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Abstract: We study modeling and identification of processes with a spectral density matrix
of low rank. Equivalently, we consider processes having an innovation of reduced dimension for
which Prediction Error Methods (PEM) algorithms are not directly applicable. We show that
these processes admit a special feedback structure with a deterministic feedback channel which
can be used to split the identification in two steps, one of which can be based on standard
algorithms while the other is based on a deterministic least squares fit.
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1. INTRODUCTION

Quite often in the identification of large-scale time series
one has to deal with low rank signals which in general, have
a rank deficient spectral density. These may arise in diverse
areas such as economics, networked systems, neuroscience
and so on.
Suppose we want to identify an (m+p)-dimensional vector
time series y which is weakly stationary, p.n.d. with zero
mean and a rational spectral density Φ of rank m. This
spectral density can always be written in factorized form

Φ(eiθ) = W (eiθ)W (e−iθ)>, (1)

with W an (m+ p)×m full rank causal rational spectral
factor. This spectral rank deficiency case is called reduced-
rank spectra and y a sparse (or singular) signal in some
literature. Researchers discuss singular time series from
different points of view. Singular autoregressive moving
average (ARMA) models are discussed in Deistler (2019)
or for factor models see Deistler et al. (2010); for state
space model see Cao, Lindquist, and Picci (2020). The
identification of singular models is in particular addressed
in Van den Hof, Weerts, and Dankers (2017), Basu,
Li, and Mochailidis (2019). Van den Hof, Weerts, and
Dankers (2017) proposes a Prediction Error Method
(PEM) identification of singular time series with reduced-
rank output noise. Basu, Li, and Mochailidis (2019)
studies the identification of singular vector autoregressive
(VAR) models with singular square transfer matrices. In
Georgiou and Lindquist (2019) it was shown that there
are deterministic relations between the entries of a singular
process y(t) while Cao, Lindquist, and Picci (2020) made
these deterministic relations specified in a feedback model.

Let

y(t) :=

[
y1(t)
y2(t)

]
, (2)

where y1(t), y2(t) are jointly stationary of dimension m
and p. By properly rearranging the components of y, we
may assume that y1(t) is a process of full rank m. Then

Φ(z) =

[
Φ11(z) Φ12(z)
Φ21(z) Φ22(z)

]
. (3)

where Φ11(z) is full rank. In this paper, we shall show
that the low rank structure implies a deterministic relation
between the variables y1(t) and y2(t) which is slightly
different from that in Cao, Lindquist, and Picci (2020).
We show that this structure is natural and helps in the
identification of low rank vector processes.

The structure of this paper is as follows. In Section 2
we introduce feedback models for low-rank processes, and
prove the existence of a deterministic dynamical relation
which reveals the special structure of these processes. In
Section 3 we exploit the special feedback structure for
identification of the transfer functions of the white noise
representation models. The identification of processes with
an external measurable input is considered in Section 4.
Several simulation examples are reported in Section 5.
Finally, we give some conclusions in Section 6.

2. FEEDBACK MODELS OF STATIONARY
PROCESSES

In this section, we shall first review the definition and some
properties of general feedback models. Then we will derive
a special feedback model for low-rank processes and prove
the existence of a deterministic relation between y1(t) and
y2(t).
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Definition 1. (Feedback Model). A Feedback model of the

joint process y(t) := [y1(t) y2(t)]
>

of dimension m+ p is a
pair of equations

y1(t) = F (z)y2(t) + v(t), (4a)

y2(t) = H(z)y1(t) + r(t), t ∈ Z (4b)

satisfying the following conditions:

• v and r are jointly stationary uncorrelated processes
called the modeling error and the input noise;
• F (z) and H(z) are m × p, p × m causal transfer

function matrices;
• the closed loop system mapping [v, r]> to [y1, y2]> is

well-posed and internally stable ;

In (4) z is the one step ahead shift operator acting as:
zy(t) = y(t+1). The block diagram illustrating a feedback
representation is shown in Fig. 1. Note that the transfer
functions F (z) and H(z) are in general not stable, but
the overall feedback configuration needs to be internally
stable. In the sequel, we shall often suppress the argument
z whenever there is no risk of misunderstanding. It can

+
++

+

Fig. 1. Block diagram illustrating a feedback model

be shown that feedback representations of p.n.d. jointly
stationary processes always exist. Let H−t (y1) be the closed
span of the past components {y11(τ), . . . , y1m(τ)} | τ < t}
of the vector process y1 in the Hilbert space of random
variables, and let H−t (y2) be defined likewise in terms
of {y21(τ), y22(τ), . . . , y2p(τ) | τ < t}. A representation
similar to (4) may be gotten from the formulas for causal
Wiener filters expressing both y1(t) and y2(t) as a sum
of the best linear estimate based on the past of the other
process plus an error term

y1(t) = E{y1(t) | H−t (y2)}+ v(t), (5a)

y2(t) = E{y2(t) | H−t (y1)}+ r(t). (5b)

For a processes with a rational spectral density the Wiener
predictors can be expressed in terms of causal rational
transfer functions F (z) and H(z) as in Fig 1. Although
the errors v and r obtained by the procedure (5) may be
correlated, one can show that there exist feedback model
representations where they are uncorrelated.

Theorem 2. The transfer function matrix T (z) from

[
v
r

]
to

[
y1
y2

]
of the feedback model is given by

T (z) =

[
P (z) P (z)F (z)

Q(z)H(z) Q(z)

]
, (6a)

with
P (z) = (I − F (z)H(z))−1,

Q(z) = (I −H(z)F (z))−1
(6b)

where the inverses exist. Moreover, T (z) is a full rank
(invertible a.e.) and (strictly) stable function which yields

Φ(z) = T (z)

[
Φv(z) 0

0 Φr(z)

]
T (z)∗, (7)

where Φv(z) and Φr(z) are the spectral densities of v and
r, respectively, and ∗ denotes transpose conjugate.

Proof. The feedback system in Fig. 1 must be internally
stable since the stationary processes v and r produce
stationary processes y and u of finite variance. Hence T (z)
is (strictly) stable. From (4) we have[

y
u

]
=

[
0 F (z)

H(z) 0

] [
y
u

]
+

[
v
r

]
and therefore

N(z)

[
y
u

]
=

[
v
r

]
,

where

N(z) :=

[
I −F (z)

−H(z) I

]
.

Now the transfer function I − H(z)F (z) must be invert-
ible by well-posedness of the feedback system and conse-
quently, N(z) is invertible, while a straightforward calcula-
tion shows that T (z)N(z) = I and hence T (z) = N(z)−1,
as claimed. Then (7) is immediate. 2

Since T (eiθ) has full rank a.e., Φ is rank deficient if and
only if at least one of Φv or Φr is.

Lemma 3. Suppose (FΦrF
∗ + Φv) is positive definite a.e.

on the imaginary axis. Then

H = Φ21Φ−111 − ΦrF
∗(Φv + FΦrF

∗)−1(I − FH), (8)

that is
H = Φ21Φ−111 (9)

if and only if Φr ≡ 0.

Proof. From (6) and (7), we have

Φ21 = Q(HΦv + ΦrF
∗)P ∗ = QHΦvP

∗ +QΦrF
∗P ∗,

Φ11 = P (Φv + FΦrF
∗)P ∗,

and using the easily verified relations

PF = FQ, HP = QH.

we get
Φ21 = HPΦvP

∗ +QΦrF
∗P ∗.

Adding and subtracting the term HPFΦrF
∗P ∗ we end up

with

Φ21 = HΦ11 + (Q−QHF )ΦrF
∗P ∗

= HΦ11 + ΦrF
∗P ∗

since Q−QHF = I. Then (9) follows if and only if Φr = 0
since P is invertible and F times a spectral density can
be identically zero only if the spectral density is zero (as
otherwise this would imply that the output process of a
filter with stochastic input would have to be orthogonal to
the input). 2

In the following we specialize to feedback models of rank
deficient processes. We shall show that there are feedback
model representations where the feedback channel is de-
scribed by a deterministic relation between y1 and y2.



Theorem 4. Let y be an (m + p)-dimensional process of
rank m. Any full rank m-dimensional subvector process y1
of y can be represented by a feedback scheme of the form

y1 = F (z)y2 + v, (10a)

y2 =H(z)y1. (10b)

where the input noise v is of full rank m.

Proof. Recall that n-tuples of real rational functions form
a vector space Rn(z) where the rank of a rational matrix
is the rank almost everywhere.

The claim is equivalent to the two statements
1. If we have the structure (10), i.e. Φr ≡ 0; then y1 is of
full rank m = rank(Φ).
2. Conversely if y1 is of full rank m = rank(Φ) then Φr ≡ 0.

Part 1 follows from Lemma 3 since because of (7) then Φv
must have rank m(= rank(Φ)).
Part 2 is not so immediate. One way to show it could be
as follows.

Since Φ(z) has rank m a.e. there must be a full rank
p× (m+ p) rational matrix which we write in partitioned
form, such that

[A(z)B(z)]Φ(z) = 0 ⇔ [A(z)B(z)]

[
Φ11(z)
Φ21(z)

]
= 0

⇔ [A(z)B(z)]

[
y1(t)
y2(t)

]
= 0

where the last formula has the usual interpretation.

We claim that B(z) must be of full rank p. One can
prove this using the invertibility of Φ11(z). Just multiply
from the left the second relation by any p-dimensional
row vector a(z) such that a(z)B(z) = 0. This would
imply that also a(z)A(z)Φ11(z) = 0 which is impossible
since Φ11(z) is full rank and a(z)B(z) cannot be zero
as the whole matrix [A(z)B(z)] is full rank p. Now take
any nonsingular p × p rational matrix M(z) and consider
instead M(z)[A(z)B(z)], which provides an equivalent
relation. By choosing M(z) = B(z)−1 we can reduce B(z)
to the identity to get

[H(z) I ]

[
y1(t)
y2(t)

]
= 0

where H(z) is a rational matrix function, so that one gets
the deterministic dynamical relation

y2(t) = H(z)y1(t) .

Substituting in the general feedback model one concludes
that u must then be a functional of only the noise v(t) since
y(t) is such. Therefore r is the zero process i.e. Φr = 0.
Hence by Lemma 3 we obtain H(z) = Φ21(z)Φ11(z)−1. 2

3. IDENTIFICATION OF LOW RANK PROCESSES

Suppose we want to identify, say by a PEM method, a low
rank model of an (m+ p)-dimensional time series,

y(t) = W (z)e(t), (11)

with e(t) an m-dimensional white noise of full rank.
Assume y1 and y2 are described by the special feedback
model (10) and introduce the transfer functions

y(t) =

[
y1(t)
y2(t)

]
:=

[
W1(z)
W2(z)

]
e(t), (12)

so that W2(z) = H(z)W1(z). Since y1 (and W1) is full
rank, we can identify an ARMA innovation model for y1
based only on observations of y1(t) on some large enough
interval. Next, since the relation between y2 and y1 is
completely deterministic (see (10)) we can identify H(z)
by imposing a deterministic transfer function model to the
observed data, written A(z−1)y2(t)−B(z−1)y1(t) = 0, t =
1, . . . , N (the minus sign is for convenience) where A(z−1)
and B(z−1) are matrix polynomials in the delay variable
z−1 of dimension p× p and p×m such that

H(z) = A(z−1)−1B(z−1)

is causal. One can always choose A(z−1) monic and B(z−1)
(possibly with the zero degree coefficient B0 = 0) so that
the transfer function corresponds to the model

y2(t) =

q∑
k=1

Aky2(t−k)+

r∑
k=0

Bky1(t−k), t = 1, . . . , N,

(13)
where we have been writing A(z−1) = I −

∑q
k=1Akz

−k

and B(z−1) =
∑r
k=0Bkz

−k. The above equation involves
delayed components of the observed trajectory data of
y. The coefficients can then be estimated by solving
a deterministic overdetermined linear system by least
squares.

Since the procedure above ignores the structure of the first
equation in model (10), we need to work with a model
involving both transfer functions F and H. The model, as-
sumed in innovation form (an innovation representation is
needed to guarantee model uniqueness i.e.identifiability),
is

y1 = F (z)y2 +K(z)e, (14a)

y2 =H(z)y1. (14b)

with K(z) a square spectral factor representation, i.e.
v(t) := K(z)e(t), which we assume normalized at infinity,
i.e. K(∞) = I, and both P (z)K(z) and H(z)P (z)K(z)
minimum-phase. Note that From (6) we have[

W1

W2

]
= T

[
K
0

]
=

[
PK
QHK

]
=

[
PK
HPK

]
. (15)

One may ask how one can recover the direct transfer func-
tion F (z) from the identified W1(z) and H(z). This would
amount to solving for F the relation W1 = (I − FH)−1K
which, assumingH is given, contains two unknowns. Hence
F is not identifiable by this procedure.

Instead we can transform (14a) into an ARMAX model
by using matrix-fraction descriptions. Although this model
has (deterministic) feedback, the Prediction Error method,
see Ljung (2002), allows to identify these transfer func-
tions. To avoid bringing in the dynamics of y2, we should
impose F (z) to have at least a unit delay, that is F (z) =
z−1F1(z). Then, in force of the normalization K(∞) = I,
we may write the transfer function of the one-step pre-
dictor (and thus the prediction error) by substituting the
one-step delay of the innovation e(t) = K(z)−1[y1(t) −
F (z)y2(t)] into

ŷ1(t | t− 1) = F1(z)y2(t− 1) + K̃(z)e(t− 1), (16)

where K̃(z) := z(K(z) − I). One can do these operations
in terms of matrix fraction descriptions and carry on
the PEM optimization with respect to the coefficients of



the matrix polynomials. Note that this procedure works
without knowing the dynamics of the ”input” y2 (i.e. no
need to know H(z)). If needed, H(z) can be identified
independently as seen in the previous paragraph.

3.1 Details of the ARMAX identification

To identify F and K we write the equation (14a) as an
ARMAX model,

A(z−1)y1(t) = B(z−1)y2(t) + C(z−1)e(t), (17)

where F (z) = A(z−1)−1B(z−1), K(z) = A(z−1)−1C(z−1)
are coprime matrix fraction descriptions with A monic (of
course these are not the same polynomials as in the previ-
ous paragraph). Although this model has (deterministic)
feedback, the PEM allows us to identify these polynomials
(actually to this end we also need some extra informa-
tion or a suitable procedure to guess the degrees and the
structure of the matrix polynomials). To guarantee well-
posedness of the feedback system either F (z) or H(z) (or
both) must have a delay. Assume that F (z) has at least a
unit delay, that is

F (z) = z−1F1(z) = A(z−1)−1[z−1B1(z−1)].

Then, if C1(z−1) is the remainder after a one-step division
of C by A, i.e.,

C(z−1) = A(z−1) + z−1C1(z−1) ,

(17) can be written

C(z−1)y1(t) = C1(z−1)y1(t− 1) +B1(z−1)y2(t− 1)

+C(z−1)e(t),
(18)

and consequently

C(z−1)ŷ1(t | t− 1)

= C1(z−1)y1(t− 1) +B1(z−1)y2(t− 1).
(19)

Then the recursion (19) can be used to compute the
prediction error ε1(t | t− 1) = y1(t)− ŷ1(t | t− 1). We do
not consider here the difficulties connected to parameter
identifiability of these representations in the vector case,
since this is a theme which has been amply discussed in
the literature.

4. IDENTIFICATION OF A LOW RANK MODEL
WITH AN EXTERNAL INPUT

Referring to a problem discussed by Van den Hof, Weerts,
and Dankers (2017), suppose we want to identify a
multidimensional system with an external input u(t), say

y = Fu+Ke (20)

where e is a white noise process whose dimension is
strictly smaller than the dimension of y and the input u is
completely uncorrelated with e. In this case the model is
called low-rank.
When dim e = dim y and K(z) is square invertible one
could attack the problem by a standard PEM method.
The method however runs into difficulties when the noise
is of smaller dimension than y since then the predictor and
the prediction error are not well-defined.

Referring to the general feedback model for the joint
process we can always assume F causal andK(∞) full rank

and normalized in some way. Consider then the prediction
error of y(t) given the past history of u. We have

ỹ(t) := y(t)− E[y(t) | Ht(u)] = K(z)e(t) (21)

since by causality of F (z) the Wiener predictor is exactly
F (z)u(t). Hence ỹ is a low rank time series in the sense
described in the previous section (with W (z) ≡ K(z)). In
principle we could then use the procedure described above
for time series as we could preliminarily estimate F (z) by
solving a deterministic regression of y(t) on the past of u
and hence get ỹ(t).

5. SIMULATION EXAMPLES

5.1 Example 1

As a first example consider a two-dimensional process of
rank 1 described by

y(t) =

[
W1(z)
W2(z)

]
e(t) (22)

where bothW1(z) andW2(z) are causal and stable rational
transfer functions and e is a scalar white noise of variance
λ2. By simulation we produce a sample of two-dimensional
data. With these data we shall:

• Identify a model for y1 and compute H(z) according
to the first procedure. Compute W2 by using W2 =
HW1 and check if it is identified correctly.

• Identify F and K using the ARMAX model with
input y2 (second procedure) and do the same for the
other component.

We start by simulating a two-dimensional process y(t) of
rank 1 described by (22) where e is a scalar zero mean
white noise of variance λ2 = 1 and choose

W1(z) =
1

1− 0.2z−1 − 0.25z−2 + 0.05z−3
,

W2(z) =
1

1− 0.6z−1 + 0.03z−2 + 0.01z−3
,

which are causal and stable (in fact minimum phase)
rational transfer functions. Note that in this particular
example both y1 and y2 are full rank so that our procedure
would work for both.
We generate a two-dimensional time series of N = 500
data points {ȳi(t); t = 1, . . . , N, i = 1, 2}.
Since the two AR models of y1 and y2 are of order 3
(we assume the order is known) we have to do two AR
identification runs in MATLAB for models of the form

yi(t) = −
3∑
k=1

ai,kyi(t− k) + e(t), t = 1, . . . N,

for i = 1, 2 to obtain the estimates

Ŵi =
1

1 +
∑3
k=1 âi,kz

−k
.

We get the following parameter estimates {âi,k} for the
two models

â1,1 = −0.2429, â1,2 = −0.2325, â1,3 = 0.09528;

â2,1 = −0.6363, â2,2 = 0.03302, â2,3 = 0.07769.

The Bode graphs of the estimated transfer functions Ŵi

compared with the true Wi are shown in Fig. 2 and Fig. 3,
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Fig. 2. Bode diagrams of W1, Ŵ1 and Ŵ ′1

where the blue dash lines denote Wi, and red line denote
Ŵi. From the numerical results and graphs we see that the
estimated transfer functions are close to the true ones both
on parameter values and on the magnitude Bode graphs,
which shows that the identification of Wi from AR models
works well.
Now the theoretical H(z) satisfies the identity

W2(z) = H(z)W1(z), W1(z) = H̄(z)W2(z),

which implies the theoretical formulas for H and H̄:

H(z) =
1 + 0.5z−1

1 + 0.1z−1
H̄(z) =

1 + 0.1z−1

1 + 0.5z−1
.

which are equivalent to the difference equation

(1 + 0.1z−1)y2(t)− (1 + 0.5z−1)y1(t) = 0,

that is

y2(t) = −0.1y2(t− 1) + y1(t) + 0.5y1(t− 1).

These are just theoretical models which we keep for
comparison. Since we don’t know the true coefficients we
shall just use the least squares estimates of the second
transfer function to get

Ĥ(z) =
1 +

∑3
k=1 b̂kz

−k

1 +
∑3
k=1 âkz

−k

=
1 + 0.2236z−1 − 0.0124z−2 + 0.0484z−3

1− 0.1653z−1 + 0.0973z−2 + 0.0157z−3
.

which is a good approximation of the theoretical H(z)

as seen in Fig 4. Using Ĥ and Ŵ1, we may calculate an

estimate of W2 denoted Ŵ2
′

:= ĤŴ1. The Bode graph

of Ŵ2
′

is shown in orange in Fig. 3. Results show that,
though we don’t know the orders of the denominator and
numerator of H, the Bode graph of Ĥ fits that of H well.
From estimates of H and W1, we may also easily obtain an
estimate of W2 which is as good as the estimate obtained
by by direct identification.
By switching the role of the two components y1 and y2,
we may also estimate H̄(z), assumed of the form

H̄(z) =
1 +

∑3
k=1 bkz

−k

1 +
∑3
k=1 akz

−k
,

and obtain the following estimate,

ˆ̄H(z) =
1− 0.1503z−1 + 0.07048z−2 + 0.005883z−3

1 + 0.3678z−1 − 0.008278z−2 + 0.03837z−3
,

the compared Bode graphs are shown in Fig. 5.

Next we want to identify F (z) and K(z) in the feedback
model. To this purpose we use the ARMAX identification
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Fig. 3. Bode diagrams of W2, Ŵ2 and Ŵ ′2
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Fig. 4. Bode diagrams of H, Ĥ
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Fig. 5. Bode diagrams of H̄, ˆ̄H

algorithm described in subsection 3.1, referring to a model
(17), with input y2 and output y1.
Since we do not know the true orders, we suppose

A(z−1) = 1 +

3∑
k=1

akz
−k,

B(z−1) = z−1B1(z−1) = z−1(

3∑
k=0

bkz
−k),

C(z−1) = 1 +

3∑
k=1

ckz
−k.

Note that A should have the same order as C, since we
have assumed that K = A−1C is normalized at ∞. The
estimation results are



F̂ =
−0.02217z−1 − 0.02322z−2 − 0.3411z−3 + 0.2154z−4

1 + 0.0009619z−1 + 0.04707z−2 + 0.02051z−3
,

K̂ =
1 + 0.2588z−1 + 0.4005z−2 + 0.4596z−3

1 + 0.0009619z−1 + 0.04707z−2 + 0.02051z−3
.

With these estimates we then calculate a corresponding
estimate Ŵ ′1 of W1 by the formula

Ŵ ′1 = (1− F̂ Ĥ)−1K̂.

Its Bode graph is the orange line, compared with W1

and Ŵ1 in Fig. 2. Since Ŵ1 has larger orders of both
numerator and denominator than those of W1, there is
some overfitting and the Bode graph of Ŵ ′1 is not as

smooth as those of W1 and Ŵ1 in the high frequency range.

5.2 Example 2

In this subsection and in the next one we consider the iden-
tification of two-dimensional processes of rank 1 subjected
to an external input u. We generate a scalar white noise
u independent of e and identify a 2-dimensional process
model (20) as described in the previous section 4.
In this example the true system is described by

F (z) = z−1
[

0.3 + 0.7z−1 + 0.3z−2

0.15 + 0.9z−1 − 0.5z−2

]
,

K(z) =

1 + 0.1z−1 + 0.4z−2

1 + 0.3z−1 + 0.4z−2
1− 0.1z−1 + 0.4z−2

1− 0.2z−1 + 0.1z−2

 . (23)

We use the same F as in Van den Hof, Weerts, and
Dankers (2017) (where it is called G(q)). But their K is
not normalized, so we use a different one. Both components
of our K(z) here are normalized and minimum-phase so
the overall model is an innovation model.

From the model (23) we generate a two-dimensional time
series of N = 500 data points {ȳi(t); t = 1, . . . , N, i =
1, 2}. The simulation is run with u and e two independent
scalar white noises of variances 2 and 1. Of course here we
also measure the input time series u. First, we estimate
F (z) by fitting the deterministic relations

Ai(z
−1)yi(t) = Bi(z

−1)u(t− 1), (i = 1, 2)

where we assume all with 3 unknown parameters,

A1(z−1) = 1 +

3∑
k=1

a1,kz
−k, A2(z−1) = 1 +

3∑
k=1

a2,kz
−k.

B1(z−1) = z−1
2∑
k=0

b1,kz
−k, B2(z−1) = z−1

2∑
k=0

b2,kz
−k.

Applying a least square method we obtain

y(t)− ỹ(t) = F̂ u(t)

=

 0.2901 + 0.7977z−1 + 0.4339z−2

1 + 0.2137z−1 − 0.02525z−2 − 0.05393z−3
0.1302 + 0.9191z−1 − 0.6492z−2

1− 0.1363z−1 − 0.1090z−2 − 0.05338z−3

u(t− 1).

The corresponding Bode diagrams are shown in Fig. 6 and
in Fig. 7.

Then we estimate K(z) from (21) by the same procedure
we used to estimate W (z) in (22). Suppose

Ai(z
−1)ỹ(t) = Bi(z

−1)e(t), (i = 1, 2)
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Fig. 6. Bode diagrams of F1 and F̂1 in example 2
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Fig. 7. Bode diagrams of F2 and F̂2 in example 2
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Fig. 8. Bode diagrams of K1 and K̂1 in example 2.

with (since K is normalized)

A1(z−1) = 1 +

3∑
k=1

a1,kz
−k, A2(z−1) = 1 +

3∑
k=1

a2,kz
−k.

B1(z−1) = 1 +

3∑
k=1

b1,kz
−k, B2(z−1) = 1 +

3∑
k=1

b2,kz
−k.

and obtain

K̂(z) =

 1 + 0.4940z−1 + 0.2391z−2 + 0.1936z−3

1 + 0.7235z−1 + 0.3215z−2 + 0.07442z−3
1 + 0.5175z−1 + 0.3272z−2 + 0.03482z−3

1 + 0.4528z−1 − 0.0283z−2 + 0.07029z−3

 ,
whose corresponding Bode diagrams are in Fig. 8 and
Fig. 9. Here we obtain reasonable estimates of both K1

and K2.
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Fig. 9. Bode diagrams of K2 and K̂2 in example 2.

5.3 Example 3

Again, we generate a scalar white noise input u indepen-
dent of e and identify a two-dimensional system (20), as
in the previous subsection. The true system, is described
by

F (z) = z−1
[

1 + 0.3z−1 − 0.1z−2

2− 0.9z−1 + 0.06z−2

]
,

K(z) =

1− 0.9z−1 + 0.2z−2

1 + 0.3z−1 + 0.4z−2
1− 0.1z−1 + 0.4z−2

1− 0.6z−1 + 0.1z−2

 .
The simulation is run with u and e two independent scalar
white noises of variances 2 and 1. We generate a two-
dimensional time series of N = 500 data points {ȳi(t); t =
1, . . . , N, i = 1, 2}, and suppose we also measure the input
time series of u. Firstly, we estimate F (z) by fitting the
deterministic relation y(t) = F (z)u(t) rewritten as

Ai(z
−1)yi(t) = Bi(z

−1)u(t− 1), (i = 1, 2)

where the polynomials are chosen of degree 3, i.e.

A1(z−1) = 1 +

3∑
k=1

a1,kz
−k, A2(z−1) = 1 +

3∑
k=1

a2,kz
−k.

B1(z−1) =

3∑
k=0

b1,kz
−k, B2(z−1) =

3∑
k=0

b2,kz
−k.

Applying a least square method we obtain

y(t)− ỹ(t) = F̂ u(t)

=

 0.9807 + 1.353z−1 + 1.114z−2 + 0.5196z−3

1 + 1.064z−1 + 0.903z−2 + 0.3815z−3
1.991− 1.831z−1 − 0.09642z−2 + 0.2789z−3

1− 0.4595z−1 − 0.2792z−2 + 0.04673z−3

u(t− 1).

The corresponding Bode graphs are shown in Fig. 10 and
Fig. 11. In Fig. 10, the Bode graph of F̂1 shows some
overfitting since the order of F is somewhat far from the
true order (in fact A1 = 1 with order 0, but we suppose a
degree of 3. Assuming we know the orders of A1, B1, we
get the estimate

F̂ ′1 = 0.9802z−1 + 0.314z−2 − 0.09327z−3,

which is closer to F1.

Then we estimate K(z) from (21) by the same procedure
we used to estimate W (z) in (22). Suppose

Ai(z
−1)ỹ(t) = Bi(z

−1)e(t), (i = 1, 2)
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Fig. 10. Bode diagrams of F1 and F̂1 in example 3
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Fig. 11. Bode diagrams of F2 and F̂2 in example 3
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Fig. 12. Bode diagrams of K1 and K̂1 in example 3.

with (since K is normalized)

A1(z−1) = 1 +

3∑
k=1

a1,kz
−k, A2(z−1) = 1 +

3∑
k=1

a2,kz
−k.

B1(z−1) = 1 +

3∑
k=1

b1,kz
−k, B2(z−1) = 1 +

3∑
k=1

b2,kz
−k,

obtaining

K̂(z) =

 1− 1.481z−1 + 0.9142z−2 − 0.2516z−3

1− 0.2452z−1 + 0.3701z−2 − 0.1293z−3
1− 0.8098z−1 + 0.2342z−2 − 0.2265z−3

1− 1.28z−1 + 0.2189z−2 + 0.1462z−3

 ,
the corresponding Bode diagrams are in Fig. 12 and
Fig. 13.

All the simulation examples show that the transfer func-
tions of the rank-deficient structure can be identified from
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Fig. 13. Bode diagrams of K2 and K̂2 in example 3.

standard identification algorithms with rather good re-
sults. Of course, with a prior knowledge of the orders of the
transfer functions, the identification results will be closer
to the true functions.

6. CONCLUSIONS

We have shown that a rank-deficient process admits a
special feedback structure with a deterministic feedback
channel which can be used to split the identification in
two steps, one of which can be based on standard PEM
algorithms while the other is based on a deterministic least
squares fit. Simulations show that standard identification
algorithms can be easily applied to identify the transfer
functions of this structure.
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