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A NEW ALGORITHM FOR OPTIMAL FILTERING OF
DISCRETE-TIME STATIONARY PROCESSES*

ANDERS LINDQUISTY
. Abstract. An algorithm (which does not involve the usual Riccati-type equation) for computing
the gain matrices of the Kalman filter is presented. If the dimension k of the state space is much larger

than that of the observation process, the number of nonlinear equations to be solved in each step is
of order k rather than k? as by the usual procedure.

1. Introduction. Let {x,} be a k-dimensional and {y,} an m-dimensional
(wide sense) stationary stochastic vector process generated by the well-known
model:

(11) xn+1 =Fxn+vnﬁ
(1.2) Yo = Hx, + w,,

where, for convenience, x,, {v,} and {w,} have zero mean and are pairwise un-
correlated, and

(1.3) E{xOxb} = Po,
(14) E{viU}} = Pléij’
(1.5) E{ww;} = P,d;;

(6;; is the Kronecker delta and ’ denotes transpose). The matrices F, H, Py, P,
and P, are constant and have the appropriate dimensions. To simplify matters
we assume that P, is positive definite (of course all P; are nonnegative definite).

Now, it is well known that the linear least squares estimate X, of x, given

{Yo>Y1s "> Yn-1, can be determined by the Kalman filter [5]:
(1.6) Xn+1 = FX, + K,(y, — HX,)

with initial condition %, = 0 and the gain matrix K, given by
1.7) K, = FL,H(HZIH + P,)" .

Here the error covariance matrix

(L8) %, = E{(x, — £) (0, — %))

can be recursively computed from the equation

(1.9) S+ = F[X, — Z,HHZH + P,)"'HZ,JF + P,

with initial condition £, = P,. Therefore, this procedure requires computation
of the (symmetric) k x k matrix X, in each step in order to obtain the gain K,

* Received by the editors December 26, 1972. Material added to the original version of this paper
is enclosed in square brackets.

+ Institute of Optimization and Systems Theory, Royal Institute of Technology, 10044 Stock-
holm 70, Sweden. Now at Department of Mathematics, University of Kentucky, Lexington, Kentucky
40506.

736



A NEW ALGORITHM FOR OPTIMAL FILTERING 737

while actually the k x m matrix
(1.10) 0, = LH

is needed. When, as is often the case, m « k, this amounts to computing plenty of
unnecessary information.

In this paper we present an algorithm by which Q, can be computed directly
without using the Riccati-type equation (1.9). Instead of the k(k + 1)/2 equations
of (1.9), we need only solve 2km + m(m + 1)/2 equations, which is a major re-
duction when m « k. In the scalar output case (im = 1) we actually only need 2k
equations.

[Before turning to the derivation of our algorithm we shall present some
facts about the classical problem of determining the linear least squares estimate
of y, given {yo.y,, ", Y-y} When {y,} is an arbitrary m-dimensional (wide
sense) stationary stochastic sequence. Due to the stationarity it is possible to
solve the normal equations recursively for the (m x m matrix) filter coefficients
as n increases. For the scalar case (m = 1) such recursions can be found in [8],
[9], [13] and also in the theory of orthogonal polynomials [1], [2].! The latter is
of course no coincidence since the connection between prediction and orthogonal
polynomials is well established [3]. When m > 1, the situation is somewhat more
complicated (which accounts for the fact that the number of equations in our
algorithm increases “‘discontinuously” as m becomes greater than 1). Recursive
equations for this case can be found in [7], [12], [14]. However, a relation which
is important for our purposes is missing in [7] and although this relation is men-
tioned in [12], [14], there is no proof for it. Therefore, in presenting a set of such
equations we shall supply the reader with a short but complete proof. At the
same time we shall be able to relate these equations to certain forward and back-
ward prediction problems.]

In § 2 we shall introduce some notations and recall certain facts from esti-
mation theory, in § 3 the abovementioned recursions for the filter coefficients will
be developed, and in §§ 4 and 5 we shall return to what is the basic contribution
of this paper, namely, the derivation of an algorithm for Q, without making use
of (1.9).

Independently, Kailath [4] has recently shown that (under certain con-
ditions which are fulfilled in the stationary case) the Riccati equation for the
continuous-time Kalman—Bucy filter can be factorized to yield equations similar
to ours. Indeed, our method modified to the continuous-time case gives exactly
the corresponding equations of Kailath, as we shall demonstrate in [10]. Similar
results have also recently been announced by Rissanen [6], who, however, does
not consider the model (1.1)—~1.2).

We have presented our algorithm for Q, in connection with the one-step
prediction problem (which is the standard problem in the literature). However,
the algorithm can also be used for the pure filtering problem as pointed out in § 4.

! The equations in [1], [2] were first made known to us by R. E. Kalman, who suggested the theory
of orthogonal polynomials studied in an algebraic context as a possible vehicle in obtaining a more
effective algorithm. Our approach, however, is quite elementary in the sense that only facts of linear
algebra are used. References [9], [12], [13], [14] were brought to our attention by a referee.
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2. The forward and backward prediction problem. Let y,,y,,»,,y;, --- be
a wide sense stationary sequence of m-dimensional stochastic vectors with zero
mean and covariances

C = E{yn+iy;r}*

which, of course, are m x m matrices such that C_; = C;. To simplify matters,
we assume that this vector process has full rank in the sense that the generalized
Toeplitz matrices

CO Cll Clz tee C;,
T,=(C: GCo Cy n=1],
Cn Cn- 1 Cn- 2 CO

n=0,1,2,---, are positive definite.
Now, for each ne{1,2,3,---} we can define two problems of estimation,
namely, the forward (P,) and backward (P}) one-step prediction problem.
Problem P,. Find the linear least squares estimate 9, of y, given {yo,y;,
SRS
Problem P}. Find the linear least squares estimate p} of y, given {y,,y,,
RS
Clearly these estimates have the following form:

n—1
In - Z D,.y;,
i=0

n
gr== ¥y,
i=1

where @,; and ®} are m x m matrices. Then, by defining ®,, and @}, to be unit
matrices, the estimation errors can be written

(21) yn =VYn— .)A)n = (D;u'yi’

13

M= IPM=

(2.2) In=Yo— OFy;.

[

1

We introduce the following notations for the error covariances:
(2.3) R, = E{J.0.},
249 R¥ = E{y}yr}.

Now let E, be the matrix formed by an infinite number of m x m matrices
arranged in a vertical array with zero matrices in positions 0,1, --- , n — 1, n + 1,
n + 2,--- and a unit matrix in position n:

E,=(0,---,0,1,0,0,--).

Furthermore, given X =3*_ E X, and Y= )"  EY,, where X,, k=0,1,
-e-,p<oo,and Y, k=0,1,---, p, are m x m matrices (some of which may be
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zero), define the m x m matrix [X, Y]:
[X,Y]=XTY,

where T is the infinite matrix T, . (Of course we could define [X, Y] in terms of
T,, but we prefer an expression which is independent of p.) Then we have

(2.5) [Y.X]=[X,Y] and [E,E]=C,;_;
Finally, introduce the shift operator o
p
(2.6) oX =Y E..X, i=0).
k=0

It is then easily seen that

2.7 (Ex.0'X] = [E_i, X] (k2
and that
(2.8) [6X,0Y]=[X,Y].

We are now in a position to express some well-known orthogonality prop-
erties in terms of

(29 o, = Z E, D,
k=0
and
(2.10) oF = Z E®F%.
k=0
LEMMa 2.1.
(2.11) [Ee,D,] =0 forO0=k<n,
(2.12) (E,. @, = R,,
(2.13) (@, @] = Ry

Proof. Equations (2.11) and (2.12) follow from
[Ey, ®,] = Z Ci-i®pi = Z E{yky:'}(bni = E{Ykﬂ}’
i=0 i=0

which by orthogonality is O for k < n and R, for k = n. We obtain (2.13) by ob-
serving that

k
(@, @] = ). DilE;, @],
i=0

which, by (2.11) and (2.12), is O for k < | and R, for k = I. Then it follows from
(2.5) that (2.13) holds for k > [ also.
LEMMA 2.2.

(2.14) [E,. @ =0 forO<k<n,
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(2.15) (Eo.®F] = R,
(2.16) (0" *DF, " 'DF] = R¥o,, (0 < k,I < n).

Proof. Equations (2.14) and (2.15) are obtained in the same way as (2.11) and
(2.12), only replacing j, by y*. To obtain (2.16), also observe (2.6) and (2.7) to
see that (for k < 1)

k k
(0" DF, 6" '0F] = ) DE[Eisp—i0" ' OF] = ) OF[E, 41, OF].
i=0 i=0

Remark 2.1. Observe that @, is uniquely determined by the system (2.11) of
normal equations :

n—1
(2.17) Y Ceei® = —Cin, k=0,1,---,n—1,
i=0

for the coefficient matrix T,,_, is nonsingular. Likewise, @} is uniquely determined
by (2.14):

(2.18) Z C.- o= —-C, k=1,2,---,n,
i=1
which can also be written
n—1
(219) Z C;c—id)rtn—i= —'C;‘_n, k=0,1,"',n—1.
i=0

Remark 2.2. In the scalar case (m = 1) we have a particularly simple relation-
ship between P, and P}, namely @} = ®,,_; and R¥ = R,. In fact, the first
relation follows from (2.17) and (2.19) (for C; = C;). Then the second relation is
obtained by comparing (2.12) and (2.15).

Remark 2.3. Note that R, and R} are positive definite. In fact, observing that
T, is positive definite, this follows from R, = [®,, ®,] and R} = [®¥, ®}]. Clearly,
R, and R¥ are also symmetric.

3. Difference equations for @, and @ .

LEMMA 3.1. The following equations hold with the initial condition given by
q)O = q)?; - EO:
3.1 D, =00, — OITF,
(3.2) ¥, | = 0F — o0,

where T, and T’} are m x m matrices defined by the following equations:

(3.3) R,I, = (RIT}) =S,
where

(3.4) S, = [o®,, D]
(3.5) = [0®,, E,]

(3.6) = [Eps 1, O]
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Proof. Let S, be defined by (3.4). Then
Sn = Z (D;k[EkHsd)rﬂa
k=0
which is equal to (3.6) by Lemma 2.2. Also, due to (2.7),
S, = [0®,, Ey] + Z (@, E,—,]D%.
k=1

which, by Lemma 2.1, is equal to (3.5).
To prove (3.1), first observe that ®,,, can be represented in the following
form:
(Dn+1 = En+l + Z o.n—kq);(ank’
k=0
where B, are m x m matrices. (In fact, this equation is equivalent to the following
system:

n

Z (I);lji—ani = Wyt in—k» k=0,1,~~,n,

i=k
which can be solved for the B,; matrices, for ®% = I.) By Lemma 2.2, we have
(0" '®F @, ] = [0" '®FE,s,] + RFB,; (0= i<n).

The left member, being equal to Y, _, PX[E;1,—;. P, 1], is zero by Lemma 2.1,
and due to (2.7) the first term on the right side equals S; as given by (3.6). Hence,
since R¥ is nonsingular, by (3.3), B,; = —I'*. Then form ®,,, — ¢®, to see that
(3.1) holds.

Similarly (3.2) can be proved by considering the representation

O,y =Eo + ) o®B,.

k=0
Then Lemma 2.1 (together with (2.8)) and (3.5) imply
[o®;, @, ] = S; + RB,;,

the left member of which is zero (Lemma 2.2), and therefore B,; = —I';. Thus
(3.2) holds. This concludes the proof of the lemma.

In the case m =1 (ie., the process {y,} is scalar) we have ®} = ®,,_,,
R¥ =R, (see Remark 2.2) and, consequently, I'* = I',. The corresponding
versions of (3.1) and (3.2) can be found in the theory of orthogonal polynomials
(see [1, p. 183] or [2, p. 155]). In the general case (m > 1) similar equations can be
found in [7], [12], [13]. However, [7] does not contain relation (3.3), and although
this relation is mentioned in [12], [14], there is no proof for it.

LEMMA 3.2. The error covariances R, and R} satisfy the following difference
equations with Ry = R¢ = C,:

3.7 R,+y =R, — T¥RITY,
(3.8) R*  =R* —T'RT

n-"n-n
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[or the uncoupled equations

(3.9) R,y =R - T,I7),

(3.10) RY¥., = R¥I — TT,).

Also the following relations hold:

(3.11) Ry 1T = (RY T

and

(3.12) (Rus )" = (R)™! + TyRY ) ™',
(3.13) (R¥ )™ = RH ™+ THR,+ )7 'TF 1

Proof. From (3.1) and (3.6) we have
[En+ l*q)n+ 1] = [En+ 1 O'(I)n] - Snr:‘

which, by (2.7) and Lemma 2.1, is the same as (3.7) or (3.9), depending on which
of the two expressions (3.3) for S, is used. Likewise (3.2) and (3.5) yield

[Eo, @iy 1] = [Eo, ¥ - S.0,
which is the same as (3.8) or (3.10) (Lemma 2.2). To obtain (3.11), postmultiply
(3.7) and (3.8) by I', and T'¥ respectively, and use (3.3). Finally, from (3.9) we have
(Rn)—l =( - rnr:‘)(Rn+1)_1

which, by (3.11), is equal to (3.12). (To see this, transpose (3.11), premultiply by
(R*,,)”! and postmultiply by (R, )~ ") Equation (3.13) is derived in the same
way.

4. An algorithm for the gain matrix. We now return to the problem described
in § 1. Thus the innovation process (2.1) will be

4.1) V. = H(x, — X,) + w,.
Our object is to determine the gain matrix (1.7):
4.2) K, = FQ(HQ, + P,)™",
where Q,,, defined by (1.10) and (1.8), can be written
(4.3) Q. = E{x, Ji.}.

Here we have first used the orthogonality between %, and (x, — X,) to obtain
Q, = E{x,(x, — %,)}H' and then (4.1) and the fact that x and w are uncorrelated.
By a similar argument, we can express the error covariance R, = E{J,J,},
defined in § 2, in terms of Q,,:

4.4) R,=HQ, + P,.

Of course, (4.2), (4.3) and (4.4) can easily and in a well-known fashion be derived
directly, and our reference to the equations in § 1 is merely for the purpose of
comparison. Note in particular that we make no use of the Riccati equation (1.9).

2 The corresponding part of the proof should also be bracketed.
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Now, since E{v;x;} = 0for j 2 i and E{x;x;} = P, (stationarity), (1.1) yields
4.5) E{x,x;} = F'"'P, (n=1,
and therefore, remembering that y; = Hx; + w;, we have
(4.6) E{x,yi} = F""'PH'  (nZ )
(for x and w are uncorrelated) and
4.7) C; = HF'PyH' + P,4;, iz0).
Inserting (2.1) into (4.3) and observing (4.6), we obtain
4.8) Q, = i F" 'P,H'®,,.

i=0
Then, if we define

4.9) Q¥ =Y F'*'"'PH O},

i=0
we can exploit Lemma 3.1 to obtain
(4.10) Qus1 = Qu — QT
(4.11) Orvy = FOr — FQ,I,,
where Q, = PyH' and Qf = FP,H'.

Furthermore, from (3.6) we have

n
= *
Sn - Z Cn+1—iq)niﬂ
i=0

which by (4.7) and (4.9) equals

4.12) S, = HQ}.
This enables us to determine I', and I'¥ from (3.3):
4.13) I, =R, 'HQ¥,
(4.14) ¥ =(RYH'Q¥H'.

By (4.4), R, can be expressed in terms of Q,, while for R} we must employ the
recursion (3.8) of Lemma 3.2.

Hence we are now in a position to state our main result.

THEOREM 4.1. The optimal gain matrix for the filter (1.6) can be determined
in the following way:

4.2) K, =FQHQ, + P,)™",

where

(4.15) Qni1 = Qu — QXRY™'QVH,

(4.16) Qv = FO} — FQ(HQ, + P,)""HQJ,
(4.17) R} =R} — QVH'(HQ, + P,)""HQ,

with. initial conditions Q, = PyH', Q§ = FP,H' and R§ = HP,H' + P,.
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Remark 4.1. Note that Q, and Q¥ are k x m matrices and R} is a symmetric
m x m matrix. Thus we have 2km + [m(m + 1)]/2 equations to determine Q,.
[Remark 4.2. Since only the inverse of R¥ is needed, we may replace (4.17) by

@18) (Rf )7H=(RH™H + (RHNT'QFH(HQ, .| + Po)  'HONRY)™!.

To see this, just insert (4.14) and (4.4) into (3.13). Equation (4.18) can also be ob-
tained directly from (4.17) by applying the matrix inversion lemma® and noticing

that R, = HQ, + P, is given by
(4.19) R,i1 = R,— HOXRY)'Q¥H

with initial condition Ry, = HP,H' + P,.]

Remark 4.3. Equations (4.15), (4.16) and (4.17) can also be used for the pure
filtering problem to determine the linear least squares estimate of x, given
{¥o. Y1+, yu}. Infact, it is well known that we now have the following filtering
equation (which of course is derived without resort to the Riccati equation):

(420) )2,, = F')Acn—l + Ln(yn - HF')%n— 1)
with initial condition X, = 0, where the gain L, is given by
(4.21) L, = Q,HQ, + P,)"".

[Remark 4.4. We have made an effort to present our algorithm for Q, in a
compact form using as few equations as possible. Equations (4.15), (4.16) and
(4.17) contain all the information needed for determining the gain sequences K,
and L,. However, as usual, a certain judgment has to be exercised in implementing
our algorithm. Computational requirements call for minimizing the number of
arithmetic operations (see, e.g., [11] for details), and different considerations have
to be made for the one-step predictor and for the pure filter. The reader should
convince himself that in general Table 1 describes the natural implementation of
our algorithm (when m « k), although the number of equations has increased.
For example, instead of computing the quantities R, = HQ, + P, from Q, in
each step, amending the projected equation (4.19) = (3.7) (which of course is con-
tained in (4.15)) usually (but not always) reduces the number of arithmetic oper-
ations. Also, which is even more important, there should be a minimum of multi-
plications by the large matrix F. We have introduced some auxiliary variables in
addition to the ones defined in the text, U, = (R,)”!, U¥ = (R}~ !, 0, = FQ,
and QF = FQ¥ (the last two used for the one-step predictor only). However, it
should be noted that special properties of the system’s matrices may call for some
other implementation of the algorithm. For example, with a sparse F (e.g., a
companion matrix) the multiplication by F becomes less critical.]

3 The author would like to thank Prof. 1. H. Rowe (among others) for suggesting this. (This
remark was communicated to the editor on March 20, 1973.)
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TABLE 1|
Pure filtering One-step prediction
Qy = PH' 0, = FP,H'
Q¥ = FP,H’
R, = HP,H + P,
Uy = U} =Rg'
L" = QnUn K" = QnUn
S, = HQY
I'* = U}S,
Ox = FQ
Qn+1:Qn“Q:r: Qn+1=Qn“Q:rf
Or+y = F(QF — L,S,) w1 =0F — K,S,
R,.1 =R, - 5I%
Upsr = (Rn+l)_l

U:H = U: + F:Un+lr:<,

5. The scalar output case. In the case m = 1 we have a somewhat simpler
situation. Since R} = R,, which is given by (4.4), equation (4.17) now becomes
superfluous, and therefore we end up with 2k equations. (Also note that S, is now
a scalar.)

We can also write our equations directly in terms of the gain vector k, with-
out increasing the number of equations*

(.1 knv1 = [1 = Wk} 'k, — (WKHFKF],
(5.2) ke =[1 = (WK1 '[Fky — (W]
with initial conditions ko, = k¥ = (W' Poh + P,)” 'FPyh, where we write H as b’ to
emphasize that it is a vector.
In fact, observe that k, = FQ,R, !. Then define k¥ = Q*R, !, from which
we have I', = h'k}. Therefore, (3.8) gives
Ryyy=1[1 — (Wk})*]R,.

and (4.10) and (4.11) yield the desired result. (Since R, ., and R, are both positive,
sois [1 — (W'k¥)?], and therefore we can safely divide by this quantity.)

[The equations can be simplified at the expense of the “symmetry”’ by adding
(W'k}) times (5.2) to (5.1):

(53) kn+1 = kn - (h,k:)k:+1’
(5.4) ki =11 = (WK} 7' [Fk} — (Whkk,].

but we should remember that computational requirements may call for retaining
the original algorithm of § 4.]
Similar equations can be obtained for the pure filtering problem.

4 [We can obtain similar equations for m > 1 if we amend the equations for both R, and R, *.]
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