete solution to the problem of finding all o I
universal tracking regulatord,e., all regulators which achieve A {\P’”} = Lﬂ (16)
asymptotic tracking (13) for all values of the complex vector "

[1]

[1]

(17)

the transfer functiond,, ¥, from r, to x, and,,
respectively, are given by

[1]

amplitudes {w"},c7, and {rV},cz, and which do not whereZ()) is the (n + k) x (n + k) matrix polynomial
depend on these amplitudes. This will be done in Section IV. N B
As a preliminary for this, and to set up notations, in Section Il ) = [ ]\7 ; o 1\2 A\ }
we first consider an undisturbed system; (= 0), and we —N() N
characterize all regulators (12) achieving the design objectigﬂ,n“ar'y
(13) for all reference signals;, not only harmonic ones, and '
all initial conditions; we shall refer to this property as
universal The solution of this problem is certainly known, =(\) Vel _ 1O (18)
but we include it for conceptual reasons. L
However, if © > k, i.e., the dimension of; is larger than : . .
; . which together with (16) yields
the number of outputs available for feedback, no umversap g (A )Y
tracking regulator exists, so a nonzero tracking error remains. |V Vo _ (! I, O (19)
To damp this error we turn to our main problem, namely to v, v, 0 LN’
characterize all optimal unlversa_\l rggulators, as qef|ned abo.\\ﬁe' shall say that the regulator (14)stabilizingif the matrix
Also, we may want to use a criterion (8) even if asymptotic 2 . —
O . s . olynomial=Z(\) is stable,i.e., det Z(\) # 0 for [A| > 1.
tracing is possible, if it is desirable to damp the control eneré)y : "
i . . . Next we consider the condition that the regulator be real-
and/or some particular internal system variables. This is the L ]
) . oI . .~ izable. Clearly (14) must be nonanticipatory in the sense that
topic of Section V, where optimality in the linear clagsis
. . . . _u does not depend on future valuesggfandr,. To ensure
studied. In Section VI we show that these linear unlvers%f.
: . . . is, we must assume that
regulators are optimal also in the wider class of nonlinear
regulators satisfying (11), provided slightly stronger technical ~ A/(A\)~'N()\) and M())"'L()\) are proper (20)
conditions are satisfied. The complete solution is given. We )
note that a similar but different optimization problem, over EQuiring in particular thatlet M () # 0.
finite horizon, is considered in [26]. Let us investigate what propertids must have for (20) to
Obviously, there is na priori guarantee that a regulatorbe satisfied. To this end, let us introduce the rational transfer
which minimizes (8) will also satisfy other design specificalunctions
tions, and hence we look for complete solutions with many W,(\) =C(\l, — A)"'B
free parameters which then can be tuned by loop shaping. In B -1
fact, all our results are based on a parameterization derived W.(\) =H\n —A)" B+ J (21)

in Section II, which is akin to that of Youla and Rera from the control signal to the outputsy, andz, respectively.
and which generalizes some parameterizations previously pfen it is easy to see that

sented in [21] and [22].
Finally, in Section VII, we give some simple numerical U, =(M - NW,)"'NC(\IL, — A)~!

examples. ¥, =(M - NW,)"'L (22)

and that
Il. LINEAR STABILIZING AND REALIZABLE REGULATORS

-1
In order to design universal regulators we need a parame- ‘I’w =l - 4) (BA‘I’u + 1)
terization of all linear regulators U, =(\, — A)7'BY,. (23)
M(o)us = N(o)y: + L(o)r, (14) Writing (22) in the alternative form

—1

which stabilize the control system (1) and which are realizable Wy = (In - M_INWU) MTINC(AM, — A)™
in a sense to be defined shortly. As befards the backward U, = (_rn — M—lNWy)_lM—lL
shift oy = y241, and M (X), N(A), and L()\) are real matrix .
polynomials of dimensionkx k, kxm, andk x ., respectively. we see that (20) implies thak, is strictly proper and¥,

Let us consider a bit closer the meaning of (14) beinig proper. In fact M "' NW, is strictly proper, making/,, —
stabilizing. To this end, note that the transfer functigns v,,, M~'NW, as WeIJ as its inverse proper. Then, it follows from
v, from Ew, to xy, us, andy,, respectively, in the closed-loop(23) that¥, andW, are strictly proper also. Consequently
system (1), (14) satisfy 0 0

(o) = : here, () is finite (24
(ML — AU, —BU, + I, (153) (c00) [0 \I,u(oo)} where W, (o) is finite  (24)
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so thatz; andw; depend onw, for s < t only and onr, for is stabilizing and realizable, and for this regulator

s < t only. We shall say that the regulator (14)resalizable R(\) X LV
if condition (24) is satisfied. At the end of this section we v, (A) = 0 CG(A), v, (A) = - (30)
shall demonstrate that any stabilizing and realizable regulator PN PN
satisfies (20) so that the nonanticipatory property is impliezhd
(Corollary 2.3). _ X
We say that two regulators det Z(A) = x(A)[p(A)] (31)
My(o)ue = Ni(o)y: + Li(o)re where Z is given by (17). Conversely, any stabilizing and
q i realizable regulator (28) is equivalent to one constructed in
an this way.
Ma(o)ur = N2(0)yr + L2(o)re Before turning to the proof of this parameterization, let us

briefly explain the nature of relation (31). Althoughi}) is a

factor indet Z(\) for the regulator defined via (29), this is in

general not the case for an arbitrary regulator belonging the
[My, No, Ly] = ©,07 [My, Ny, Li]. (25) same equivalence class. In fact, while the closed-loop transfer

function ¥ and the regulator transfer functiodd ~*N and

Hence we allow the systems matricgs, /v, and L to have A/—!'L are invariant under the equivalence (25),is not.

stable common factors, as coprimeness is notArequired.ACIea‘rnaking the Schur complement, it immediately follows from

as can be seen from (22) and (23),, V., V., and ¥, (17) that

are invariant under this equivalence and so are the regulator _

transfer functions (20). det 2(A) = det(AI, — A) det[M(\) — N(MOW, (V)] (32)

From now on, we assume that is a stable matrix, i.e.,

areequivalentf there are stablé& x k& matrix polynomialso;
and ©, such that

i X -~ whereW, is given by (21). Since, in general, the second factor
det(Al,, —A) # 0 for all [A] > 1. Since(4, B) is stabilizable g ot 4 polynomialyy is of course not a factor idet = in
and (C, A4) is detectable, this is no restriction. In fact, it i§yeneral. Nevertheless, it will turn out to be useful to represent

well-known f[hat the system (1_) can b? replaced by a similggqp, equivalence class by a regulator that has this property.
system having a stablel-matrix but, in general, a larger Proof of Theorem 2.11n view of (29), we have
dimension. (See any standard text, such as [1] and [18].) Only ’

under special conditions [15], including the case of complete M) = NOOYW,(A) = p(A) I (33)
state observation, is it possible to do this by constant feedback,

but the system can always be stabilized by a dynamic obsen/afd consequently (30) follows from (22) and (31) follows from
Then, extending the state space by including this observer(,sg)'_ By const_ruc_tlon, therefor&()) is a stabl_g r_natnx poly-
system with stablei-matrix is obtained. For these reasons WBom|aI, establishing that the regulator is stabilizing. Moreover,

shall from now on, without loss of generality, assume that ' ViewW of (27), ¥, is strictly proper andV,, is proper, i.e.,
in (1) is a stable matrix. v, (c0) = 0 and ¥, (co) is finite. It then follows from (23)

The following theorem, generalizing a similar result ifhat Y= and ¥, are strictly proper, and hence the regulator
[22], provides a parameterization akin to the well-knowl? reahzableh
Youla—K(Eera parameterization. (We note thatdifis not sta- 10 Prove the converse statement, supposel(fi#gf No, Lo|

ble, also the latter parameterization requires an observer-baSe@in arbitrary stabilizing and realizable regulator. Then (32)
prestabilization, increasing the dimension of the regulator; sy be written

e.g., [32, p. 226]) det E(A) = x(A)'7* det, P())
Theorem 2.1:Let A be a stable matrix withy(\) :=
det(\I,, — A) being its characteristic polynomial, and &\) where P()) is the k x k& matrix polynomial

and V,()\) be the matrix polynomials
v poly P = xMo — NoV, = x(Mo — NoW,,) (34)

_ _ oAyl _
GA) = x(NALn = A), Vy(N) = €GB, (26) which is stable and full rank, sincget P = y*~! det Z is

Moreover, letp(\) be an arbitrary stable scalar polynomiaptable and nontrivial. It follows from (22) that

and let R(\) and L(\) be arbitrary matrix polynomials of PU. — N.CG PY =L 35
dimensionsk x m andk x u, respectively, such that “ o~ w T X0 (35)
where ¥,, and ¥, are the closed-loop transfer functions

deg(RCUG) <degp,  deg L <degp. (27) " corresponding to the regulati¥y, No, Lo]. Therefore, setting

Then the regulator p = det P, R:= P,Ny = pP™'N,
M(o)uy = N(o)y + L{o)r (28)  and
with L:=xP,Ly=xpP 'L,
M) =p(MN Ik + RV, (A) where P, := P~ det P is the adjoint matrix polynomial of

p
N =x(\)R(N) (29) P, (35) shows thatV,, and U, are given by (30). SincgM,
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No, Lo] is a realizable regulator, it follows from (24) that the Conversely, by Theorem 2.1, any stabilizing and realizable
degree conditions (27) hold. Consequently, definiigand regulator (37) is equivalent to some regulafd/, N, 1] of
N via (29), it follows from the first part of the theorem thathe type described in Theorem 2.1, where we Get= I,
[M, N, L] is a stabilizing and realizable regulator with theverywhere. It remains to show th@d/, N, L] is also a
same closed-loop transfer functiods, and ¥, as [Mo, No, regulator of the type described in the corollary. To this end,
Lo)]. It remains to show thatV/, N, L] and[Mo, No, Lo] are define R := RG. This implies thatxyR = R(\I, — A),
equivalent. To this end, note that and hence the equations of Theorem 2.1 become those of the
_ corollary with R replaced byR. Hence[M, N, L] is also a
N = xR =xpP™ No. regulator in the sense of the corollary.[ ! O

In the beginning of this section we demonstrated that the
realizability condition (24) is a consequence of nonanticipatory
condition (20). Next we show that the converse is also true,
providedC' has full rank as assumed in (6).

Corollary 2.3: Suppose thatank C' = m. Then, for any
stabilizing regulator (28), the realizability condition (24) and
the nonanticipatory condition (20) are equivalent.

Proof: The proof is immediate in the special caSe=
I,,. In fact, for a regulator (37) with4 and V given by (38),

re lfugt:rslréasr?btgasti% ?ﬁagc’j '([:r:)e;sr,ie;jperreask;alntastilogmog ;t(?:r:“tz)g]gcondition (20) is a direct consequence of the degree condition
9 P Y, sip 36). For any other stabilizing regulator (37), it follows from

chosen so that cancellations occur. Since this formulation h 2" yefinition of equivalence

different form and, moreover, will be used later, we state it as ) .

a corollary. Note that, in view of the converse statement, thi?The general case .fOHOWS from the fact that (28) is a subclass

) ) : . of (37). In fact, writing (28) as

corollary is strictly speakingota special case of Theorem 2.1.

It is in fact a generalization of [21, Lemma 4.3], but the proof M(o)uy = N(o)Caxy + L(o)ry

here is new. .
Corollary 2.2: Let A be a stable matrix, and suppose tha{{ follows frqm what has already b.ee.” pr_oved ﬂMfllN.C

C = I,,. Let p(A) be an arbitrary real scalar stable polynomia'S proper. S'ncf h_as full rank, this w_nphes thab/ =N is

and letR(A) and L()) be arbitrary real matrix polynomials, proper. Thath{ "L is proper follows directly. =

of dimensionsk x n and k& x u, respectively, such that

Also it follows from (34) that
xpP~ Mo = pI, + pP1NoV,, = pl,, + RV, = M.
Consequently
[M, N, L] = xpP~*[My, No, Lo

i.e., [M, N, L] and[Mo, Ny, Lo] are equivalent as required.
O

lll. 7-UNIVERSAL REGULATORS

deg R <degp  deg L <degp. (36)  As a preliminary for the analysis in Sections IV and V,
Then the regulator in this section we consider the problem of controlling the
undisturbed system
M(U)U,t = N(U).’L't + L(U)Tt (37)
) Le4+1 :A.’L't + But (40a)
with y =Cx, (40b)
M(X\) =p(M)I + R(N)B 2z =Hzy + Juy (40c)
N =R)AL, — 4) (38) by feedback from the outpuf; so that it tracks a given
is stabilizing and realizable, and, for this regulator reference signal, in the sense that
. . 2 — T 0 ast . 41
T\ = —R(ﬁ OV —L(i) (39) for = el = o @
PN p(N) As explained in Section Il it is no restriction to assume that

and det = satisfies (31). Conversely, any stabilizing andl is stable if it is assumed thdtd, B) is stabilizable and
realizable regulator (37) is equivalent to one constructed (', 4) is detectable. The solution of this problem is simple

this way.

and certainly known, but we include it for completeness and

Proof: Let the polynomials, and 2 be chosen as in the for conceptual reasons.

statement of the corollary, and takg() := p(A)x(\) and

More precisely, we want to find a stabilizing and realizable

Ro(N) := R(M\)(\I,,— A) to be the corresponding polynomialsregulator of the form

in Theorem 2.1. Then, sinc€ = 1,, and (\l,, — A)G(\) =
x(M)1,, the degree conditions (27) are satisfieddgrand Ry.

M(o)uw = N(o)ys + L{o)ry (42)

Moreover, the corresponding regulator polynomials matric@gich is universalfor the asymptotic tracking problem in the

(29), which we denoteM, and Ny, becomeM, = xM

sense that (41) holds fall solutions of (40), (42), andhll

and No = yN, where M and N are given by (38). Then, reference signals;. More specifically we shall refer to this
settingLo = x L, the regulatofM,, No, Lo] is stabilizing and property asT-universal

realizable by Theorem 2.1. Thanks to cancellation, therefore Clearly, for (42) to be stabilizing and realizable, the matrix
[M, N, L] is a stabilizing and realizable regulator for thepolynomialsA/(A), N()), and L(A) must satisfy the specifi-

problem of Corollary 2.2, as claimed.

cations of Theorem 2.1. It remains to investigate under what
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conditions the tracking criterion (41) is satisfied and undelelays between; and «;. Indeed, the condition (48) for T-

what conditions this regulator is T-universal. universality imposes some rather stringent conditions on the
We begin by deriving a necessary condition for Tsystem (40). In particular, sind&, is i x k and¥,, is k x u,
universality. Consider a reference signal of the type (48) implies thatt > u, and.J = W_(co) must have full rank.

Theorem 3.2:Suppose thatl is stable. Then there exists a
(43) T-universal regulator for the tracking problem if and only if
there is a proper rationd x ;1 matrix function X () with no
poles in the regionA| > 1 which satisfies the equation

Ty = Re{f’cwt}

where7 € C* andf# € R are fixed but arbitrary. Then the
closed-loop system (40), (42) has solutions

vy =Re{#c?'}, 4 = Re{jei®'} W.(AN)XA\) =1, (49)

2t :Re{%cwt}, U = Re{dcwt} (44) which, in particular, implies that := dim w; > p := dim 7.

h In this case, lep be a stable scalar polynomial such that
wit

L(Y) = p(NX(N) (50)

F=WoNi,  G=W,(Ni,  F=W.(\)i  (45)
‘ is a matrix polynomial, and lef2(\) be ak x m matrix

where A = ¢, W.(\) = (M, — A)~'B, andW, andW. polynomial satisfying the first degree constraint (27). Then, the

are defined by (21). Moreover, regulator (28), withA/ and N given by (29), is a T-universal

. . regulator for the tracking problem, and any other T-universal
=W, (M. (46) : . : .
regulator is equivalent to one obtained in this way.
But the tracking condition (41) requires that Proof: First, suppose that there exists a T-universal reg-
e ulator of the form (42). Then, according to Lemma 3.1, there
|zt — 1| = |Rﬁ{(z — e }| -0 ast — oo exists a solutionX (A) to (49) with the prescribed properties,

namely\ffu()\). In fact, in view of (22), (32) and the fact that
Z(\) is stable, it follows thatl, (A) has no poles in the region
|A| > 1. Moreover, since the regulator is realizable, () is
W. ("), ()7 = 7. (47) proper.
) ) Next, suppose that (49) has a soluti@ii\) which is proper
Now, in order for the regulator (42) be T-universal, (47) mus{ith no poles in the regiof\| > 1, and letp, R, and L be
hold for all 7, that is, for all# and6. Consequently, we must gefined as in the theorem. [Note that in order to satisfy the

and, since is arbitrary, this implies that = 7. Therefore, it
follows from (44) and (46) that

have first of degree conditions (27) we may need to choosad L
WZ(A)@U()\) =1, (48) which are not coprime.] Thep, by T.h_e_orem 2.1, the regulator
(28) with A7, N given by (29) is stabilizing and realizable and
on the unit circle and, by analytic continuation, in the rest of . L(\)
the complex plane. v, () = N (51)
Lemma 3.1: A stabilizing and realizable regulator (42) is PN
T-universal if and only if the identity (48) holds. i.e., in view of (50),¥, = X. Consequently, it follows from

Proof: We have already proved that (48) is a necessag¥9) and Lemma 3.1 that the regulator is T-universal.
condition for (42) to be T-universal, so it remains to prove |t remains to prove the last statement of the theorem. To
that it is also sufficient. To this end, first assume that there affis end, suppose that the regulator
positive numbers\/, po such thatir,| < Mp}, for all £. Then

. has aZ-transform Mo(o)ur = No(o)yr + Lo(o)re (52)
R 0 . is T-universal. Then, in particular, it is stabilizing and real-
F(A) = Z A izable, and thus, by Theorem 2.1, there are sgm&, and
t=0 L with the properties specified in Theorem 2.1 such that the

which converges for\| > po. It follows from (45) and regulator (28) withAf, N given by (29) is equivalent to (52).

(46) thatW_.(A\) ¥, ()) is the transfer function from, to z,, NOw, W, is invariant under this equivalence. Therefore, since

and hence (40), (42) has a solutiep with a Z-transform (48) holds for the regulator (52) by Lemma 3.1, (48) also holds

W.()U,(A)F(N). But, if (48) holds, thenz = 7 and hence for (28). However, by Theorem 2.1, (51) holds, and hence there

|z —r¢| = 0 for all . Because of stability any other solutien 1S @an.X, namely¥,,, satisfying (49) and (50). U

tends asymptotically to this solution, and therefore (41) holds.!n general, a solution to (49) cannot be expected to be

If 7, increases so fast that it does not hav&-transform, set unique, but ifk = 1, only one solution is possible, namely

iV = fort=01-.N and_r{" =0 for ¢t > N, and X =W

let 2V be the corresponding-solution. Then it is easy to see

thatz = », fort =0, 1,---, N. Since N is arbitrary, the and this would require tha¥’_*()) is a stable, proper rational

conclusion follows. O function, implying thatW, must be minimum phase with
As a corollary we see thab,(co) must be full rank, or no zeros at infinity. In particular) := W.(co) must be

else (48) will be violated. This implies that there are noonsingular.
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Corollary 3.3: Suppose thatd is stable and the transferrespectively, satisfying the degree requirements (27) and the
function W, is square, i.e.k := dim w; = p := dim r,. interpolation conditions
Then there is a T-universal regulator for the tracking problem

if and only if W1 is proper with no poles in the region WA RA)E () o ) (59a)
|A| > 1. In this case, lep()\) be a stable scalar polynomial = —p(N)HN I - 4)7°E, forj €L,
such thatp(A\)W_1(X) is a matrix polynomial andR(}) is W.(A)L(A;) = p(A )y, forj e Z.. (59b)
a k x m matrix polynomial satisfying the degree requirement
(27). Then, ifMparzldN are defir:)édgby (29) gnﬂ byq Th_en, if M andN are given by (29), the regul.ator (28) is a
universal tracking regulator, and any other universal tracking
LX) = p(\WL(N) (53) regulator (28) is equivalent to one obtained in this way.

Proof: Whenever a linear stabilizing regulator is applied
the regulator (28) is a T-universal regulator, and any othtr system (1), the procegs;, u;) tends exponentially to the
T-universal regulator is equivalent to one obtained in this waarmonic steady-state solution

A T-universal regulator exists only under rather special N N
conditions. However, if we restrict our attention to harmonic _ §) 8t _ §) bt
reference signals (4), these conditions can be considerably = z_:l e, we= z_:l uel (60)
relaxed and we may also allow for external harmonic dis- = =

turbances. This is the topic of the next section. where
29D =0, (A EwD + T, (\)r) (61a)
IV. UNIVERSAL TRACKING REGULATORS W G L e W
IN HARMONICALLY DISTURBED SYSTEMS w?) =W, (A Ew 4+ Wy () (61b)

We now return to the situation described in Section pr, v, U, and¥, being the closed-loop transfer functions
where the control system takes the form (1) with a harmoniefined in Section II. In fact, for any regulator iy, (),
disturbance (2) and where there is a harmonic reference siggafined by (17), is a stable matrix polynomial. In the same
(4). Although we may allow the index s&t, to be empty, for way, in view of (1c),7 tends exponentially to
tracking we must takeg, # 0.

The first question to be answered is when it is possible to N ) it
find a regulator (12) inC such that 2= Z z00et
j=1
|ze =71 =0  ast— oo (54) 2D =W + HA L, — AT EwY) . (62)

which is universalin the sense that (54) holds for all values Now, the basic idea is that the tracking condition (54) is

of {wW};cz, and{r(V},c7 and does not depend on thesechieved precisely when the cost function (7) is zero. It is
vector amplitudes. We shall refer to such a regulator aseasy to see that
universal tracking regulatarFor convenience, in the sequel
we use the notation N NP
by = Z ‘Z(J) _ T(])‘ . (63)
No=e% j=1,2--- N. (55) =1

Theorem 4.1: Suppose that the matrid is stable, and let To see this, observe that f andg, are two harmonic vector

G(A) and V() be the matrix polynomials defined by (26).Sequences
Moreover, letW.()) be they x & matrix function defined by N N
(21) andF(\) the m x ¢ matrix polynomial fo=>_ f9%" and g =Y gV’
F(\) = OGOE = x(NC(\L, — A)'E.  (56) = =
with {6} distinct as in (3), andy is an arbitrary matrix of
Then, for a universal tracking regulator to exist 4h) it is appropriate dimensions, then
necessary that the rank condition

T T
. 1 . . 1 "
rank Wo(\,) = po o= dim r,,  forall jeZ,  (57) limsup 7 ; Qo = Jim ; i Qa:
holds, and it is sufficient that both rank conditions (57) and N i
— Z f(J)*Qg(J). (64)
rank £'(\;) = £ := dim wy, forall j € Z,, (58) j=1

hold. In particular, (57) requires that < % := dim w,, and ™MOreover, in view of (61b) and (62)

(58) that/ < m := dim y. More precisely, letp()) be L) _ ) = WOV (0\)E + HO L, _A)—IE]w(j)
an arbitrary stable scalar real polynomial, and Rft\) and ST ! o
L()) be matrix polynomials, of dimensiorisx m andk x y, + VoA Wu(X) = Ll
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and consequently (63) equals zero for all valuegw@}jezw Remark 4.3—Internal Model PrincipleThe situation most
and {r(W};cz. if and only if often studied in the literature is when = v, i.e., H = C,
W.(\) T (A\)E (652) J =0, andy = m, and when the regulator (28) takes the form
=-H(\I,— A)™E, forjeZ,

i u = M(0) N (o —r
W.0)8.(\) =1,  forjeZ.  (65b) ¢ = Mo) N (o) — 1)
Theorem 2.1 states that the regulator (28) is stabilizing @tained by setting.(}) = —N()). We assume that the rank
M and N are defined by (29) for some stable scalar re&pnditions (57) and (58) are satisfied so tat m < k.
polynomial p(}) and some real matrix polynomial&()\) For robustness it is desirable to include a model of the
and L()) satisfying (27) and that any other stabilizing andlisturbance dynamics in the regulator. This is theernal
realizable regulator (28) is equivalent to one obtained in thHiodel principle Following [3], we replace the matrix frac-

way. Moreover tion representatiod/ LN by the (reachable) matrix fraction
RO ) L representation”PD~! so that ND = MP. The harmonic
U, (A) = —=CG(N), v,(A\) === (66) dynamics is then included in the regulator dynamics by setting
PN p(A) D(X) = p(A)Do(\), whered(\) = Iy (A— \;) and Do()
which inserted into (65) yields precisely (59). is a stable matrix polynomial. Then, by (29)

If the rank conditions (57) and (58) hold, the interpolation
conditions (59) have a solution, and the general solution is 0 = N(A;)D(};) = M(A;)P(A))

R(O\) =W. () VO W.(\)* ]t =)k + ROA)V,(A)IP(N), =12, N,
X [=p(N)H (NI, — )7 E]

R which, in view of the fact that}, = xW_, yields
X [F()\J)*F()\J]_IF()\J)* + Ry, for j € Z,,

L) = pA) W) T )W ()] + L. ROy) = = 209 pOyiw. () PO
for j € Z, x(Ay)
N 5 j=1,2 -, N
where, forj =1, 2, ---, N, R; and L; are arbitrary matrices
such thatW,(\;)*R;F()\;) = 0 and W.(\;)*L; = 0. Here where we have assumed tHat P has no zeros in the points
the degree of the stable polynomialis chosen sufficiently A1, ---, Ax. (Otherwise we include a simple feedback loop to

high to satisfy the degree constraints (67). On the other hamgigve the zeros.) ThesB();) clearly satisfy the interpolation
the rank condition (57) is also necessary for the existence ofenditions (59). In fact, sincél = C, J = 0 and L(\) =
universal tracking regulator. In fact, sinpé\) is stable, (65b) —N(A), by (29), these can be written

cannot hold ifrank W_(};) < p forsomej =1, 2, ---, N.OI

Remark 4.2: The two rank conditions (57) and (58) in W.()RO)F() = — p(A)) FO\) for j € Z,
Theorem 4.1, which of course can be stated in terms of zeros ~ ! ! x(Aj) . “
of certain transfer functions, have different status. If (57) is 209

violated, the interpolation condition (59b) cannot hold, so there W=()EO) = x(A) "

could be no universal tracking regulator. On the other hand,

if (57) holds but (58) does not, interpolation condition (59afonsequently, we see that the internal-model-principle regu-

could still be valid, as the rank of the right member could blators form a subclass of the ones considered above.

less thar?. However, this is a nongeneric situation, and hence The rank condition (58) becomes voidrifnk C = n, which

it cannot be expected to occur in practice. In fact/ it m is equivalent to the case with complete state information, i.e.,

and F(\;)F(A;)* > 0, the following equation must hold:  the case when, = z;. Then the formulas for the regulator

7o oyl _ A ' y*1-1 N also simplify considerably.

Hjln = A7 B = FOU)TIEA)EQG)T F(A)} =0 Theorem 4.4:Suppose thatC = I, so thaty, = .

which will occur only on a lower-dimensional algebraic set iMoreover, suppose that is stable and that condition (6) holds.

the parameter space. Then, there exists a universal tracking regulator (37)iif
Theorem 4.1 provides a complete solution of a probleand only if the rank condition (57) holds. In fact, Igf))

studied in various degrees of generality in [4]-[8], [13], [16be a stable scalar real polynomial, and #&t\) and L()) be

and of course is consistent with the solutions given thenmatrix polynomials satisfying the degree constraints (36) and

although given in a different form and in continuous timethe interpolation conditions

If wy = 0, rank condition (58) becomes void and only (57), a

considerably weaker version of condition (49) in Section Ill, ~ W.(A;)R(A\))E (67a)

remains. Hence, for universal tracking regulators to exist the = —p(\)HN I, — A)TE, forjel,

condition 4 < k is necessary, and if there are external W.(A;)L(A)) = p(A) 1, for j € Z,.. (67b)

disturbancesw;, in practice, we must also havé < m.

Consequently, as also noted in [4], [7], [8], [13], and [16]Then, if A/ and IV are given by (38), the regulator (37) is a

asymptotic tracking is only possible under certain specifimiversal tracking regulator, and any other universal tracking

conditions. regulator (37) is equivalent to one obtained in this way.

for j € Z,..
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Proof: The proof follows the same lines as that ofor all & € C", 4 € C* satisfying
Theorem 4.1, except that (39) from Corollary 2.2 is used in L -
lieu of (66). Sincerank £ = ¢ < n, (E*E)~* exists and (67a) AT = Az + Bu (73)
can be solved. _ _ Ll for all A € C such that|\] = 1. It can be shown [21]
When ;i > k, there are no universal tracking regulatorshat if this condition fails in a strong way, i.e., there are
and in order to damp the steady-state tracking error we shall;, and A, |\| = 1, such thatA(i, @) < 0, then there

therefore next turn to an optimization procedure. This is the an external disturbance, such thatinf® = —oc. In
topic of the next section. this section, however, we shall only need theak frequency
domain conditiorthat (72) and (73) hold foA = Ay, Ag, - -+,
V. LINEAR QUADRATIC OPTIMIZATION An, defined as in (55).
FOR TRACKING AND DAMPING Both of these conditions are invariant under the action of

We now return to the optimization problem stated iﬁhe feedback group

Section 1. In this section we consider only linear regulators. (A, B) — (PAT™' + TBK, TB)

Later, in Section VI, we demonstrate that under slightly ] ) ) ] ) .
stronger technical conditions the optimal universal regulatofé'erel’ is a nonsingular matrix andl’ is an arbitrary matrix of
presented here are actually optimal in the much larger cl&¥¥ropriate dimensions. Moreover, sin¢éas no eigenvalues

N, which includes nonlinear regulators. on the unit circle, the inverse

Let us regall that the problem under consideration is to Ay = (M, — AL (74)
control the disturbed system (1) by feedback from the output
1, SO as to minimize the cost function exists for all A on the unit circle, and hencé = A,B1 so

- that A(Z, @) = 4*II(\)% whereII(A) is the Hermitiank x &
1 . .
® = limsup T Z {Ao(a:t, w) + |2 — 7;t|2} (68) matrix function

e 7 2 O = [AAB } * [Q S } [AAB } (75)

where Ag(z, ) is the quadratic form defined by (9). Hence, L ST RIL L

we may not only want to damp the tracking error, but alsé this notation the strong frequency domain condition may
some internal systems variables. As before, both the distbe written

bancew, and the reference s@gnal are harmonic and_gi\_/en_by _ T()) > 0, for all \ on the unit circle (76)
(5), where only the frequencies are known. The optimization is
performed over the class of stabilizing and realizable linear and the weak one as

regulators (12). The problem under consideration is: 1) to find .

the conditions under which there are optimal regulators which () >0, forj=1,2 -, N (77)
areuniversalin the sense that they are optimal for all choices \we now state the main result of this section. It will be

of the amplitudes of (5) and independent of these and 2) dgengthened in Section VI, where we show that under mild

characterize the class of all such universal optimal regulatofgennical conditions the optimal universal regulatordnis
To address this problem, let us first take a closer 100k g{so optimal in the wider clasa/.

the cost function (68). A straightforward reformulation taking Theorem 5.1:Let G()), V,(\), and F(A) be the matrix

(1c) into consideration yields polynomials defined by (26) and (56). Suppose that the matrix
| X A is stable and that the weak frequency domain condition
® = limsup T Z {A(zy, wp) —riHzy — x{H'ry (77) holds, and suppose that
T—oo 1—0 .
d kF i) = 7 ILU7
Ty — T ) (69) rank F'(\;) = ¢, forall j € (78)

i.e., in particular thatn := dim %, > £ := dim w,. Then,
there exists an optimal regulator i which is universal in

x)* <Q S) <x> the sense that it is optimal for all values f&')};<7, and

where A(z, ) is the real quadratic form

Az, u) = < s* R (70)  {rD},c7. and does not depend on these vector amplitudes.
More precisely, leto(A\) be an arbitrary stable scalar real
with the real matrices), S, and R given by polynomial, and let?(\) and () be matrix polynomials of
dimensiong: x m andk x i, respectively, satisfying the degree
requirements (27) and the interpolation conditions

u u

Q=0Qo+H"H, S =58 +H*J, R=Ry+J*J.

(71)
The quadratic form (70) need not be nonnegative definite but ROHDE(N;) =p(M)UN),  forjeZ, (79a)
must of course satisfy some condition ensuring ihétd # L(\) :p()\j)fj()\j)7 forjeZ, (79b)

—oo. As we shall see, a sufficient condition for this is the o
strong frequency domain conditione., that there is @ > 0 Wwith U and U given by

such that U\ = —II(N) HQA\B + S|*A\E
A(E, @) = (|12 + |a]*) (72) U(A) =IA) T W.(N)" (80)
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whereW.(\) := HA\B + J. Then the regulator (28) is an(60) of (x;, «;). In fact, we have the following lemma. The
universal regulator, which is optimal ifi, providedM andN  proof follows from a simple completion-of-squares argument
are given by (29) and any other universal regulator (28), whieimd is deferred to Appendix A.

is optimal in £, is equivalent to one obtained in this way. Lemma 5.5:Let (x4, u;) be any solution to the closed-loop
Since, by assumptiorf'(x;)*F'(A,) is nonsingular forj €  system (1), (12), where (12) is a stabilizing and realizable reg-
Z,, (79a) has the solution ulator, and suppose that the weak frequency domain condition

(77) holds. Then the cost function (68) exists as a usual limit,

R(A;) = pANUM)DIEN) FANITTFN)* + R; and it takes the value

R;F()\)=0 (81)
N

for j € Z,, and these are precisely all solutions of (79a).¢ = Z{(u(j) - ug{))t)*ﬂ()\j)(u(j) — ug{))t)}+<1>mm (82)
Clearly, there are always matrix polynomia ) and L(\) j=0
satisfying (81), (79b) and the degree constraints (27), provided
the degree of the stable scalar polynomidl\) is chosen where, forj =1,2,---, N
sufficiently large. '

Remark 5.2:If m < ¢, there exist optimal regulators, but, uD, = UG + T(\)yrD (83)

as explained in Remark 4.2, universality is not a generic

property; therefore, for all practical purposes, there are Rgth 7 and U given by (80) and®,,;, by
optimal universal regulators if. < ¢.

Remark 5.3:Before proceeding to the proof of Theorem N i i i i
5.1, let us make certain that it is consistent with the results®uin = » o), ol =g — IO, (84)
of Section IV. To this end, let us consider a cost function (7), j=1

i.e., suppose thatg = 0. Then
I(A) = WL(A)* WL ()

where

= D@ - H* )
where they x k matrix function W, is given by (21). If %~ [A&'Ew ! } (Q - H™H) [AAJ-E“J ’ }

u < k, the weak frequency domain condition cannot hold,

so Theorem 5.1 does not apply. Instead, Theorem 4.1 should

be used. If = k, the weak frequency domain condition is

a consequence of condition (57), and it is easy to check thain the expression (82) for the cost functidn only w(V),

the optimal cost will be zero, as required by Theorem 4.¢, ---, u() depend on the regulator to be chosen. They are

Moreover, interpolation conditions (59) and (79) are identicaliefined by (61b), i.e.,

Finally, if » > k, no universal tracking regulator exists by ) ) R )

Theorem 4.1, and the optimal cost will be nonzero in general. u) =W, (A Ew® + 0, (A\)r). (86)
Remark 5.4—Generalized Internal Model Principl8s in

Remark 4.3, let us consider the case when= y,, so that Recall that we consider the cla¥® of external disturbances

H=C,J=0,pu=m,andV, = xW., andL(}) = —N(\) with arbitrary w? for j € Z,, andw'?) = 0 for j € Z,, =

+ [HA,\j Ewd — rﬂ *[HA,\j Ewd — rﬂ. (85)

in the regulator (28). For simplicity, also assume that= Z,,. {1, 2, ---, N}\Z,, and the clas® of reference signals with
If Ao = 0andm = p > k andm > /, the interpolation r") for j € Z, andr) =0forj € Z, ={1,2,---, N}\Z,.
conditions (79) can be written Consequently, if we could find a stabilizing and realiz-

able regulator (12) such that, (2, ... «(") satisfy the

ROANHF(N) = % W (O\)*W.ON]TW.(\)*F();)  optimality conditions
XA
R()\J) = —XE)\J)) [WZ()\j) WZ()\j)] IWZ()\J) u V= uopt? J= 17 27 ) N (87)
J
for j = 1,2, ---, N, as can be seen from (29), (80), andvhich, in view of (86), is the same as

the fact thatQ = C*C, S = 0, and R = 0. All of these ) R ) L )
interpolation conditions are satisfied if the second set is, antl(\;)w? + U(x;))d) = W, () Bw® + ¥, (1,;)rY) (88)
in this case (29) implies that
) then this regulator would be optimal. If, in addition, this regu-
M(Aj) =0, j=12- N lator does not depend on the amplitudés’, w®, -- - w™)

which could be interpreted as generalized internal model andr), r®, ... ¢V and the conditions (88) hold for all

principle for the optimization problem. {wW}z, and {rW}z,, ie., all disturbances iV and all
The basic idea behind the proof of Theorem 5.1 is, as fifference signals ik, then this optimal regulator is also

Theorem 4.1, that whenever a linear stabilizing regulator {iversal. This condition holds if and only if

applied to the system (1), the proce€ss, «.;) tends exponen-

tially to the harmonic steady-state solution (60). Therefore, the

cost function (68) depends only on the harmonic component W, Aj) =

(\), forjeZ, (89a)
(\), forjeZ,. (89b)
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Proof of Theorem 5.1.Theorem 2.1 states that the regu- Since, by assumptionE*E is a nonsingular matrix of
lator (28) is stabilizing ifA/ and NV are defined by (29) for dimension/ x ¢, (91a) has the solution
some stable scalar real polynomidl\) and some real matrix .
polynomial R()\) satisfying (27), and that any other stabilizing R(\j) = pANUN)(E*E) 'E* + R,
and realizable regulator (28) is equivalent to one obtained in RjE =0 (92)
this way. Moreover
for j € Z,,. There are always matrix polynomial®(1) and
R(\) . L(\) L()) satisfying (92), (91b), and the degree constraints (36),
u(A) = 0 cGl), V(N = ek (90) provided the degree of the stable scalar polynomia) is
“ “ chosen sufficiently large.

We have demonstrated above that (89) is a necessary condition
for the regulator (28) to be an optimal universal regulator, andl. OPTIMALITY IN THE CLASS OF NONLINEAR REGULATORS

inserting (90) into (89) yields precisely (79). Clearly, as we | this section we show that the universal optimal linear

have already discussed, there are always matrix polynomigdgylators described in Theorems 5.1 and 5.7 are actually
R(X) and L()) satisfying these conditions and the degregptimal in a wide class of nonlinear regulators. We now define
constraints (27), provided the degree of the stable scajpls class.

polynomial p(A) is chosen sufficiently large, and provided Given the control system (1), consider the class of

condition (78) is satisfied. nonlinear regu|ators
It remains to prove the converse statement. For any optimal
universal regulatofM, IV, L], the value® of the cost function U = @Y, Y1, = s Ytegs Tty Te—1, =+ Te—p)  (93)

(68) equalsd,,;,, defined by (84). It follows from (82) and the

fact thatII(\;) > 0, for j =1, 2, ---, N, that (87) holds for Which is stabilizing in the sense that any solutign, w;) of

all {w},cr,, and{r} 1 . Therefore, (89) follows from the C_I(_)sed-loop system consisting of (1) and (93) satisfies the
(88). By Theorem 2.1, the regulatigv/, N, L] is equivalent to condition

(28) with M, N given by (29) for some, R, L satisfying the 1

requirements of Theorem 5.1. This regulator is also optimal N3 || = 0 ast — oo. (94)
since equivalent regulators have the same dastt is also

universal becausg\/, N, L] does not depend ofw(’},-7,  This stability condition is quite weak but will suffice for our

and {r(},cr.. O purposes. Of course, a weaker condition has the advantage of
Corollary 5.6: The optimal value of the cost function (68)allowing for a larger class of controls.
in the classt is @,,,;,, defined by (82) and (83). We consider the same problem as in Section V, except that

Note that, although an optimal universal regulator will no¥e now optimize over all regulators itV. Clearly, \" > L.
depend Oﬂ{w(j)}jezw and {7’(j)}jEI,,, the cost function (84) The only price we have to pay for this generalization is that
will. the weak frequency domain condition needs to be replaced by

In the special case of complete state information, ye= the strong one.

z,, condition (78) is always satisfied. In view of Corollary 2.2, Theorem 6.1:Let A be stable, and suppose that the rank
Theorem 5.1 can be considerably simplified in this case, so @endition (78) holds. Then, if the strong frequency domain
state it separately. The proof is the same as for Theorem Z:@ndition (76) holds, the linear optimal universal regulators of
except that we now use the equations of Corollary 2.2.  Theorem 5.1 are optimal in the class.

Theorem 5.7:Suppose thatC = I, so thaty, = a. It turns out that Theorem 6.1 is a simple consequence of the
Moreover, suppose that is stable and that condition (6) homs_corresponding rgsult for com'plete state information. In fact, the
Then, if the weak frequency domain condition (77) holds, thefé@ss of stabilizing and realizable regulators
exists a universal regulator (37), which is optimalinin fact, .
let p()\) be a stable scalar real polynomial, and Rt\) and M(o)ue = N(oyy + L(o)re - with y, = Cz,

L(}) be matn_x polynor_mals satl_s_fymg the degree constraints 5 subclass of the class of stabilizing and realizable regulators
(36) and the interpolation conditions

M(o)uy = N(o)zy + L{o)ry
R(X)E = p(M)U(N;), for j € Z,, (91a) that onl ol structure of red. But )
-~ ) in that only a special structure &f is required. But, as seen in
L(A) = p(A)U ), forjeZ (91b) Section V, an optimal universal regulator in the former class
. is optimal also in the latter, since the same optimal value
whereU andU are defined as in (80). Then, A/ andV are &,;, is achieved (Corollary 5.6 and Theorem 5.7). (The only
given by (38), the regulator (37) is a universal regulator, whidfifference between the cases of complete and incomplete state
is optimal in£. Conversely, any other universal regulator (37)nformation is that a higher degree regulator may be required
which is optimal in£, is equivalent to one obtained in thisin the latter case to achieve the optimum.) Consequently, if
way. Finally, the optimal value of the cost function (68) isve can prove the following theorem, we have also proved
given by (84). Theorem 6.1.
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Theorem 6.2:Let A be stable, and suppose that= I, The optimal value of the cost function is
and thatrank £ = £. Then, if the strong frequency domain 1
condition (76) holds, the linear optimal universal regulators of D nin = limsup = (—qr41) (103)
Theorem 5.7 are optimal in the clagé. T—oo T
In order to prove this theorem we consider an optimizatiaghere
problem which unlike that in Section V does not require that

a linear regulator has been applied. More precisely, let us Q41 =qr — vy Pup — Py — Ui Pit1

first consider the problem of finding a process:, u:)}icz, + 7t Ry + i, g = 0. (104)
which minimizes the cost function (8), subject to the con-

straints (94) and If the limit limr_,oo(1/T)gr+1 exists, any optimal process

(2, uy) is produced in this way.
Note that the control (101) cannot in general be used in
gPractice, since it depends on future valuespfandr;. Even
in the harmonic case when this dependence can be resolved,
[24], [25], and [29])this control law has ser.ious disadvantages [21, Sec. lll]. It is
aneveIoped here as an instrument of proof.
Next, let us return to our original problem and take:=
Ew, and r, to be harmonic, given by (5). Then a simple

Tyl = Axy + Bugy + vy, To=a (95)

where now{r; };cz, and{v:}:cz. are arbitrary bounded an
complex-valued vector sequences.

It is well known (see, e.qg., [20], [21],
that if the strong frequency domain condition (76) holds al
(A, B) is stabilizable, then the algebraic Riccati equation

P=A*PA— (A*PB+ S)(B*PB+ R)™* calculation, using (99) and (100), yields the representation
x (A*PB+8)"+Q (96) N
) ) ) ) 7 = Z 1) it with 7@ = ij(j) + er(j) (105)
has a unique symmetric solutidghwhich renders the feedback o
matrix
where
I'= A+BK where K = —(B*PB+R) Y{(A*PB+S)* .
(97) II; = —R'B*(I-\I")7'PE
stable in the sense that all eigenvalued'dfe strictly inside f[j = _ R‘l[J* + X\ B*(I — \\T)™HH + JK)*].
the unit circle. We shall refer to this solution as stabilizing _ N
solution of (96). For this solution we also have that We are now in a position to prove Theorem 6.1.
R Proof of Theorem 6.1:Clearly, for any regulator inV,
R=B"PB+R (98) (103) is a lower bound for the cogt. Therefore, if we can

. itive definite demonstrate that there is a regulatordrwhich achieves the
IS posilive cetinite. same value (103) of the co$t, this regulator must be optimal

Then we have the following result, Whlch should be COMiso inA, and so must all regulators which are optimaldn
pared to [21, Th. 2.3), the proof of which we defer to To this end, let us introduce a new contigl so that

Appendix B.
Lemma 6.3:Let (A4, B) be stabilizable and suppose that w = Kz + 1y (106)
the strong frequency domain condition (76) holds so that (96)
has a stabilizing solutio®. Moreover, let transforming the system (1a) to
7y = —R™Y (B pyy1 + B*Pv, — J*ry) (99) Zep1 = Dwy + Bl + Ew,. (107)
where We want to find a stabilizing and realizable regulator
= (TP = 3 (T THH + JK) 7. (100) M(@) = Nioyo + Lio)r. (108)
k=t k=t

so that the closed-loop system (106)—(108) has a solution
Then the problem to minimize the cost function (8) subje¢t:,, «;) satisfying (101) for some; with the property (102).
to constraints (94) and (95) is solved by a procéss u:) Then, by Lemma 6.3, the regulator (106), (108), i.e.,

such that
M(co)uy = [N(o) + M(o) K]y + L(o)r (109)
Ut :K.I't + 7 + € (101)
is optimal in A/. Therefore, the optimal linear regulators of
whereK is given by (97) and¢, },cz. is any vector sequence Theorem 2.1 must be optimal also Jv.

such that Since (108) is stabilizing, the solutigm,, ) of the closed-
1 X loop system (107), (108) tends exponentially to a harmonic
limsup — Y |ef* = 0. (102) solution
T—oo T
t=0 N N
0 __ () ,i8;t N ~(5) 38t
INote that there is a misprint in [21, p. 788]: In Theorem 2.1, replace Te = Z rrre Uy = Z urre

“statements hold” for “statements are equivalent.” J=1 Jj=1
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which of course yields the same valuedacas (z;, u;). Now, The matrix polynomials (26) are
if we can chooseM, N, L so that

A b
a9 =20, forj=1,2,---,N  (110) G0 = [1 A+a} and v, (A) =1.
and hencel) = 7y, thene, := 4, — 7, has the property (102) Let us first takew; = 0 and consider the problem to find
and (106) becomes (101) as required. a T-universal regulator
To show that there aré/, N, L such that (110) holds, we
first apply Corollary 2.2 to the system (107), whdretakes M(o)us = N(o)y: + L(o)r: (112)

the place ofA and 4, that of u,. In fact, by Corollary 2.2,
there is a stable scalar polynomijaland matrix polynomials
R, L such thatdeg R < deg p anddeg L < deg p so that

M, N are given by c#0 and 7 stable (113)
M) = p(\M I + RO)B and N(A) = RO)A, —T)

so that z, tends asymptotically to,. By Corollary 3.3, a
T-universal regulator exists if and only if

where

Sl P(A) i= eA? + (ac + DA + be.
R(N\) - LX)
a(A) = ()’ Ya(A) = N In fact, W.(\) = ¥(N\)/x(A). In this case, (112) is a T-
universal regulator if and only if
However, i, tends exponentially to the harmonic solutigh

Since therefore M=pyp+R, ~ N=xR, L=pox (114)
0 al R(\)) B L) ] iese for some polynomialspy and R such thatp, is stable and
t = 221 o) Y T e deg R < deg po + 1 or is equivalent to one obtained in this
=

way. This corresponds to the choige= py2). Of course,
and, is given by (105), the optimality condition (110) will asymptotic tracking is achieved faill choices of reference
be satisfied for al{w()};cz, and {r@} ez if signal 7.
If, instead, we consider a reference signal
RONE =p(M)I;,  j €y
L(A)) Ip()\j)ﬂj, jeT. ry = ay cos(61t + 1) + aa cos(f2t + ©2) (115)

Since E is full rank, in view of the discussion in Section \VWhere the frequencies, 6 are given, but the amplitudes,

p, R, L can be chosen to satisfy these interpolatioff2 and the phaseg:, @2 are unknown, the class of regulators
conditions. O (112) which achieve asymptotic tracking is much larger, and

condition (113) need not be satisfied but can be exchanged for

VIl. SOME SIMPLE NUMERICAL EXAMPLES () £ 0, forj =1, 2. (116)

To illustrate the results of this paper, let us consider the ) .
system In fact, by Theorem 4.1, in this case we may choose any

stabilizing regulator

Yev2 + @Y1 + by = v +wy (111)

Zt = Y41 + ClUy [p(o) + R(0)]ur = x(o)R(o)y + L(o)r4 (117)
where v, is the control,3 and »; are outputs, and the provided p is stable and the degree constraint (27) and the
characteristic polynomial interpolation conditions

x() =X +ad+ b L() = pl(e®)x(e%) fp(e®),  Tor j=1,2
is stable withb # 0. Defining the state are satisfied. The same regulator is obtained by applying
y Theorem 5.1, now observing that (116) is the weak frequency
Ty = { ;1} domain condition; see Remark 5.3. This allows for more tuning

parameters to satisfy other design specifications. Of course, if
the plant equations (111) can be written in state-space fopondition (113) is fulfilled, the T-universal regulator can still

(1), where be used.
As a numerical example, suppose that 0.4, b = 0.7, and
A= {_a _b} B = {1} E= [1} ¢ =1, and letd; = 1.0 andé, = 0.5. Then condition (113)
1 0 0 0 is satisfied, so a T-universal regulator exists. Such a regulator
so thaty is the characteristic polynomial of, and is obtained by, for example, setting = 1 and R = 0 in

(114). If oy = 2 and s = 1 and the initial conditions are
c=[0 1], H=[1 0], J=c yo = y1 = 1, this yields the error depicted in Fig. 2. The
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Fig. 2.
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Fig. 3.
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dashed line in the same figure is the tracking error obtainettaightforward calculation yields

by settingu; = 0.

80

1+cax(A 1)

Next, let us take: = 0.75, while ¢ andb remain the same. U\ = — DO + BV
Then becomes unstable, so a T-universal regulator fails to ’ 7 X
exist. Although condition (113) fails, we could still obtain f]()\) __ pOT W)

asymptotic tracking by using a universal tracking regulator,
constructed as in Theorem 4.1, provided condition (116) holdgy any \ on the unit circle. In order to construct an optimal

the section.

We now add an harmonic disturbance

wy = aeg cos(fzt + @3) + aa cos(fat + 4)

in the system (111), whe#, 6, are given, butvs, ay andes,

1 T
Pt 2

2 — 1?4 /3%2}7

Since the matrice§), S, and R in (71) become

(118)

B>0. (119)

P(A) = X° + p1 XY + pa X% + p3A” + py X + s

P+ BIx(V

100

of degree at least five. The parametgrs p2, p3, p4, P35, aS
well as 3 will be available for tuning in order to improve the
overall design. Then, defining the real numberswv, us, vo,
4 are unknown. Suppose we want to determine an optimal, vs, us, vy via
universal regulator for the cost function

p(ewﬂ')U(ewﬂ') =u; + vy,
p(¢®)T () =, + iy,
it is easily seen that the polynomials
R(\) = Ri)® + RoN* + Ra\ + Ry

forj=1,2
forj=3,4

10 o , L(X) =LiA’ 4+ LyA* 4+ LaA + Ly
QI[ }, 52[ ) R=p+c . . . . iy . .
0 0 0] will satisfy the interpolation conditions (79a) if and only if its
a simple calculation yields coefficients satisfy the linear system of equations

9 cos 301 cos 260, cos 61 17TRy Ly UL U3
H()\) — Z/}()\) + /3 sin 391 sin 291 sin 91 0 RQ LQ _ | U3
x(A) cos 30> cos 205 cos by 1||Rs La|  |us wuy
sin 305 sin 260, sin 8, 01 LRy Ly Uy Uy

for (75), and therefore the strong frequency domain condition

(76) is always satisfied ifsi > 0, so any optimal universal Consequently, by Theorem 5.1, (117) is an optimal universal
regulator (112) is optimal in the larger clads of possibly regulator if R()\) and L()) are determined in this way.
nonlinear regulators described in Section VI.Af= 0, the For an example, take as before= 0.4, b = 0.7, and
strong frequency domain condition will fail if and only if thec = 0.75. Moreover, we choose a disturbance (118) with
polynomial 4> has a root on the unit circle, while the wealkrequenciesf; = 0.5 and 8, = 0.3, while the harmonic
frequency condition (77) will still hold provided we avoidreference signal (115) has the same frequenéies= 1.0,
choosing any of the frequencies in (115) and (118) so tht = 0.5 as in the first simulation. In Fig. 3 we illustrate the
e, ¢f2 ¢ or ¢ is such a root. tracking error of the optimal universal regulator corresponding
Next, let us consider the interpolation condition (79)Xo a polynomialp with roots 0.3+ 0.3, 0.3+ 0.2, 0.5, and
Clearly, F'(A) defined by (56) is identically one, and a3 = 0.75. The amplitudes in (115) and (118) have been taken
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3 y . R - — _ reference signal is no larger than the dimensforof the
control, such a regulator exists under mild conditions. This
P is in harmony with other results in the literature [4]-[8], [13],

[16], where, however, the continuous-time case is considered.
We provided complete solutions of these problems in discrete
time, and our proof is considerably simpler.

If the system is also corrupted by a harmonic disturbance
wy, asymptotic tracking may still be possible provided the
dimensior? of the disturbance is no larger than the dimension
m of the output available for feedback. However, if a certain
rank condition fails, which in particular is the caseuif> k,
asymptotic tracking is not possible, but a steady-state error
will remain. Therefore, we considered next an optimal control
problem to damp the steady-state tracking error, also giving
the option to damp internal system variables. We characterized

-4 . L L . the class of all optimal regulators which are universal in the
0 20 40 60 80 100 . . .

sense that they are optimal for all choices of the amplitudes

Fig. 4. of , andw;. Such regulators were shown to exist if the weak

frequency domain condition holds add< m. On the other

tobea; = 2, ays = as = 1, anday = 4, and the initial hand, if m < £, there are always algebraic conditions on the
conditions arey, = y1 = 1. As before, the dashed line isSystem pgram_eters, implying that universality is not a generic
the tracking error obtained by setting = 0. Remember Property in this case. . .

that, since3 # 0, the control energy is also damped, so We have also shown that all optimal universal regulators
there is a certain tradeoff here. We remark that it is importaf@? Pe chosen as linear even if the optimization is over a
to tune the free parameters to obtain good properties of 'Y 1arge class of nonlinear regulators, provided the strong
regulator. In particular, the transients, which do not affect tf{#quency domain condition holds. We have given complete

cost function, can change dramatically with different choicédaracterizations of all linear optimal universal regulators in
of free parameters terms of parameterizations containing many free parameters.

Now, settinge = 0 and a3 = s = # = 0 instead, Thi's allows for a conside.rable amount of design frgedom,
while keeping all the other parameters the same, we obtdfich can be used to satisfy other design specifications via
the errors in Fig. 4. As seen, the error goes asymptoticalRPp shaping. Indeepl, we stress that our solutions are op_tlmal
to zero, despite the fact that condition (113) is not fulfilled s the sense stated in this paper only, and that other desirable
that a T-universal regulator does not exist. In fact, by Theoref§Sign specifications may not be satisfied for an arbitrary
4.1, this is a universal tracking regulator which exists sindiniversal optimal regulator.
®(A) = XA # 0 on the unit circle. In order to speed up the
convergence, the roots pfhave been reset at 04# 0.1, 0.3 APPENDIX A
+ 0.2, and 0.8. Since now we do not have the disturbance PROOF OF LEMMA 5.5
frequenciesd; = 0.5 and#y = 0.3, we could choose another  gjnce z, andw, tend exponentially to the harmonic com-
R()) to possibly get a universal tracking regulator with &,nents (60), only these contribute to the cost function (70):
better transient. consequently, the usual limit (rather than just limsup) does

exist in (69), and it is given by = 37_ | ®0) where

VIIl. CONCLUSIONS
oW — A(xw’ u(i)) _ ) ( HaW + Juo))

In this paper we have giveocompletecharacterizations of

regulators which satisfy certain tracking specifications and _ (Hx(j) _i_,]u(j))*T(j) + )0 (Al)
which are universal in the sense that they are independent
of disturbances and tracking signals and apply regardlessfgf ; = 1, 2. ..., N. In fact, this follows from the argument
the values of these. leading to (64). Now, in view of the constraint (1a)

As a preliminary, we considered a problem of asymptotic
tracking of an arbitrary signat,, and we characterized all 2 = Ay, (Bu(j) +Ew(j)) (A2)

regulators which are universal with respect to the choice of

r+. We showed that such universal regulators exist only und@td therefore (Al) takes the form
very special conditions. These conditions can be considerably G) _ G NG “ (3) Gye. '
relaxed if the reference signal is exchanged for a harmonic O = u I U 4 pyut” 4w g+ g (A3)
signal with known frequencies but unknown amplitudes anghererr();) > 0 if the weak frequency domain condition (77)
phases, and we want the regulator to be universal in tRefilled. Here g; is given by (85), and

sense that it achieves asymptotic tracking for all choices ! ' '

of amplitudes and phases. Then, if the dimensionf the  p; = [QAx, B + S]* Ay, BwY) — [HALB + J]*r(). (A4)
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Therefore, assuming that the weak frequency domain conditiBg virtue of condition (94) and the boundednesspof
(77) holds so thalI();) > 0 for j =1, 2, ---, N, we may 1
complete squares in (A3) to obtain

T T

where of course the last term tends to zeroZas— oo.
Consequently, for any admissible;, «.), the cost function

(Vi — Vo) = = qrq1 +o(1)

(A5)

min

) — (uo) _ uf,{,)t)*ﬂ( Aj)(um _ ugﬁ) PG

where (B1) becomes
G _ _ N—1, . Gy _ ., o N1, 1 T
Ugpt = ()™ pj, Qin = @ p; H(A;)""p;- (A6) ® = limsup { T Z (up — Kay — mp)*
T—o0 +=0

From this the equations of the lemma follow readily.

APPENDIX B
PROOF OFLEMMA 6.3

The proof is similarmutatis mutandisto the one given in
[21, Sec. Il]. Recall from (69) that the cost function can be
written

- 1
X R(U,t — K.’L’t — 7I't) — T (_ZT+1}. (BS)

Therefore, since? > 0

1
® > limsup T (—qr+1) (B6)

T—o0
T

Z Qg e, t)

t=0

for any admissible control. Clearly, equality would be achieved
if we could take(x, u;) to satisfy (101) since:; does not
contribute to® by virtue of (102). Hence it remains to prove
that such a process satisfies the stability condition (94). To this

1
¢ = limsu

= B1
msup o (B1)

where

end, insert (101) in (95) to obtain

Qzx, u, t) =M, v) —rfHe — 2" H"ry —r{ Ju

—u* Ty ol

(B2)

Ti41 = F.’L’t + B(’ﬂ't + Ct) + V. (B?)

_ _ _ _ Since{m }icz, and{v;};cz, are bounded{¢,},cz, satisfies
with A(z, u) being the quadratic form (70). Next, introducq102) and ' is a stability matrix, {z,}.c2, satisfies the

the Lyapunov function
V(z,t)=a"Px+piz+2"p+ ¢ (B3)

where P is the unique stabilizing solution of (96}p; }tez,

weak stability condition (94). The last statement follows
immediately from (B5) and (B6).
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