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Abstract

In this paper, we aim to propose a consistent non-Gaussian Bayesian filter of which the system state is a continuous function.
The distributions of the true system states, and those of the system and observation noises, are only assumed Lebesgue
integrable with no prior constraints on what function classes they fall within. This type of filter has significant merits in both
theory and practice, which is able to ameliorate the curse of dimensionality for the particle filter, a popular non-Gaussian
Bayesian filter of which the system state is parameterized by discrete particles and the corresponding weights. We first propose
a new type of statistics, called the generalized logarithmic moments. Together with the power moments, they are used to form a
density surrogate, parameterized as an analytic function, to approximate the true system state. The map from the parameters
of the proposed density surrogate to both the power moments and the generalized logarithmic moments is proved to be a
diffeomorphism, establishing the fact that there exists a unique density surrogate which satisfies both moment conditions.
This diffeomorphism also allows us to use gradient methods to treat the convex optimization problem in determining the
parameters. Last but not least, simulation results reveal the advantage of using both sets of moments for estimating mixtures
of complicated types of functions. A robot localization simulation is also given, as an engineering application to validate the

proposed filtering scheme.
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1 Introduction

In this paper, we consider the non-Gaussian Bayesian
filtering problem for the first-order system following our
previous work [1]. The Bayesian filter offers a cohesive
and recursive solution to the general stochastic filter-
ing challenges. Ho and Lee’s work [2] represents one of
the initial attempts of iterative Bayesian estimation, de-
lineating the principles and procedures of Bayesian fil-
tering. Sprangins [3] delved into the iterative applica-
tion of Bayes’ rule for sequential parameter estimation.
Lin and Yau [4], as well as Chien and Fu [5], explored
the Bayesian approach for optimizing adaptive systems.
The Bayesian filter consists of an iterative measurement-
time update process, sometimes referred to by different
terms. During the time update step, the system equation
calculates a one-step ahead prediction of the state. In
the measurement update step, the observation equation
computes the correction to the state estimate according
to the current observation.
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The Bayesian filter usually doesn’t provide an analytic
state estimation, except for the cases where the system
and observation equations are linear, and the distribu-
tions of the system state, the system noise and the obser-
vation noise are Gaussian. In the well-known Kalman fil-
ter (and its extended forms such as the extended Kalman
filter and the unscented Kalman filter), to determine the
integral in the time update step is essentially a paramet-
ric estimation problem, which is done by estimating the
first and second order moments [6-11].

However, when the distributions are non-Gaussian, the
problem is much more complicated. Given that the dis-
tributions of the system states and the noises are not
conjugate pairs, the time update step doesn’t provide an
analytic probability density function of the system state,
due to the intractable convolution [12]. The density func-
tion can then only be obtained by approximation. In
the real-world applications, the distributions are usually
non-Gaussian, which makes this approximation problem
a significant one both in theory and in practice. Being an
open problem, density approximation of the intractable
integral has been a core problem of Bayesian filtering



for decades and is still a hot topic. Numerous numerical
methods have been proposed to obtain an analytic solu-
tion to the convolution in the time update step. To name
a few, there are Gaussian/Laplace approximation [13],
iterative quadrature [14-16], Gaussian sum approxima-
tion [17,18]. In these methods, the intractable integral
is approximated by a single Gaussian density function
or a weighted sum of Gaussians. By doing this, the con-
volution operation in the time update step is tractable
again, which makes it feasible for us to obtain the in-
tegral in an analytic form of function. A non-Gaussian
Bayesian filter based on state-space calculus is proposed
in [19]. Instead of transforming the density function into
a Gaussian or a mixture of Gaussians, this method con-
siders the rational probability density functions, which
are transfer functions of finite-dimensional linear sys-
tems by the realization theory. It provides explicit state
space descriptions for products and convolutions of ra-
tional densities, which then provides an analytic density
function of the system state in a rational form. These
parametric methods assume that the prior density be-
longs to a specified function class. This causes the flexi-
bility of these methods to be limited. If the density func-
tion doesn’t fall exactly within the assumed class, the
estimation result may be severely biased.

Since the problem we treat doesn’t restrict the non-
Gaussian density to fall within specific classes of func-
tions, estimating the intractable prior density in the time
update step is indeed an infinite-dimensional problem.
The particle filter treats this estimation problem us-
ing discrete points without any assumption on the form
of function of the prior density, which also turns the
infinite-dimensional problem into a finite dimensional
and tractable one [20-24]. However characterizing the
prior by discrete points requires massive particles to
store the probability values of the states. The problem is
even worse with the increase of dimensions, which is due
to the curse of dimensionality [12]. Moreover, analyz-
ing the errors of the particle filters is an extremely diffi-
cult task due to the indeterministic estimates caused by
the sampling strategy [25,26], and its performance suf-
fers a lot from sample depletion [22,27]. A non-Gaussian
Bayesian filter, of which the system state distribution
is a continuous function of a limited number of param-
eters, possesses notable advantages and is sought after
by researchers in stochastic filtering.

In our previous papers [1, 28], a non-Gaussian Bayesian
filter is implemented by approximating the intractable
integral using the power moments. A non-classical den-
sity surrogate for the system state, in the form of a con-
tinuous function, is proposed, and the parameters of the
proposed parametrization can also be determined by a
convex optimization scheme with moment constraints,
to which the solution is proved to exist and be unique.
By the proposed filter, the power moments of the density
estimates asymptotically converge to the true moments.
Furthermore, according to Theorem 4.5.5 in [29], as the

number of moment terms used approaches infinity, the
approximated integral approaches the true analytic den-
sity in probability, which reveals the fact that the pro-
posed filter is consistent. In the field of stochastic filter-
ing, exact filters can only be computed for models that
are completely discrete or for discrete-time linear Gaus-
sian models, where the Kalman filter can be applied [30].
For system models that do not have exact filters, the
best filters we can design for them are consistent filters.
Therefore, the consistency of the filter proposed in [1] is
a clear advantage over other alternative filtering meth-
ods. We would also like to emphasize that an error up-
per bound in the sense of total variation distance exists
for this filter. Such an error upper bound has not been
proposed for other non-Gaussian Bayesian filters. With
a relatively longer execution time for each filtering step,
the proposed filter overcomes the disadvantages of the
particle filters mentioned above. Moreover, the proposed
filter can treat the filtering problem where the proba-
bility density of the true system state is an arbitrary
Lebesgue-integrable function with first several orders of
power moments being finite, without assuming the den-
sity to fall within specific function classes.

In this paper, inspired by [31], we propose to use
logarithmic-type moments together with power mo-
ments to improve the performance of non-Gaussian
Bayesian filtering. The paper is organized as follows.
In Section 2, we note that the conventional logarithmic
moment doesn’t work in this problem, and we propose
a novel generalized logarithmic moment. An algorithm
framework for Bayesian filtering using both power and
generalized logarithmic moments is also proposed. Then
we prove that by our proposed algorithm, the general-
ized logarithmic moments of the density estimates are
asymptotically unbiased and approximately identical to
the true ones. In Section 3, together with the fact that
the power moments of the state estimate is approxi-
mately identical to the true ones given a large n, we
propose to use both the power and generalized logarith-
mic moments to parameterize the density of the state.
Then in Section 4, we prove that the parameters of the
proposed density surrogate can be uniquely determined
in terms of the power and generalized logarithmic mo-
ments up to order 2n, by proving the corresponding
map being diffeomorphic. Three density approximation
examples are performed in Section 5, including the mix-
tures of Gaussian, generalized logistic and Laplacian
densities. The simulation results with a comparison
to the parametrization using only the power moments
validate the advantage of using both sets of moments
for parametrization of the prior density. Moreover, the
proposed filtering scheme is applied to a robot localiza-
tion task and the performance is compared to prevailing
methods including the Kalman filter and the particle
filter.



2 Non-Gaussian Bayesian filtering and the gen-
eralized logarithmic moments

Consider the stochastic system

Tep1 = froe + (1)

Yt = hixe + €
t=0,1,2,..., where the state , is a random variable de-
fined on R, and f;, h; are assumed to be known real num-
bers. The system noise 7; and the observation noise ¢,
are assumed to be Lebesgue integrable functions. More-
over, the noises are assumed to be independent from each
other, and their distributions are denoted as p,,, and p, .

We use the Bayesian filtering framework in [19]. Then
the conditional probability density functions of the mea-
surement and time updates are given by

Measurement update: For ¢t = 0,

py0|$0 (yO) Pxo (1‘)

Pz 0(1‘) =
R fR Pyolzo (Y0) Py (x)d )
— Peo (yo - hoﬂ;‘) Po (l‘)
f]R Peo (yO - hoﬂ;‘) Pzo (x)dx’
fort > 1,
Pyq|zs (yt) Pz, yt—l(x)
p1t|yt (LL') = el |

_f]R pyt‘mt (yt) pztlyt_1<$)dl‘
_ Pes (yt - ht]") pwt\yt—l(‘r)
f]R Pes (yt - htx) pxt\yt—l(x)dx

Time update: For ¢t > 0,

Plelyt (Sﬂ) = (pft$t|yt * pm) (1’)

:~/]szt|yt (2) P ((E - E)d€

Here ), denotes the collection of observations y¢, y¢—1, - - -

(4)

If not otherwise specified, in the sequel “prior” refers to
the prior density function p,, |y, (%) at each time step
t. We denote by P the space of all probability density
functions supported on R. Let Ps,, be the subset of all
p € P which have at least 2n finite moments (in addition
to o9, which of course is 1).

We note that the measurement update (3) takes the form
of an analytic function with all p., and p,,|y, , being
non-Gaussian in general. However to obtain an explicit
form of prior p,, ,|y,(z) in (4) when the densities are
not Gaussian, is not always a feasible task. We proposed
to use the power moments for approximating the prior

density in [1]. For p € Pa,, the power moments are cal-
culated by

ok =E (zF 41| V1)
k (j) e () E (), O
=0

fork=1,---,2n[1].

J

Being linear integral operators, the power moments cap-
ture the macroscopic properties of the prior density func-
tions. The success of the power moments in our previous
work [1] naturally leads us to think about using other in-
tegral operators to characterize the prior density. Except
for the power moments, other statistics have been used
in previous research to improve the estimation perfor-
mance. For example in [31], covariance lags (power mo-
ments) and cepstral coefficients (logarithmic moments)
are both used to approximate the spectral density. In
this paper, we adopt a similar idea for approximating
Pz.y1|y, Dy using both the power and the logarithmic
moments.

However, we note that it is not feasible for us to di-
rectly use the logarithmic moments in the form of
fR 2% log p(x)dz, which are always infinite, even for
densities p(x) with exponential decaying rate. Take
p(z) = N(0,1) for example. Then

— o0, VkeNp.

Therefore, we propose generalized logarithmic moments,
for which the first 2n + 1 terms exist and are finite. Thus
the generalized logarithmic moments are here defined as

gk,t :/xk9($) 10gp$t+1‘yt(m)d‘r
R

= [ o108 [ oy, (5 ) pu e~ e

fork=1,---,2n. They are called “generalized” because
a reference density 6(z) needs to be determined before

calculating them. We denote by Py8 the subset of all § €
P which have finite generalized logarithmic moments to
at least order 2n, provided with p € Psy,. Here § € P;C;lg
is a reference density function, of which the choice is
not very limited indeed. The probability densities with

exponential decaying rate, e.g. the exponential families,
fall within the subset P,

(6)



Now that the power and generalized logarithmic mo-
ments are defined, we give the following definition to
characterize the equivalence of two densities in the sense
of the two types of moments.

Definition 2.1. A probability density function, which
has the first 2n power and generalized logarithmic mo-
ment terms identically the same as p (with 6(x) given
prior), is called an order-2n P&L density surrogate of p
and denoted by p*".

We denote by p the prediction of density p and propose
to substitute the intractable prior density pg,. |y, ()
with the proposed density surrogate. Each iteration of
Bayesian filtering with the density surrogate is given in
Algorithm 1. At present we assume that it is feasible for
us to obtain such a density surrogate given the power and
generalized logarithmic moments and first investigate
the error propagation through the whole filtering process
with the density surrogate, which is one of the most
important problems in designing a filter. Since the prior
estimation is done at each time step t, which means that
the approximation errors of the each previous iteration
may cause a cumulative one on the current estimation.
It distinguishes the problem we treat from conventional
density estimation problems.

Algorithm 1 Bayesian filtering with density surrogate
at time ¢.
Input:

System parameters: f, hy;

Non-Gaussian densities: 1, €;;

Prediction at time ¢ — 1: py, ()01 Py, |y, _, (2);
Output:
Prediction at time ¢: p,, |y, (7);
Calculate pg, |y, by (2) or (3);
Calculate o, by (5);
Calculate & by (6);
Determine the order-2n P&L density surrogate
piﬁrlwt, of which the truncated power moment se-
quence is o; and the truncated generalized logarith-
mic moment sequence is &. The prior density esti-
mate at time ¢+ 1 is then chosen as the P&L density
surrogate, i.e., Pz, |y, = pi:‘ﬂm.

We will first review the error propagation of the first
2n terms of the power moments in [1] and then analyze
those of the first 2n terms of the generalized logarith-
mic moments. Since the approximation errors caused by
the time updates could have cumulative effects on the
measurement updates, we analyze the first 2n moment
terms of not only p,, |y, but also p.,|y,-

Theorem 2.2. Suppose p,,|y, is a P&L surrogate for
Pa1|Vo, and let py, |y, and pg, . |y, be obtained from Al-
gorithm 1 for t = 2,3,---. Then the power moments
and the generalized logarithmic moments of p,y, and
Paeir|y, are asymptotically unbiased from those of py, |y,
and pg, |y, respectively and are approximately identical

to them for a sufficiently large n, given that all power
moments and generalized logarithmic moments of x; and
the corresponding Ty exist and are finite.

A complete proof of Theorem 2.2 is given in Appendix
A. Theorem 2.2 reveals the fact that the first 2n gener-
alized logarithmic moment terms of the estimated prior
densities with the density surrogate are approximately
identical to the true ones through the whole filtering
process. Together with (A.1), we have that p,,, |y, and
Pa.|y, are approximately order-2n P&L density surro-
gates of p,, |y, and pg,|y,. It reveals the fact that ap-
proximation using both moments doesn’t introduce sig-
nificant cumulative errors to the first 2n moment terms
of the estimated pdfs, with n chosen as a relatively large
integer.

The problem is now constructing an order-2n P&L den-
sity surrogate. Since the domain of p is R, the problem
becomes a Hamburger moment problem [32] with the
constraints of additive generalized logarithmic moments.
In the next section, we will give a representation of this
specific moment problem and propose a solution to it.

3 A parametrization of the density surrogate
using power and generalized logarithmic mo-
ments

In this section, we give a formal definition of the ap-
proximation problem of the prior density and prove the
existence of a solution to this problem given the power
moments and the generalized logarithmic moments.

Definition 3.1. A sequence
(017 cee 50'2717517 s 752'@)
is a feasible 2n P&L sequence, if there is a random vari-

able X with a probability density p(x) defined on R,
whose moments are given by (5) and (6), that is,

or = E{X*} = / 2 p(z)de, k=1,...,2n,
R
and

6 = E2x4) = [ Moo log pla)do k= 1.+, 2n
R

Moreover, we assume that og = 1 and & = 0. Any
such random variable X is said to have a (o, §)-feasible
distribution. We denote the random variable as X ~

(0, )

Next we prove the existence of solution to the moment
problem defined in Definition 3.1. We first paraphrase
Exercise 13.12 in [33]. Let f be a real-valued measurable



function defined on R. Then there exists a sequence of
polynomials P, such that

lim P,(z) = f(z)

n—4oo
almost everywhere.

We note that the true p,, |y, () is trivially a solution
to the moment problem in Definition 3.1. However we
require an analytic function which satisfy the moment
constraints. In our problem setting, p.,. |y, is Lebesgue
measurable. Therefore there exists a lim,_, o Pn(2)
which is equal to pg, .|y, (z) almost everywhere, i.e., it
is a solution to the moment problem above.

However this solution doesn’t exactly satisfy the require-
ment of a state estimate of the Bayesian filter, since there
are possibly infinitely many parameters in the solution,
which makes it infeasible to propagate the solution in
the filtering process. Parametrization is then the most
significant problem, which aims to use finitely many pa-
rameters to characterize the density.

Meanwhile, we are provided with two truncated power
and generalized logarithmic moment sequences rather
than two full ones, which means that there might be
infinitely many feasible solutions to this problem. In
the following part of this section, we propose to choose
proper constraints to parameterize the density surrogate
that satisfies the moment conditions. We still emphasize
here that the parametrization is not unique. Different
constraints will yield different parametrizations.

In the following part of this section, we propose to pa-
rameterize the density surrogate, i.e., to derive a unique
solution to the moment problem of p,, |y,. For sim-
plicity, we omit the subscript ¢ in all the terms in the
following part of this section.

Since there are infinitely many feasible solutions to the
moment problem, a criterion to determine a unique so-
lution is necessary. Following [1, 34], we consider the
Kullback-Leibler (KL) distance

KL(01) = [ 6(0)log & s (7)

to measure the difference between 6 and p, which is a
widely used pseudo-measure in density estimation tasks
[34-37]. Although it is not symmetric, which makes it
not a real metric, the KL distance is jointly convex. We
formulate the primal problem as minimizing

o)
/RH(x) log p(x)d (8)

subject to

/xkpd:czak, k=1,...,2n (9)
R

and
/xkelogpdngk, k=1,...,2n. (10)
R

Here 6 is a prespecified density function which we want
the estimate of the prior density p,, |y, (7) to be close
to. As we have mentioned, there are infinitely many so-
lutions to the truncated moment problem, among which
some do not have satisfactory properties (e.g. smooth-
ness) or have undesired massive modes (peaks). By min-
imizing the Kullback-Leibler distance between 6 and the
density estimate, with 6 given as an analytic function,
it is possible to obtain an analytic density estimate of
the prior, as will be proved in the following part of this
section. We are then able to propagate the prior density
throughout the filtering process. By minimizing (8) sub-
ject to (9) and (10), a parametrization based on both
the power moments and the generalized logarithmic mo-
ments is proposed in the following theorem.

Theorem 3.2. Denoting the Lagrange multipliers as

p:(p1,p27"'ap2n>7 q:((Zla-~-7Q2n)»

set
P(.’L‘) =1+px —I—p2x2 + - +p2nx2”,

Qx) =q +qx+ @ + -+ qona®.

Given any 0 € ’P;;g and any o which satisfies

1 o1 - On
01 02 ' Onp4l

=0, (11)
Opn On+41 (o277

minimizing (8) subject to (9) and (10) yields a unique
solution p € Pay, of the form

p=-"20, (12)

where P(w) and Q(x) are coprime. p,{ corresponding to
P(z) and Q(z) are the unique solutions to the problem
of minimizing

J(P,Q) :U/qff/er/RPﬁlog %d:z:f/RPde. (13)

over all P(x),Q(z) > 0.



Proof. The Lagrangian of the primal problem (8) with
constraints (9) and (10) is

2n
L(p,p,q) =/ ¢log Qdm + qu (/ a* pdz — Uk)
R p —0 R
2n
—Zpk (/ kuIngdx—§k> .
k=1 R

Then we have

L(p,p,q) :/Qloggd:c—/(P—l)Glogpdx
R p R

+&'p + / Qpdx —o'q
R

:/Hlongx—/Pelogpdx
R R

+/ Qpdz +E&'p—d'q
R
with the directional derivative

PO
SL(p,p, q;0p) = / ép (Q - p) dx
R

which yields the stationary point

Pt
p Q N
Then
Lip.p.q) = [ Ologbdz ~1(P.Q).
R
where

P
J(P,Q)=0c"q—&p+ / Polog 29 e - / Podz.
R Q R
In particular,

0J :*§k+/zk010gp—0dx
R

Opk Q
aJ w PO

— =0, — | x"—dx.
Oqx g R Q

O

Remark. We have choosen the constant term of P(x) as
1 to yield a simpler form of p in (12). However, it can be
any real number. By specifying

/ 0log P—edm =0 (14)
R Q

and Po
—dz =1, 15
« Q ()

it is determined together with qq.

But here we note that our parametrization has a rational
form. Therefore, by dividing both the numerator and
denominator by pg, the constant term of the numerator
becomes 1, and the go/po becomes the new go in Theorem
3.2.

We note that to obtain a unique solution to the problem
to minimize (13) by a gradient-based method, it remains
to prove that the map from (p,q) to (£, 0) is a diffeo-
morphism. In the following section, we will complete the
proof of Theorem 3.2 by proving precisely this.

4 The diffeomorphic map

In this section, we prove that the map (P, Q) — (0,§) is
diffeomorphic, building upon some of the ideas presented
in [31].

We begin by noting that og is always equal to one.
We also consider ¢y as a normalizing factor to ensure
that [, p(z)dz = 1, which is thus determined when
(p1,p2,- - D2n) and (q1, 92, - - ., qan) are known. There-
fore, denoting by Ss,, as the class of positive polynomials
of order 2n with the term of order zero being a constant,
we have P,@Q € Ss,,. Given a specified density function
O(x) € P;?Lg, we can represent the rational density func-
tion by (P, Q) € Ma,, where My, = Sa;, X Saj,. Thus
M, becomes a smooth, connected, real manifold of di-
mension 4n which is diffeomorphic to R*".

Next, we define some additional spaces for analysis. We
denote by M3, the (dense) open subspace of Ma,, con-
sisting of pairs (P, @) of coprime polynomials. For P €
Son, we define My, (P) as the space of all points in
Mo, with the polynomial P fixed. Similarly, defining
Mo, (@), Mayp(P) and My, (Q) become real, smooth,
connected 2n-manifolds that are diffeomorphic to Ssj,
and thus to R?". Furthermore, the tangent vectors to
Mo, at (P, Q) can be represented as perturbations (P +
eu, @+ ev), where u and v are polynomials of degree less
than or equal to 2n — 1. Denoting the real vector space of
polynomials of degree less than or equal to d by Vg, the
tangent space to Ma, at a point (P, Q) is canonically
isomorphic to Vo, 1 X Va,_1. Additionally, the tangent
space to the submanifold Ma,, (P) at a point (P, Q) is
given by

T(pr)Mzn(P) = {(u,v) € Von_1 X Vop_1 | u = 0}

Similarly, the tangent space to Ma,,(Q) is given by

T(P,Q)MQn(Q) = {(ua ’U) S ‘/277.—1 X ‘/Qn—l ‘ v = O}



The 2n-manifolds { Mo, (P) | P € Sa,} form the leaves
of a foliation of Ma,,, as do the 2n-manifolds {Ms,, (Q) |
Q € Sz, }. Furthermore, these two foliations are com-
plementary in the sense that if a leaf of one intersects
a leaf of the other, the tangent spaces intersect only at
(0,0). This transversality property is equivalent to the
fact that the polynomials (P, Q) form a local system of
coordinates.

From a geometric perspective, this property implies that
(P, Q) are smooth coordinates on Ma,,. We will use this
to demonstrate that (P, Q) also form bona-fide coordi-
nate systems. Let g : Ms, — R?" be the map that
sends (P, Q) to &, where the components of £ are cal-
culated using equation (6). We denote Cs,, := g(May,).
Additionally, for each £ € Cs,, we define the subset

Mz, (§) = g71(6)-

We aim to show that My, (§) is a smooth submanifold
of dimension 2n. To achieve this, we need to compute
the Jacobian matrix of g evaluated at tangent vectors
to a point (P, Q) € Mas,. If the Jacobian matrix of g is
full rank at every point (P, Q) € Ma,, meaning that the
directional derivative exists in every direction at each
point, then Ma, (&) is proved to be smooth.

We recall that the tangent vectors to Ma, at (P, Q) can
be expressed as a perturbation (P + eu, @ + ev), where
u, v are polynomials of degree less than or equal to 2n—1.

For each component (k=1,---,2n)
5 (P.Q) = [ Powyion (506 Jar (10)

of g, we construct the directional derivative as follows:

D(u,v)gk (P,Q)
= ll_r)%% [9x (P + eu, Q + ev) — gr (P, Q)] (17)

u v
= [(5-g)petas

in the direction (u,v) € Vap_1 X Vap_1.

Next, we define the linear map G : Vop_1 — R?" as
follows:

qu:/R%G x dx. (18)

Then the kernel of the Jacobian of g at (P, Q) is given by

ker Jac(g)|u,w) = {(P, Q)|Gpu = Gqu} (19)

Lemma 4.1. The linear map Gy is a bijection.

Proof. First, consider the case when Gyu = 0. This im-
plies that

/ Lok dz =0 (20)
R ¥
fork=1,---,2n.

From (14), we have that go (1, Q) = 0 for any (v, Q) €
San, which means that directional derivative along any
direction is equal to zero. We take the directional deriva-
tive along (u,0), and we have

Du,0y90 (¥, Q)
= lg%% g (Y + eu, Q) — gr (¢, Q)] (21)

i
= [ —0dz = 0.
L

Since u € Vo, _1, we write

2n—1
u(z) = Z u ', u; € R
=0

By (20) and (21), we shall write

2n—1 u ’LL2
w; | —0x'dx = / —0Odx = 0.
Yoy 7

Since 6, 1) are both positive, u(x) needs to be zero. There-
fore, we have established the injectivity of G. Further-
more, since the range and domain of G, have the same
dimension, namely 2n, the map is also surjective. Con-
sequently, we can conclude that G is a bijection. O

Proposition 4.2. Foreach& € Cap, the space Mo, (€) is
a smooth 2n-manifold. The tangent space T p,g)Man(§)
at (P, Q) consists of precisely all (u,v) € Vop_1 X Vap_1
such that

u v

— Ozt dr = / —0z"dx 22

R P r Q@ (22)

fork=0,1,...,2n.

Proof. The tangent vectors of Ma, (&) at (P, Q) corre-
spond to the vectors in the null space of the Jacobian of
g at (P, Q), as indicated by equation (17). Consequently,
by utilizing equation (19), we establish that (22) holds
for k = 1,2,...,2n. Additionally, according to Lemma
4.1, we can conclude that (20) holds for k& = 0. There-
fore, (22) also holds for & = 0. Furthermore, based on
(19) and Lemma 4.1, the tangent space has a dimension
of 2n. Consequently, the Jacobian matrix Jac(g)| (P, Q)
has full rank, and the remaining part of the claim follows
from the implicit function theorem.



Since the rank of Jac(g)| (P, Q) is consistently 2n, the
connected components of the submanifolds Ma, (£) con-
stitute the leaves of a foliation of Ms,. However, we
still need to demonstrate that the submanifolds My, ()
themselves are connected. The detailed proof for this is
provided in Appendix C. Consequently, we can state the
following proposition. O

Proposition 4.3. The2n-manifolds { Mz, (€) | € € Cap}
are connected, hence forming the leaves of a foliation of

Moy,

From the results proved so far, we conclude the following
corollary.

Corollary 4.4. The foliations, {M2,(Q) | @ € San}
and {Maz, (&) | € € Cap}, are complementary, i.e., any
intersecting pair of leaves, with one leaf from each folia-
tion, intersects transversely. And each intersecting pair
of leaves intersects in at most one point.

Proof. Setting w = 0in (19), we obtain Ggv = 0. Hence,
by Lemma 4.1, v = 0 so that the foliations are trans-
verse. If a leaf Pa, (P) intersects a leaf Mo, () at a point
(P,Q), then the corresponding P is known. Then ac-
cording to Appendix B, a unique £ is determined. O

A similar statement for the foliation { M, (Q) | @ € Sz}
can be proved by the mirror image of this proof and will
be omitted.

Next, let h : Mg, — R?" be the map which sends (P, Q)
to o, the components of which are calculated by (5), and
let Ray, = h (May,). Each o satisfies (11), guaranteeing
the existence of a solution to the moment problem.

Now for each o € R, we aim to demonstrate that the
set

Mo (0) =171 (o) (23)

forms a smooth manifold of dimension 2n. The tangent
vectors to My, at (P, Q) can be represented as a pertur-
bation (P + eu, @ + ev), where u, v are polynomials of
degree less than or equal to 2n — 1. For each component

hi, (P,Q):/kae(x)gggd% k=1,---,2n, (24)

the directional derivative of h at (P, Q) € Ma, in the
direction (u,v) € Vap_1 X Vap_1 is

D(u,v hk (P Q)
[hk (P+eu,Q+ev) —

[ (82
R

= hm

Similar to (18), we define the linear map Hy, : Va,—1 —
RQn by

x
wp ) | 7

Hyu = @9 | de (26)
x2n

and the kernel of the Jacobian of h at (P, @) is given by
ker Jac(h)|(p,q) = {(u,v)|Hou = Hpv} (27)

fork=0,1,...,2n.

Proposition 4.5. For each 0 € Ra,, the subspace
Mo, (o) is a smooth and connected 2n-manifold.
The tangent space T(pqgyMan(o) consists of pairs

(u,v) € V2n—1 X ‘én—l SatiSfying
ch Fdx @G:Ekdm (28)

for k = 1,...,2n. Furthermore, the 2n-manifolds
Moy, (o) constitute the leaves of a foliation of Ma,.

Proof. Let us begin by demonstrating that the linear
map Hy is a bijection. Suppose Hyu = 0. This implies

Hyu = /R g—fex’“dx =0 (29)

for k =0,...,2n. From (15), we have hg (¢,Q) = 1 for
any (¢, Q) € Say,. Therefore, the directional derivative
along any direction is equal to zero. We take the direc-
tional derivative along (u,0), and we have

(M Q)
[hk (Y +eu, Q) —

- “wed

Q2

Since u € Vo, _1, we write

= hm

hk (w, Q)] (30)

2n—1

= E u; ', u; € R.
i=0

y (29) and (30), we shall write

2n—1

Zul/QQsz Q;/) = 0.

Since 0,1 are both positive, we conclude that v = 0.
Thus, Hy is injective. Moreover, since the range and do-
main of Hy have the same dimension, namely 2n, the



map is also surjective. In conclusion, Hy, is a bijection.
Similar to Proposition 4.2, we can establish that the rank
of Jac(h)| (P, Q) is full. As the rank of Jac(h)| (P, Q) is
thus consistently 2n, the connected components of the
submanifolds Moy, (o) form the leaves of a foliation of
Mas,,. To complete the argument, it remains to demon-
strate that the submanifolds Moy, (o) are themselves
connected. The proof is provided in Appendix B. O

Theorem 4.6. For each (P,Q) € Ma,(c) N May,(£),
the dimension of

D= T(RQ)Mzn(U) N T(P,Q)M2n(f) (31)

equals the degree of the greatest common divisor of the
polynomials P(z) and Q(z).

Proof. Every (P,Q) € D satisfies both (22) and (28).
By taking appropriate linear combinations of (22) and
(28), we obtain the following equations

/PQde—/PQ (32)
/ W iy / Ga0d (33)

Since #(x) is a non-negative density function, we can
define

and

U 1 1
f1 = 595 E (34)

which allows us to rewrite (22) and (28

and fy:=

as

v@\e

IAlP = (fi, ) and  (fi.fo) = I fl® (35)
using the inner product and norm of L?[—o0, +-00]. Ap-
plying the parallelogram law, we have

L= foll® = LA+ I fell® = 2(fr, fo) =0, (36)

which implies f; = f2. Consequently,

~ = (37)

which has no solution if P and () are coprime. However,
if P and @ have a greatest common factor of degree d,
u(z) and v(z) can be polynomials of degree less than
or equal to 2n — 1 with an arbitrary common factor of
degree d— 1, thereby defining a vector space of dimension
d, as stated. O]

In conclusion, Theorem 4.6 establishes the complemen-
tary property of the foliations {Ms,(0) | 0 € L1} and
{M2n () | € € L4} at every point (P, Q) € M3, , where

P and @ are coprime. Consequently, it follows that the
kernels of Jac(g)| (P, Q) and Jac(h)| (P, Q) are comple-
mentary at any point (P,Q) in M3, . Remarkably, the
Jacobian of the joint map (P, Q) — (o,§) achieves full
rank. As a result, the mapping (P, Q) — (o,&) is a dif-
feomorphism, thereby completing the proof of the fol-
lowing theorem.

Theorem 4.7. The power moments 01,09, , 0o, and
the generalized logarithmic moments &1, &, - -+, &ap SETVE
as a valid smooth coordinate system within the open sub-
set M5, of Ma,. This means that the mapping from
M, to RY™ with components

70—2n;£1,§27"' ,£2n)

(Jl, g2,
has an everywhere invertible Jacobian matriz.

Based on the conclusive findings presented in Theorem
4.7, we have now concluded the proof for Theorem 3.2.

Having obtained all the necessary results from the pre-
ceding sections, we can now provide a comprehensive
algorithm for non-Gaussian Bayesian filtering utilizing
moments. This algorithm, denoted as Algorithm 2, uses
both types of moments and is built upon the foundation
of Algorithm 1.

Algorithm 2 Bayesian filtering with density surrogate
using power moments at time .

Input:
System parameters: fy, he;
Non-Gaussian densities: 1, €;;
Prediction at time ¢t — 1: py, (2)or py, |y, (2);
Output:
Prediction at time ¢: p,, |y, (7);
Calculate pg, |y, by (2) or (3);
Calculate o by (5);
Calculate & by (6);
Perform optimization, solving (13) to ob-
tain the order-2n P&L density surrogate of

f]R ﬁItD]t (%) Py (.’L‘
new prediction pg, |y, (7).

€)de, which represents the

In [1], we demonstrated that power moments, which are
linear integral operators, contain abundant information
for characterizing density functions and can transform
the infinite-dimensional filtering problem into a finite-
dimensional and tractable one. In this paper, we prove
that other linear integral operators, which capture dif-
ferent types of macroscopic properties of the density to
be estimated, provide additional information that can
enhance the density estimate. In the next section, we
will simulate our proposed non-Gaussian Bayesian filter
on mixtures of different types of density functions. We
will also compare its performance with the filter pro-
posed in [1] for each numerical example, demonstrating



that the additional information carried by the general-
ized logarithmic moments improves the density estima-
tion performance. Moreover, we will apply the proposed
filter to a robot localization task and compare the per-
formance to several prevailing methods.

5 Numerical examples

In this section, we provide numerical examples of our
proposed non-Gaussian Bayesian filter that utilizes both
the power moments and the generalized logarithmic mo-
ments.

We perform two types of numerical simulations for val-
idating the performance of the proposed algorithm. We
first simulate distribution approximation tasks. We com-
pare this filter, denoted as DPBM (Density Parametriza-
tion using both Power Moments and Generalized Loga-
rithmic Moments), with a Bayesian filter that only uses
power moments, which we referred to as DPPM (Deunsity
Parametrization using Power Moments) in our previous

paper [1].

To begin, we need to choose a reference density 6(x). For
light-tailed density surrogates, the Gaussian density is
a suitable choice for 6(x). With this selection, the first
2n power moments of p(x) exist and are finite. Now, we
must determine the mean and variance of the Gaussian
distribution.

For the DPPM proposed in [1], the power moments o
and o of the reference density 6(x) can be calculated us-
ing (5). By choosing m = o1 and 62 > 05 and specifying
the density 0(z) = N(m,o?), we consistently achieve
good estimations. The reason behind this is that a rel-
atively large variance o2 helps adjust the estimate to
densities with multiple peaks (modes).

For the DPBM, we can directly choose the reference den-
sity 0(z) as 6(z) = N (o1, 02). Due to the additional in-
formation provided by the generalized logarithmic mo-
ments, we no longer need to choose a relatively larger
variance for the prior density.

We first simulate a mixture of Gaussians with two modes,

0.5 (z—2)2 0.5 (z+2)2
)= —e 2 + ——e " 2 38
p(z) o or (38)

where we select §(x) as N'(0, 5?). The degree of the poly-
nomial Q(z) is 4 for both p,, and p;, where p,, corre-
sponds to DPPM and p; to DPBM. The highest order
of P(z) in py is 4. By Algorithm 2 in [1], a non-Gaussian
Bayesian filter using only power moments, we obtain
pm = 0(2)/Qm(z), where Q,, (z) = 4.13-10722% 4 5.40 -
107°2% — 4.44 - 1012 — 3.07 - 10~ *z + 1.40. Also we
obtain p; = 0(x) - P(x)/Q;(x) by Algorithm 2, where
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Qi(x) = 3.40-10722* — 4.39- 10~ 423 — 2.40- 10122 —
2.88 - 10722z + 1 and Py(z) = 3.19 - 10~3z* — 8.39 -
1072423 +1.60 - 10~ 122 + 4.49 - 10~ 222 + 1.06.

The density estimates p,, and p;, along with the true
density p, are depicted in Figure 1. The simulation re-
sults clearly demonstrate that incorporating the gener-
alized logarithmic moments into the density surrogate
enhances the accuracy of prior density estimation for
non-Gaussian Bayesian filtering.

)
plx) ,
0.35 a A === True Density
DPBM
DPPM
0.30 1 1
0.25 f L ‘ 4
0.20 A I ~
\ /
CIRRY RAC/A8
0.05 7 3
0.00 ———/ ¥
6 - - To 2 a 6

Fig. 1. Simulation results of Example 1. The blue curve rep-
resents the true prior density function. The green one repre-
sents the density estimate using only power moments. And
the orange one represents the density estimate using both the
power moments and the generalized logarithmic moments.

In the following example, we simulate a mixture of gen-
eralized logistic densities, which is known to be chal-
lenging to estimate accurately. Specifically, Example 2
represents a mixture of two type-I generalized logistic
densities with the probability density function given by

0.6 -3¢ 72
(1+ec-2)d

0.4 -2¢~%+2
plr) = (14 e—e+2)s

We choose 0(x) as N'(0.90,5.862) as the reference den-
sity. For both p,, and p;, we use a degree-4 polynomial
Q(z). In py, the highest order of P(z) is 4. By employing

the density surrogates, we obtain p,, = Qeﬁi), where

Qm(z) =1.65-10722% —9.95- 107223 + 5.27- 107222 +
3.48-107t2+4-1071 and p; = %&(m), where Q;(r) =
1.68-107224—6.82-10"223—6.75-10 222 +3.34- 10" Lz +1
and Pj(x) = 7.10-10~%2*+1.75-10 323 - 6.65- 10222 +
9.76 - 1022 4 2.14. The simulation results are presented
in Figure 2.

It is observed that the estimate p,, is significantly biased
compared to the true density. However, by utilizing the
density surrogate that incorporates both moments, we
achieve an estimate with a considerably reduced error.



This outcome is remarkable since the density surrogate
only requires 10 parameters and does not rely on any
knowledge of p,,. |y, (), such as the number of modes
or the specific functional form.

plx)

== True Density
0.30 4

DPBM
DPPM

0.25 7
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0.10 4

-- \ £7 N\
\

To 2 4 6 8

0.05 + B i

0.00 4

Fig. 2. Simulation results of Example 2.

In the final example, Example 3, we consider a mixture
of two Laplacian densities. The probability density func-
tion is defined as follows:

plx) = 0.3-e 1=l 4071,

We select 0(x) as N'(—0.4, 1.5%) for the reference density.
The polynomial Q(z) has a maximum order of 4 for both

pm and pp. In py, the highest order of P(z) is also 4.
6(z)

Utilizing the density surrogates, we obtain p,, = Qmazz) ,
where @Q,,(7) = 5.52 - 107 22% — 7.54 - 107223 — 1.69 -
107122 4+ 3.25-10~'2 + 1.01, and p; = %{;)@ where
Qi(z) =6.78 - 107 12* +5.48 - 107223 — 1.11 - 22 +2.39 -
10722 4+ 1 and Py(x) = 7.00 - 10~ 22* + 1.03 - 10~ 123 +
6.20-10" 22 —3.13-10" 'z +4.67-10~'. The simulation
results are depicted in Figure 3.

In this example, it is important to highlight that the
density being estimated is not smooth, and it exhibits
two distinct sharp modes (peaks) that are in close prox-
imity to each other. When utilizing only the power mo-
ments, we observe that the density estimate is unable to
accurately capture the two modes, resulting in a poor
approximation where only a single peak is represented.
However, by incorporating the generalized logarithmic
moments into the density surrogate, we significantly
enhance the performance of the estimate. The result-
ing density approximation now successfully captures
the presence of the two sharp modes and provides a
much-improved representation.

In the previous numerical examples, we proved that
by using the generalized logarithmic moments together
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Fig. 3. Simulation results of Example 3.

with the power moments, the performance of distribu-
tion approximation is clearly improved in some situa-
tions, compared to merely using the power moments.
In the following part of this section, we will give a more
illustrative example, where our proposed algorithm is
applied to an engineering problem and the performance
is compared to several prevailing methods.

We address a robot localization challenge wherein a sen-
sor is designated to measure the distances between the
robot and predefined landmarks. We assume that the
robot moves along the real line R with coordinate . The
robot’s position with respect to coordinate x at time step
k is denoted as z(k). The positions of L landmarks are
denoted as {Z1,...,Z}. In this localization task, the
robot undergoes incremental movement, advancing one
unit along the positive x direction. Imperfect controls
result in deviations from the commanded movement, ne-
cessitating consideration of noise in the particle’s move-
ments to capture the actual robot movement. The mov-
ing distance, with a true value of 1, is corrupted with an
additive Gaussian noise N(0,0.03%). Furthermore, the
distance observation of each landmark is subject to ad-
ditive noise.

The system and observation equations are

zk+1)=z(k) +1+wk)

Zl(]{/’) x(k‘) — i‘l U1(/€)

ZL(k) 1‘(]{3) 7.17[1 ’UL(k'>

respectively. The sign of the signed distance z;(k) is neg-
ative when the robot is positioned to the left of landmark
¢ and positive when it is to the right of landmark 4.

We assume that the variable w(k) follows a Gaussian



distribution, specifically A/(0,0.03%), accounting for the
error in controlling the robot. In prior results, the noises
v1(k),...,vr(k) were assumed to be Gaussian to obtain
a closed form of solution. In this experiment, however,
we propose employing the right-skewed Gumbel distri-
bution to validate the proposed algorithm in treating
non-Gaussian filtering tasks.

The probability density functions of the Gumbel and
Gaussian distributions is illustrated in Figure 4. The
probability density function of the Gumbel distribution
is given by

—dz—e~ 4"

pu; () = 4e (39)

Meanwhile, the Gaussian distribution, with an identical
mean and variance as the Gumbel distribution, has the
following probability density function

22

1
(z) = ———¢€20.352, 40
po; (2) 03 (40)
p(p .
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Fig. 4. Probability density functions of the Gaussian and the
Gumbel distributions.

In the context of this localization task, the use of the
asymmetric Gumbel distribution as the model for obser-
vation noise poses a significant challenge in selecting an
appropriate stochastic filter. Except for DPBM proposed
in this paper and the DPPM proposed in [1], the par-
ticle filters (PF) is the sole feasible option in prevailing
methods for carrying out this task, due to the Gumbel
distribution. In our simulations, we adopt a sampling-
importance resampling (SIR) filter, as described in [12].
Given that the system equation and the observation
equation are both linear, we also adopt the Kalman filter
(KF) for this task. However, the KF faces difficulties in
handling the Gumbel observation noise. Consequently,
we resort to using the Gaussian distribution in (40) as
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a substitute for (39) to represent the observation noise
during the filtering process.

The initialization procedure for the three filters is as
follows: The robot initiates its movement from the po-
sition x = —7, and a landmark is situated at * = 0.
The distributions of the initial states z(0) for both the
DPBM and KF are set to be the Gaussian distribution
N (mqg, 1), where the mean myg is drawn from the Gaus-
sian distribution V' (—7,1). The states of the 5000 parti-
cles in the PF are i.i.d samples drawn from the uniform
distribution U ([—8, 8]), which aims to cover a broader
range of potential locations. The additive noise in the
distance observation follows the Gumbel distribution in
(39). The DPBM utilizes power moments and general-
ized logarithmic moments both up to the fourth order
to estimate the density surrogates.

Figure 5 illustrates a sample robot localization process
along the x-axis, showcasing estimation results by PF
and DPBM. The black crosses represent the true trajec-
tory of the robot. The red and green dots represent the
location estimates by the particle filter and our proposed
DPBM filter. The gray dots represent the particles of
the particle filter at each time step. We emphasize that
the robot moves along the x-axis, even though the esti-
mates and the particles of PF at different time steps are
drawn slated, which aims to show the locations of the
particles better. Notably, the location estimates by the
DPBM converge to the true locations, while the PF par-
ticle states also converge to the correct positions. Figure
6 presents the root mean square error (RMSE) curves
for 50 Monte-Carlo simulations of DPBM, PF, and KF.
As the state estimates converge, the RMSE of DPBM
is the smallest. The RMSE of PF is slightly larger than
that of DPBM, however is quite close to it. We note
that the RMSE of KF is significantly larger due to the
use of a Gaussian distribution as an alternative for the
true Gumbel distribution. The biased observation noise
model causes obvious performance degradation of filter-
ing.

From an RMSE standpoint, the DPBM does not signifi-
cantly outperform the PF, but a notable drawback of the
Particle filter is its requirement to store massive amount
of data. For instance, in this simulation, the state of each
particle consists of two parameters, namely its position
and weight, resulting in a need for 10,000 parameters to
characterize the system state density. In contrast, the
DPBM only requires 9 parameters for this task, offering
a more compact representation of the density function.

Additionally, considering the time consumption, the PF
outperforms the DPBM in the execution time. In this
example, each filtering iteration takes an average execu-
tion time of 1.08 seconds on a 2.5 GHz Intel Core i7 CPU.
While this may be relatively long compared to the PF
execution time, it remains manageable for applications
with less sensitivity to the execution time. Moreover, the



optimization in each filtering step is convex with the so-
lution proved to exist and be unique. It makes the exe-
cution for each filtering step to be predictable, which is
a clear advantage of DPBM.
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Fig. 6. RMSE as a function of time step t = 1,--- ,13 of 50
Monte-Carlo simulations for KF, PF and DPBM.

6 Conclusion

A Bayesian filter based on density parametrization us-
ing both the power moments and the generalized log-
arithmic moments of the densities is developed in this
paper. We propose a convex optimization scheme to
uniquely determine a rational density with exactly the
specified power and generalized logarithmic moments,
rather than estimating the parameters of a prespecified
density model (such as Gaussian or Student’s t) by min-
imizing the difference characterized by a norm, like the
traditional method of moments. The map from the pa-
rameters of the proposed density surrogate to the power
and generalized logarithmic moments is proved to be
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diffeomorphic, which reveals the fact that the param-
eters can be uniquely determined by the two types of
moments. Furthermore, we provide the statistical prop-
erty, together with numerical simulations to validate the
proposed density estimator. By the results of the nu-
merical simulations, we observe that the performance of
density estimation using the proposed algorithm is quite
satisfactory, which is a clear improvement as compared
to that of the density surrogate using only power mo-
ments in our previous paper [1]. The presented filter is
employed in a robot localization task, enabling a com-
prehensive performance comparison with various estab-
lished filtering schemes. It is noteworthy that the Root
Mean Square Error (RMSE) exhibited by the proposed
filter is lower than that of the commonly used particle
filter. Despite the fact that the execution time for each
filtering step in the proposed algorithm is comparatively
longer than that of the particle filter, the proposed algo-
rithm effectively mitigates the necessity for the particle
filter to store states of massive particles.
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A Proof of Theorem 2.2
Proof. It is proved in [1] that, for a sufficiently large n,

E (¢19,) ~ E (27]2) A

and E (2f,|V:) ~E (2/,,)%)
for k = 1,---,2n, for py, |y, Pz.1|y. € SG, where SG
denotes the space of all sub-Gaussian distributions. Sub-
Gaussian distributions are those whose tails are domi-
nated by the tails of a Gaussian distribution, i.e., decay
at least as fast as a Gaussian. Moreover,

im_E (&) = B («F])

and nEIEOOE (25,11¢) = E (254 V4)
fork=1,---,400. Now It remains to analyze

E"8 (xf[);) — B8 (2f|))
and E°® (a?f+1|yt) — El°g (£f+1|yt)

for k = 1,---,2n. We note that E"8 (z}[))) =
E'°8 (£5|)%) after the first time update, i.e.,

/IR z*0(x) [10g (po1 ) =108 (Pay )] de = 0. (A3)

Meanwhile, we can write the generalized logarithmic mo-
ment terms of p, |y, as

EP% (21|)1) = /kaé’(x) og [pe, (Y1 — 1) oy, ()] d

for k =1,---,2n, and those of p,, |y, as,
EPE (27])1) = /kae(x) 10g [pe, (y1 — 1) puy y, (2)] dav

for k =1,--+,2n. Therefore by (A.3) we have,

E° (a7|)1) — EP (27])1)
:A$k9(w) [10g (P213) = 108 (P (3,) ] dit
=0

for k=1, --,2n. Then we have
EC (27|01) =B (271), k=1,

,2n.



Moreover, by (4), we have

'8 (25]1) — B (25])1)

:/kaé’(x) log/szl‘yl (;) P (x — €)dedz
~ [ 0o [ pes, (5 ) oo - e)ieda
(

/flfv log/pmyl w) py, (& — frw)dwdx
—/ﬁw%M%/%mMM%MFﬁwwm
R R

fork =1,---,2n. We note that p,, (z — fiw) is analytic
almost everywhere. Assume p,, (r — fiw) is analytic at
point zg, then it is feasible for us to write the Taylor
series at this point. Without loss of generality, we take
ro = fiw, then we have

Pm (:17 - flw)

+oo  (7) )
=3P o i

¢ %1) 0) i—j
—ZZ()”“M

1=0 j=0

Since all power moments and generalized logarithmic
moments of 1 and & exist and are finite, we have (A.4).

By (A.4), we note that E'°¢ (25|);) —E'° (£5])) tends
to zero as n — oo by (A.1). By properly selecting a
sufficient large n, we have

E8 (z5|01) = E'% (25))1), k=1,---,2n,
Similarly we can prove
E"¢ (af|V:)  E° (#1%), k=1, ,2n,
and
E"® (afy,|V0) ~ B8 (24 100), k=1, ,2n,
as claimed. O

B Connectivity of My, (o)

It is nontrivial to prove that the set of all feasible
(p1,-++ ,pan) is path-connected given May, (o).

From the view of optimization, if the feasible (p1, - - - , pan)
fall into several disjoint sets, it is difficult to achieve

the global optimum. In this appendix, we prove the
connectivity of Ma, (o).

We first prove that the map sending (p1,--- ,p2n) to
¢ € Cy, is a diffeomorphism.

It is obvious that given a P, there exists a unique . Now
we need to prove that given a generalized logarithmic
moment sequence &, there exists a unique P. Here we
prove this by contradiction. Assume Pg;@ and g((;))ﬁ

correspond to identical £ where P (z) # P’ (), i.e

/
/Oxi log Et_‘)dx = / 0z log iﬂdx =& (B.1)
R Q R Q

fori = 0,1, ., 2n (specifically, & is confined to be zero).

Therefore we have

/ 2'0(x) log de =0,
R

, =0.1,....2n.
"@)6(z) P= 0L

(B.2)

As P(x) and P’(x) are normalized density functions,

)
(S P(z)6()
= /}R;pﬂ; 0(x)log de
= KL(P9, P'0)
=0.

However, KLL(P0, P'§) = 0 if and only if P = P’, i.e

(plv"' 7p2n) = (plla vaQn)a

given a generalized logarithmic moment sequence &. This
contradicts our assumption. We have that the map send-
ing (p1,--+ ,p2n) to (&1, -+, &y is a bijection. And be-
cause the map and the inverse map are both differen-
tiable, we have that the map is a diffeomorphism. There-
fore, Ma, (o) is diffeomorphic to Ma,, (Q), which is again
diffeomorphic to R?" and is then path-connected.

C Connectivity of My, (£)

We will prove that the 2n-manifold (g1, - - - , g2r) is path-
connected given Mo, (§). First we prove that the map
sending (1, , g2n) to 0 € Ray, is a diffeomorphism.

It is obvious that given a pair of parameters (g1, - - , q2n),
there exists a unique o. Now we need to prove that



Elog ($§|y1) _ Elog (j,12c|yl>

:/Rggke(x) log/]RpmlD;1 (w) Jlroo

i

i=0 j=0

[ 0108 [ ppy, @) ) CIV P O) i
R R i=0 j=0 \J v
:/ 2*0(x)log [ ) <Z> at / Py (W) (_fl)J.f)m ©) i | d
R =0 j=0 \J R v (A.4)
400 @ . i (3)
B k v\ i 4 (=f1)pn/ (0)
/Rx 0(x) log ;]:0 (]) x /Rpgmy1 (w) F w!dw | dx
:/ CL‘kQ(CL‘) log +§ - i P (_fl)jpT(?il) (O)E (leD)l) dx
R i=0 j=0 \J i!
_/ka(ﬂc) log <Z> ztI (—f1)].'Pn1 (O)E (50]1|y1) dx
R i=0 j=0 \J v

given a specific power moment sequence o, there exist a

unique (ql7 .- ,qgn) Again we prove by contradiction.
Assume = ) ( ) have the identical o, i.e.
iy L) Ve =0 (C.1
" Q@) Qe = (G
fori=0,1,...,2n.
Then we have
i P() (Qr) — Q'(x)) _
/ 00 @) 0(z)dz =0, (C.2)
fori=0,1,...,2n. Defining (g;) by
2n
Q) - Q@) = ', (C.3)
i=0
we have
S P(2) (Q(z) — Q'(2))
Gi ‘ 0(x)d
2.1 L ) e
o~ i P2) (Q(z) — Q'())
= Gt 0(x)d
/R;q HTF o
=0,
and consequently
2
(ano qzxz)
/ ZP 0@ x)dr =0 (C.4)
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Since P(x),Q(x) and Q' (x) are all positive, we have

- )

(C.5)

2n
E giz"
=0

i.e.

(C.6)

This contradicts our assumption. Therefore we can con-
clude that the map sending (q1, - -+ , gan) to (o1, -+ ,02,)
is a bijection. And because the map and the inverse map
are both differentiable, we have that the map is a dif-
feomorphism. Since M2, (§) and Mz, (P) are both dif-
ferentiable, they are diffeomorphic. Then we have that
Mo, (€) is smooth and path-connected, because Moa, (Q)
also has these two properties.
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