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A NEW ALGORITHM FOR OPTIMAL FILTERING OF
DISCRETE-TIME STATIONARY PROCESSES*

ANDERS LINDQUIST"

Abstract. An algorithm (which does not involve the usual Riccati-type equation) for computing
t/e gain matrices of the Kalman filter is presented. If the dimension k of the state space is much larger
than that of the observation process, the number of nonlinear equations to be solved in each step is
of order k rather than k as by the usual procedure.

1. Introduction. Let {x.} be a k-dimensional and {y.} an m-dimensional
(wide sense) stationary stochastic vector process generated by the well-known
model:

(1.1) x,+ Fx. +
(1.2) y, Hx,, + w,,

where, for convenience, Xo, {v,} and {w,} have zero mean and are pairwise un-
correlated, and

(1.3) E{ XoX’o } Po,

(1.4) g{l)il)j} Pl(ij,

(1.5) E{wiw)} P2(ij

(6ij is the Kronecker delta and denotes transpose). The matrices F, H, Po,
and P2 are constant and have the appropriate dimensions. To simplify matters
we assume that P2 is positive definite (of course all Pi are nonnegative definite).

Now, it is well known that the linear least squares estimate , of x, given
{Yo, Y l, "’", Y,-1} can be determined by the Kalman filter [5]"

(1.6) ,,+
with initial condition o 0 and the gain matrix K,, given by

(1.7)

Here the error covariance matrix

(1.8) E,-- E{(x,
can be recursively computed from the equation

(1.9)

with initial condition 12o Po. Therefore, this procedure requires computation
of the (symmetric) k x k matrix I2, in each step in order to obtain the gain K,,,

* Received by the editors December 26, 1972. Material added to the original version of this paper
is enclosed in square brackets.
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while actually the k x m matrix

(1.10) Q-- 5ZH’
is needed. When, as is often the case, m << k, this amounts to computing plenty of
unnecessary information.

In this paper we present an algorithm by which Q, can be computed directly
without using the Riccati-type equation (1.9). Instead of the k(k + 1)/2 equations
of (1.9), we need only solve 2km + m(m + 1)/2 equations, which is a major re-
duction when m << k. In the scalar output case (m 1) we actually only need 2k
equations.

[Before turning to the derivation of our algorithm we shall present some
facts about the classical problem of determining the linear least squares estimate
of y, given {Y0, Yl, "", Y,-1} when {y,} is an arbitrary m-dimensional (wide
sense) stationary stochastic sequence. Due to the stationarity it is possible to
solve the normal equations recursively for the (m x rn matrix) filter coefficients
as n increases. For the scalar case (m 1) such recursions can be found in [8],
[9], [13] and also in the theory of orthogonal polynomials [1], [2]. The latter is
of course no coincidence since the connection between prediction and orthogonal
polynomials is well established [3]. When rn > 1, the situation is somewhat more
complicated (which accounts for the fact that the number of equations in our
algorithm increases "discontinuously" as m becomes greater than 1). Recursive
equations for this case can be found in [7], [12], [14]. However, a relation which
is important for our purposes is missing in [7] and although this relation is men-
tioned in [12], [14], there is no proof for it. Therefore, in presenting a set of such
equations we shall supply the reader with a short but complete proof. At the
same time we shall be able to relate these equations to certain forward and back-
ward prediction problems.]

In 2 we shall introduce some notations and recall certain facts from esti-
mation theory, in 3 the abovementioned recursions for the filter coefficients will
be developed, and in 4 and 5 we shall return to what is the basic contribution
of this paper, namely, the derivation of an algorithm for Q, without making use
of (1.9).

Independently, Kailath [4] has recently shown that (under certain con-
ditions which are fulfilled in the stationary case) the Riccati equation for the
continuous-time Kalman-Bucy filter can be factorized to yield equations similar
to ours. Indeed, our method modified to the continuous-time case gives exactly
the corresponding equations of Kailath, as we shall demonstrate in [10-1. Similar
results have also recently been announced by Rissanen [6], who, however, does
not consider the model (1.1)-(1.2).

We have presented our algorithm for Q, in connection with the one-step
prediction problem (which is the standard problem in the literature). However,
the algorithm can also be used for the pure filtering problem as pointed out in 4.

The equations in [1], [2] were first made known to us by R. E. Kalman, who suggested the theory
of orthogonal p6lynomials studied in an algebraic context as a possible vehicle in obtaining a more
effective algorithm. Our approach, however, is quite elementary in the sense that only facts of linear
algebra are used. References [9], [12], [13], [14] were brought to our attention by a referee.
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2. The forward and backward prediction problem. Let Yo, Y, Y2, Y3, be
a wide sense stationary sequence of m-dimensional stochastic vectors with zero
mean and covariances

Ci E{y,+iy’,},

which, of course, are m x m matrices such that C_--- CI. To simplify matters,
we assume that this vector process has full rank in the sense that the generalized
Toeplitz matrices

Co
T, C Co C’ C’,_|,

n 0, 1, 2,..., are positive definite.
Now, for each n {1, 2, 3,.-.} we can define two problems of estimation,

namely, the forward (P,) and backward (P*,) one-step prediction problem.
Problem P,. Find the linear least squares estimate , of y, given {Yo, Y,

"",Yn-}.
Problem P*,. Find the linear least squares estimate ,9,* of Yo given {y, Y2,

Yn}
Clearly these estimates have the following form"

n-1

.n E
i=O

n Oni Yi,
i=l

where ()ni and */are m m matrices. Then, by defining and *o to be unit
matrices, the estimation errors can be written

(2.1) 7,, Yn n (’niYi,
i=0

(2.2) *. YO *n O.i Yi"
i=O

We introduce the following notations for the error covariances"

(2.3)

(2.4) R*, E{y,,y,, ’}.
Now let E, be the matrix formed by an infinite number of m m matrices

arranged in a vertical array with zero matrices in positions 0, 1, ..., n 1, n + 1,
n + 2,... and a unit matrix in position n"

(0, ..., 0, i, 0, 0,...).

Furthermore, given X :o EX and Y Z’=o EY, where X, k 0, 1,
.., p < , and Y, k 0, 1,..., p, are m m matrices (some of which may be
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zero), define the m x m matrix IX, Y]"

where T is the infinite matrix Too. (Of course we could define IX, Y] in terms of
Tp, but we prefer an expression which is independent of p.) Then we have

(2.5) [Y,X] IX, Y]’ and [Ei, E] Ci_.

Finally, introduce the shift operator a"

p

(2.6) a’X 2 E+,X (i => 0).
k=O

It is then easily seen that

(2.7) [E, rX] [E_,,X] (k >= i)

and that

(2.8) ErX, aY] EX, Y].

We are now in a position to express some well-known orthogonality prop-
erties in terms of

(2.9) ,-- L Ekt.k
k=O

and

(2.10) .* L E.*.
k=O

LEMMA 2.1.

(2.11) [Ek,,] =0 forO <= k < n,

(2.12) [E,, ,] R,,

(2.13) [Ok, (I)l] Rkfkl.
Proof. Equations (2.11) and (2.12) follow from

i=0 i=0

which by orthogonality is 0 for k < n and R, for k n. We obtain (2.13) by ob-
serving that

i=0

which, by {2.11) and (2.12), is 0 for k < and R for k I. Then it follows from
{2.5) that {2.13) holds for k > also.
LA 2.2.

(2.4) [,] 0 @r 0 < k n,
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(2.15) [E0 O,*] R,*,

(2.16) [(7n-k * a *0k, -lo[l Rktkl (0 < k, < n).

Proof. Equations (2.14) and (2.15) are obtained in the same way as (2.11) and
(2.12), only replacing , by "*y,. To obtain (2.16), also observe (2.6) and (2.7) to
see that (for k l)

,-,] &’[, +, ][-, ,-,mr] m’[,+,-,
i=0 i=0

Remark 2.1. Observe that , is uniquely determined by the system (2.11) of
normal equations:

n--I

(2.7) Z c_,.,,, -c_,, k 0, ,..., ,
i=0

for the coefficient matrix

_
is nonsingular. Likewise, is uniquely determined

by (2.14)"

(2.18) Ck_i()n --Ck, k 1,2, n,
i=1

which can also be written

n-1

(2.19) , C’k O,*,, =--C’k-,,
i=0

k=0,1,...,n- 1.

Remark 2.2. In the scalar case (m 1) we have a particularly simple relation-
ship between P, and P,*, namely O,* O,.,-i and R,* R,. In fact, the first
relation follows from (2.17) and (2.19) (for C’i Ci). Then the second relation is
obtained by comparing (2.12) and (2.15).

Remark 2.3. Note that R, and R,*, are positive definite. In fact, observing that
T, is positive definite, this follows from R, [O,, O,3 and R,* [O,*, O,*]. Clearly,
R, and R,* are also symmetric.

3. Difference equations for O. and
LEMMA 3.1. The jbllowing equations hold with the initial condition given by

o O Eo"
(3.1) O,+ ’On On Fn,

(3.2)

where F, and F*, are m x m matrices defined by the following equations"

(3.3)

where

RnF * ,(R.r.) S.,

(3.4) S,

(3.5) [oO,, Eo]

(3.6) [E,+,, O,*].
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Pro@ Let S, be defined by (3.4). Then

k=0

which is equal to (3.6) by Lemma 2.2. Also, due to (2.7),

S [o’(I)n, Eo] + [(I)n, Ek- 1](I)n*k,
k=l

which, by Lemma 2.1, is equal to (3.5).
To prove (3.1), first observe that ,+1 can be represented in the following

form

n+ En+ "- o’n-k()k Bnk,
k=O

where Bnk are m m matrices. (In fact, this equation is equivalent to the following
system"

(.*. kBni di) k O,l,l + 1,n
i-k

which can be solved for the B,i matrices, for ’o I.) By Lemma 2.2, we have

[(Tn-if.*t 0.+ 1 [(7"-i0 E.+ 1] --i- R.*, B,, (0 <__ <= n).

The left member, being equal to Z=o [E+,_,, , + ], is zero by Lemma 2.1,
and due to (2.7) the first term on the right side equals S’ as given by (3.6). Hence,
since R’ is nonsingular, by (3.3), B, -F’. Then form ,+ oI, to see that
(3.1) holds.

Similarly (3.2) can be proved by considering the representation

tI) * Eo + O’(kBnkn+l
k=O

Then Lemma 2.1 (together with (2.8)) and (3.5) imply

[O’(I)i, (I)n*+ 1] Si + RiBni,

the left member of which is zero (Lemma 2.2), and therefore B,i -Fi. Thus
(3.2) holds. This concludes the proof of the lemma.

In the case m (i.e., the process {y,} is scalar) we have ,*k
R,* R, (see Remark 2.2) and, consequently, F,* F,. The corresponding
versions of (3.1) and (3.2) can be found in the theory of orthogonal polynomials
(see [1, p. 183] or 2, p. 155]). In the general case (m > 1) similar equations can be
found in [7], [12], [13]. However, [7] does not contain relation (3.3), and although
this relation is mentioned in [12], [14], there is no proof for it.

LEMMA 3.2. The error covariances R, and R*, satisfy the following difference
equations with Ro R’ Co"
(3.7) R,+ R,,- F*’/*F*

(3.8) R* *n+l R,
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[or the uncoupled equations

(3.9) R,+ R(I FF*),

(3.10) R*+ &,q- r*r).

Also the following relations hold:

R+xr. (.*+ r.*)’(3.11)

and

(3.12)

(3.13)

(R.+ ,)-’ (R,)-’ + r.(R*+ ,)-’F’,,

(R*+ ,)-’ (R*)- + r*(R+ ,)-’F*’.] 2

Proof. From (3.1) and (3.6) we have

[En+ l,n+ ,] [En+ l, n] Snr
which, by (2.7) and Lemma 2.1, is the same as (3.7) or (3.9), depending on which
of the two expressions (3.3) for S is used. Likewise (3.2) and (3.5) yield

[o, o+ ,] [o, o] s’r,

which is the same as (3.8) or (3.10) (Lemma 2.2). To obtain (3.11), postmultiply
(3.7) and (3.8) by F, and F respectively, and use (3.3). Finally, from (3.9) we have

1) -1(R,)

which, by (3.11), is equal to (3.12). (To see this, transpose (3.11), premultiply by
(R+ ,)-’ and postmultiply by (R,+ ,)-’.) Equation (3.13) is derived in the same
way.

4. algorit for the ga matrix. We now return to the problem described
in 1. Thus the innovation process (2.1) will be

(4.)

Our object is to determine the gain matrix (1.7)"

(4.2)

where Q,, defined by (1.10) and (1.8), can be written

(4.3)

Here we have first used the orthogonality between , and (x,- },) to obtain
Q, E{x,(x, ,)’}H’ and then (4.1) and the fact that x and w are uncorrelated.
By a similar argument, we can express the error covariance R, E{ff,y},
defined in 2, in terms of
(4.4) R. HO. + P.
Of course, (4.2), (4.3) and (4.4) can easily and in a well-known fashion be derived
directly, and our reference to the equations in is merely for the purpose of
comparison. Note in particular that we make no use of the Riccati equation (1.9).

The corresponding part of the proof should also be bracketed.
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Now, since E(vjx’i} 0 for j >_ and E{x,x’} Po (stationarity), (1.1) yields

(4.5) E{x,,x’i} F"-ipo (n >= i),

and therefore, remembering that y Hx + w, we have

(4.6) E{x,,y’i} F"-PoH’ (n >= i)

(for x and w are uncorrelated) and

(4.7) Ci HUPoH’ + P26o (i >= 0).

Inserting (2.1) into (4.3) and observing (4.6), we obtain

(4.8) Q, F"-’Poll’
i=0

Then, if we define

(4.9) Q*, F"+ I-iPoH’*.,
i=0

we can exploit Lemma 3.1 to obtain

(4.10) Q,+I Q, * *

(4.11) Q,*+x FQ*, vo,r,,
where Qo Poll’ and Q FPoH’.

Furthermore, from (3.6) we have

S, C, + ,*,
i=0

which by (4.7) and (4.9) equals

(4.12) S, HQ*,.
This enables us to determine F. and F,* from (3.3)"

(4.13) r. R; HQ*.,

(4.14) F,* (R*,)- IQ*,’H’.

By (4.4), R can be expressed in terms of Q,, while for R,* we must employ the
recursion (3.8) of Lemma 3.2.

Hence we are now in a position to state our main result.
THEOREM 4.1. The optimal gain matrix for the filter (1.6) can be determined

in the following way:

I. FQ.(HQ. + P)-’,(4.2)

where

(4.15)

(4.16)

(4.17)

Q,+, Q, Q*.(R*.)-

Q*,+, FQ FQ,(HQ, + P2)- ’HQ,,*
R +, R Q’H’(HQ, + P2)-’HQ,

with. initial conditions Qo Poll’, Q FPoH’ and R HPoH’ + P2.
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Remark 4.1. Note that Q, and Q,* are k m matrices and R,* is a symmetric
m m matrix. Thus we have 2km + [m(m + 1)]/2 equations to determine Q,.

IRemark 4.2. Since only the inverse of R,* is needed, we may replace (4.17) by

(4.18) (R* - - - *,+1) (R*,) + (R*,) Q,, H (HQ,,+ + P2) 1HQ*,(R*,) 1.

To see this, just insert (4.14) and (4.4) into (3.13). Equation (4.18) can also be ob-
tained directly from (4.17) by applying the matrix inversion lemma3 and noticing
that R, HQ, + P2 is given by

(4.19) Rn+ R,,- HQ*.(R*.)-1Q*.’H’

with initial condition Ro HPoH’ + P2.]
Remark 4.3. Equations (4.15), (4.16) and (4.17) can also be used for the pure

filtering problem to determine the linear least squares estimate of x, given
{Yo, Yl, "’", Y,}. In fact, it is well known that we now have the following filtering
equation (which of course is derived without resort to the Riccati equation):

(4.20) c, Fc,_ + L,,(y,, HFc,_ 1)

with initial condition o 0, where the gain L, is given by

(4.21) L, Q,(HQ,, + P2)-1.

[Remark 4.4. We have made an effort to present our algorithm for Q, in a
compact form using as few equations as possible. Equations (4.15), (4.16) and
(4.17) contain all the information needed for determining the gain sequences K,,
and L,. However, as usual, a certain judgment has to be exercised in implementing
our algorithm. Computational requirements call for minimizing the number of
arithmetic operations (see, e.g., 11 for details), and different considerations have
to be made for the one-step predictor and for the pure filter. The reader should
convince himself that in general Table describes the natural implementation of
our algorithm (when m << k), although the number of equations has increased.
For example, instead of computing the quantities R,-- HQ, + P2 from Q, in
each step, amending the projected equation (4.19) (3.7) (which of course is con-
tained in (4.15)) usually (but not always) reduces the number of arithmetic oper-
ations. Also, which is even more important, there should be a minimum of multi-
plications by the large matrix F. We have introduced some auxiliary variables in
addition to the ones defined in the text, U, (R,)-1, U*, (R*,)-1, Q, =_ FQ,
and Q*, =_ FQ*, (the last two used for the one-step predictor only). However, it
should be noted that special properties of the system’s matrices may call for some
other implementation of the algorithm. For example, with a sparse F (e.g., a
companion matrix) the multiplication by F becomes less critical.]

The author would like to thank Prof. I. H. Rowe (among others) for suggesting this. (This
remark was communicated to the editor on March 20, 1973.)
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TABLE

Pure filtering One-step prediction

Qo PoH’
Q’ FPoH’
Ro HPoH’ + P2
U U R

Qo FPoH’

L.=Q.U,,

Q.+I Q.
Q*.+, F(Q*. L.S,,)

S,, HQ*.
r’*.- *’

R,,+ R,,- S,,F*.
U.+ (R.+ )-
u*,+ * *’U,, + F. U,,+

K,, Q,,U,,

Q*, FQ*.
-Q..I-’.

Q*.+, Q*. K,,S,,

5. The scalar output case. In the case m we have a somewhat simpler
situation. Since R,* R,,, which is given by (4.4), equation (4.17) now becomes
superfluous, and therefore we end up with 2k equations. (Also note that S, is now
a scalar.)

We can also write our equations directly in terms of the gain vector k, with-
out increasing the number of equations4

(5.1) k,+, [1 (h’k*)2] ’[k,, (h’k,*)Fk,,*],

(5.2) k*+, [1 (h’k,*)2] ’[Fk*, -(h’k*)k.],

with initial conditions ko k (h’Poh + P2)-FPoh, where we write H as h’ to
emphasize that it is a vector.

In fact, observe that k, FQ,R2 . Then define k,* Q*,R2 , from which
we have F, h’k*. Therefore, (3.8) gives

R,+x [1 (h’k,*)2] n,,,
and (4.10) and (4.11) yield the desired result. (Since R,+, and R, are both positive,
so is [1 (h’kn*)2], and therefore we can safely divide by this quantity.)

[The equations can be simplified at the expense of the "symmetry" by adding
(h’k*,) times (5.2) to (5.1)"

,k,+ k,, (h k,)k,+

.,+ [ (h’.*)] [F.*

but we should remember that computational requirements may call for retaining
the original algorithm of 4.]

Similar equations can be obtained for the pure filtering problem.

[We can obtain similar equations for m > if we amend the equations for both R. and R.*.]
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