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Abstract— This paper addresses the problem of designing a
real time high performance controller and trajectory generator
for air vehicles. The control objective is to use information
about terrain and enemy threats to fly low and avoid radar
exposure on the way to a given target. The proposed algorithm
builds on the well known approach of Receding Horizon
Control (RHC) combined with a terminal cost, calculated from
a graph representation of the environment. Using a novel
safety maneuver, and under an assumption on the maximal
terrain inclination, we are able to prove safety as well as
task completion. The safety maneuver is incorporated in the
short term optimization, which is performed using Nonlinear
Programming (NLP). Some key characteristics of the trajectory
planner are highlighted through simulations.

I. INTRODUCTION

THIS work deals with the problem of iteratively planning
and executing a trajectory towards a given target. Given
information about the terrain and positions of enemy threats,
the trajectory should use the terrain to reduce exposure
to enemy radar by flying low, while at the same time
keeping control efforts, as well as total time of flight, small.
Furthermore, we would also like to be able to formally verify
that the air vehicle will in fact reach the target without
crashing into the terrain.

The focus on iterative solutions is due to the fact that
with imperfect information, the estimated location of tar-
get and threats might change during the course of flight.
Furthermore, assuming that the problem originates from
a complex real-world application, the existence of a truly
optimal analytical solutions to the whole trajectory planning
problem is deemed unlikely; thus we seek “good enough”
fast computational algorithms.

In the field of trajectory planning and control, Receding
Horizon Control (RHC) is a well known tool to achieve
computationally efficient, “good enough”, solutions to many
unmanned vehicle control problems [1]-[8]. However, an
important issue with RHC is to make sure that the greedy,
short term optimization does not lead to long term problems.
In the vehicle control domain, this often boils down to
two things: not getting into situations where a collision is
unavoidable, and making sure that the destination is actually
reached.
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Collision avoidance for ground vehicles or helicopters can
be achieved by making sure that every planned trajectory
ends in a standstill, [1]. Similarly, for fixed wing aerial
vehicles a guaranteed obstacle free circular loitering pattern
ensures safety, [2], [5]. Kuwata and How [6], [7] have consid-
ered safe RHC of autonomous vehicles in a 2D setting which
rely on visibility graphs for environmental representation.
However, task completion is not guaranteed.

Task completion has been considered by Richards and
How [3], [4]. By augmenting the system with a binary
“target state”, that indicates whether the target set is reached
or not, the authors end up with a hybrid system. Task
completion is then guaranteed by imposing a hard terminal
equality constraint on the target state at the end of the
planning horizon. Although intuitive, this is indeed a very
restrictive and computationally demanding constraint that
require needlessly long planning horizons.

Most of the papers above address planar problems, while
our formulation is in 3D. More importantly however, our
work differs from the mentioned papers by the fact that in our
case, safety and task completion are intimately connected.
This is due to an elaborate choice of safety maneuver, at the
end of the short time optimization. The safety maneuver is
then augmented by a closed form goal terminating trajectory,
that is collision free by design. By iteratively replacing old
safe plans with new safe plans, there is always a safe plan
available for execution if some step of the update procedure
should fail.

The foundation of the present work was laid in [8]. The
results there were however only applicable to helicopters and
aerial vehicles with a thrust-to-weight ratio larger than one.
Since many of today’s UAVs have a value in the order of 0.5,
the present paper extends the results to include this wider
class of cases. Furthermore, the formal arguments in this
paper are made on a higher level of abstraction, making the
presentation somewhat more lucid.

In what follows, the trajectory optimization problem is
presented in Section Il. Section Il then describes the pro-
posed solution in detail. The properties of safety and task
completion are proved in Section 1V, followed by simulation
examples in Section V. Finally, this paper is concluded in
Section VI.



Il. PROBLEM FORMULATION

In this section we will state the problem in terms of vehicle
model and control objectives in detail.

A. Vehicle Model
Let the aerial vehicle model be given in discrete time by
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i.e. a discrete time, double integrator with time step h and
upper bounds on magnitude of speed, v; € R3, and acceler-
ation a; € R3. There is also a terrain collision constraint on
position, p; € R3, as well as an upper bound 5 € (0,7/2]
of the flight path angle ~. The collision constraint is

d(Pi) = H(»Luyz) + hmin — 2; <0,

where H(z;,y;) denotes the altitude of the terrain at the
point p; = (x;,v;,2;) and hmin > 0 denotes a minimum
altitude clearance, set by the operator. It should be noted, that
the theory below admits considerably more general dynamics
and control constraints; as long as the NLP below terminates
fast enough, any model can be used.

In order to state safety properties of the proposed con-
troller, we make the following assumption about the terrain.

Assumption 1: The maximal terrain inclination «, is
smaller than the vehicle maximum flight path angle 7.

In instances where this assumption does not hold at iso-
lated spots, a virtual “inclination-smoothed” terrain above the
real one can be calculated and used instead of the original,
thus fulfilling the assumption.

B. Control Objectives

Designing the aerial vehicle controller, we would like to
meet the following objectives.

« Avoid ground collisions

« Aurrive at target position

o Compute controls in real time

o Allow for information updates

« Achieve a short time of flight

« Use small control effort

« Achieve low threat and radar exposure

Ideally we would like to formally guarantee the first two
items, satisfy the following two and minimize an objective
function composed of the last three. The objective function
might therefore be of the following form

> llaill3 +bg(pi) +c, @)

where p;,a; are defined above, b, ¢ > 0 are scalar weights,
g represents a measure of threat and radar exposure and the
summation stretches over the whole mission.

C. Problem Statement

We formulate, somewhat loosely, the overall trajectory
planning problem in the following way.

Problem 1: Iteratively and efficiently choose controls
{a;} such that the model (1) starting from p, reaches the
target prorger, While approximately minimizing the control
objective (2).

The term approximately is added, since solving the prob-
lem to optimality turns out to be computationally intractable.
If, however, we are willing to settle for a good, but not nec-
essarily optimal solution in terms of the objective function
(2) above, the problem becomes tractable.

I1l. PROPOSED SOLUTION

In this section we will propose a solution to Problem 1
described above. The solution will be a Receding Horizon
Control (RHC) scheme using Nonlinear Programming (NLP)
for the short term planning. We will further more discuss the
choice of terminal cost function for the long term planning,
as well as how we can make sure that the vehicle actually
arrives at the target without crashing into the terrain.

A. Solution Outline and Receding Horizon Control

As discussed in the introduction, RHC has proved to be
a powerful tool to achieve good performance in a computa-
tionally tractable way. The main idea in RHC is to divide
a planning problem into a short horizon and a long horizon
part. Over the short horizon a detailed plan is calculated and
over the long horizon only a coarse plan, or no plan at all
is needed. The short term plan is then iteratively updated as
time evolves, making the horizon of the plan recede, always
extending a fixed amount of time into the future.

The way we apply RHC to this problem is illustrated in
Figure 1. The figure depicts the aerial vehicle and corre-
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Fig. 1. Two consecutive plans. Note the short term plan (solid and dotted),
safety maneuver (dotted), and goal termination trajectory (dashed), reaching
the target, ptarget, ON the ground (thick solid).

sponding plan at two different time instants. At the first
instant a short term plan (solid and dotted lines) is calculated
using NLP, as discussed below. This trajectory includes a
safety maneuver (dotted) and is augmented with a goal
terminating trajectory (dashed). The existence of the safety
maneuver at the end of the short term plan is a constraint
of the NLP. At the end of the safety maneuver the path is
directed towards the target and has the climb angle «, which
by definition is equal to the maximal terrain inclination. This
fact makes the final part of the trajectory, a steady climb and
a steady descent towards the target at « degrees inclination,



collision free by design. That a collision free path is obtained
also after replanning, i.e. that safety is retained, follows from
the observation, [1], that if the new planning for some reason
fails, the old plan is still valid and can be executed all the
way to the target.

Having a plan, the vehicle now proceeds to execute the
first part of the plan over an execution horizon 7., which
must be smaller than the N time step long planning horizon
T, = Nh. Figure 1 also depicts the situation after 7%, when
the NLP planning is performed once more and a new plan
is constructed. !

In order to apply the above solution strategy one has to
find a way to negotiate the instant 2« turn at the top of the
trajectory in some way, so that the constraints in model (1)
are met. There are several ways of doing this, as discussed
below (see Definition 2), but we shall make the standing
assumption that the issue has been resolved for the first
planning instance.

Having outlined the principle behind our formulation of
the trajectory planning problem as an RHC problem, we
now proceed to a somewhat more detailed look at its various
components.

B. Short term planning and Nonlinear Programming

The NLP alluded to above, for the solution of the short
term planning subproblem, can be described as follows.

At the time of planning, let the vehicle be in state p., v..
Let all planning variables have two subscripts where the first
represent the index of the plan, and the second represents the
time scale on which the vehicle dynamics in (1) are defined,
i.e. py; is the planned position of plan & at & - 4 time units
after the plan was initiated.

Definition 1: By a short term plan, we mean a sequence
P, = {ax} that is the best known solution to the following
NLP.
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Lt is useful, but not necessary, that T}, Te are chosen so that the safety
maneuver is shorter in duration than 7}, — T. since then the replanning
commences before the vehicle has started the safety maneuver. In fact, it is
in general desirable that the vehicle actually never has to execute the safety
maneuver.

where k is plan index, N = T, /h, and the terminal cost,
U : R? — R*, and cost decrement margin, ¢ > 0, will be
defined below. The final two constraints makes the last part
of the trajectory climb in the direction of the target. All other
variables are defined as their counterparts, without index k,
in (1). If there is no feasible solution to (3) then the short
term plan is undefined.

Remark 1: As part of the RHC scheme, we will always
be on our way to execute an old plan when a new plan is
constructed. Thus the old plan can often serve as a feasible
starting solution in the optimization. This only fails when the
descent part of the goal terminating trajectory falls within
the new T}, and the a-constraint is not satisfied. If no new
feasible trajectory is found, the execution continues along
the old plan.

C. Goal termination trajectory

In this section we will see how the short term plan
produced by the NLP can be canonically extended all the
way to the target, in a way that is collision free by design,
as suggested in Figure 1.

Definition 2: By an extended plan, we mean a short term
plan P, = {ax} over time horizon T}, augmented with a
straight line steady climb at o degrees towards the target,
followed by a maximum rate turn and a straight line descent
ending at the target. The dive is initiated at a point pp,
defined as the top vertex of a triangle, {piarget, Prop, Pk, N}
in the vertical plane with edge inclinations «, for the two
upper edges. In instances when p:o, and pigrger are so
close that the dive towards py,rgc: Violates the vehicles dive
constraints, or when piu,ge¢ IS inside the maximum turn
circle from p,,, and cannot be reached, the extended plan is
undefined. Likewise, if no feasible short term plan is found
in the NLP, the extended plan is undefined.

ptarget

Fig. 2. Two alternatives for forming a goal termination strategy. The dash-
dotted curve illustrates the alternative described in Definition 2. Note that
this is only one of many ways to reach the target while flying above the
safe dashed line and satisfying the vehicle dynamics (1). If the gap between
7 and « is big enough, the thin solid curve is a less conservative such
option. The important thing is that the construction is of low computational
complexity.

Remark 2: When planning a path on-line and either the
NLP (3), or the formation of an extended plan according
to Definition 2 fails, no new plan is selected and the aerial
vehicle keeps executing the old plan.



Remark 3: Note that any choice of extension trajectory
above the triangle {piarget, Prop, Pk, } 1S @lso collision free
by design. By using information about the highest terrain
altitude one can form more elaborate, and less conservative,
extension trajectories. ?

D. Long term planning and terminal cost

The purpose of the terminal cost, ¥ : R3® — R™, in
the NLP (3) is to guide the short term plan in directions
that make the flown overall trajectory good, in terms of the
objective function (2). It will also be used below to make
sure there is not an infinite number of plan changes.

As in e.g. [1], [9], the terminal cost function, W, is derived
from a shortest path problem in a graph. This is done in a
standard fashion and is therefore only described briefly here.

The graph is created by taking a horizontally equidistant
mesh and using the terrain height 2 = H(x,y) as values
for the nodes. Above this set of nodes, four additional node
layers are added at z = H (z,y) +j600m, j =1...4. Each
node is then connected by edges to its 8 neighbors in the
same layer and the 9 neighbors above and below.

The edge cost is a weighted sum of Euclidean distance and
threat exposure, in accordance with the choices of g(-),b,c
in the objective function (2). In order to use ¥ to decide
when to change plans, we demand that W is always positive,
hence ¥ : R? — R+,

Again, as in [1], [9] we calculate the optimal cost to go
from each node using a Dijkstra type of algorithm and then
interpolate the node values to find W.

This is also a convenient point at which to mention that
the possibility of updating the “off-line” computed cost to
go should not be overlooked. The term “off-line” is rather
to be interpreted as, at a much slower sampling rate than the
control loop, i.e. in the order of tens of seconds (cf. [10]). As
new information about the environment or mission objectives
is gathered, it can be processed and fed back regularly to the
vehicle through an updated terminal cost.

E. The Algorithm

In this section we state the proposed algorithm, after
making an initial assumption.

Assumption 2: The first step in Algorithm 1 below returns
a feasible solution.

In view of the discussion above, this assumption is very
reasonable and only excludes cases like when the target
position is extremely close to the launch position, and can
not be reached even with a maximal turn.

Algorithm 1:

1) The vehicle is launched at inclination « and velocity
vUmax IN the direction of the target. At launch the vehi-
cle follows a default plan constructed by augmenting
the initial state according to Definition 2.

2) The vehicle executes the given plan for time T,

3) While executing, a new plan is sought according to
Definitions 1 and 2.

2Since the planning is supposed to be updated iteratively, the extension
part of the trajectories are never executed during a normal mission.

4) If new informations arrive on e.g. threat positions, and
¥ needs to be recalculated, this is performed in the
background. Once a new ¥ is calculated it is applied
in Definition 1 as well as in 5 below.

5) Let € > 0 be fixed throughout the mission.

If a new plan Py, according to Definitions 1 and 2
is found, then the new plan is activated instead of the
old one.

6) If the target is not reached, go to 2.

Remark 4: The choice of proceeding along the old plan
or switching to a new one, thereby incrementally improving
the terminal cost, can be viewed as a conditional version of
the satisficing control strategies used in some forms of RHC.
In these RHC applications, the terminal cost acts as a control
Lyapunov function with which one can construct a control
with local optimality properties and guaranteed global stabil-
ity. In the trajectory optimization problem considered here,
the counterpart of stability is safety and task completion,
which are both already guaranteed by any single plan. The
terminal cost function here acts by providing a means of
improving the cost for completing the mission by changing
to a new plan (while retaining safety and task completion)
which is executed on the condition that the cost to go is
incrementally decreased.

In the next section we will analyze the performance of the
algorithm.

IV. THEORETICAL PROPERTIES

In this section we will prove that the proposed solution
will indeed solve Problem 1.

Proposition 1:  Algorithm 1 solves Problem 1, i.e. the

aerial vehicle will reach the target in finite time without
colliding with the terrain.
Proof: First note that each accepted plan is safe and reaches
the goal by construction. So if there is only a finite number
of changes of plan the aerial vehicle will reach the target.
Then note that the W-value of each accepted plan must be at
least e better than the previous one. Since ¥ > 0, there can
at most be [¥(pg)/€e] changes.

Furthermore, the algorithm is iterative by design, and the
RHC scheme makes it computationally efficient. Finally,
the objective function (2) is approximately minimized since
||a;||% is present in the NLP and ¥ accounts for the path
length and threat exposure, i.e. bg(px) and c in (2).

This proves the proposition. n

Remark 5: Finite time completion can also be proved
using the above framework. If e.g. the vehicle starts out with
a user defined upper bound on time over target, and only new
plans that satisfy the bound are accepted, this property will
be guaranteed. The argument works equally well with a given
fuel limit.

V. SIMULATIONS

In this section, we present a small selection of the simula-
tions made with the proposed trajectory planning algorithm.
For environmental representation, real terrain elevation
data over the Cascade mountains, WA, have been used (see



Figure 3). The dataset used is a subset extracted from the one

Fig. 3. The terrain elevation map used in the simulations represents an area
of more than 82km x82km taken from the Cascade range, WA. It contains
the summits of Mt. Rainier, Mt. Adams and Mt. St. Helen’s.

appearing in Reference [11]. The full-resolution elevation
image, is made up of 16,385 x 16,385 nodes at 10 meters
horizontal spacing. The vertical resolution is 0.1 meters. This
dataset occupies roughly 5 GB on disk and is therefore
impractical to work with. However, as will be seen from
the simulation results, but also pointed out in [10], the
environment should be decomposed in a manner that is
consistent with the maneuvering capabilities of the vehicle.
Therefore, this high level of accuracy is not needed to capture
the global characteristics of the environment by the terminal
cost, . The lower-resolution maps used in the simulations
have therefore been sub-sampled at every 16M and 256™
instance, resulting in a inter-pixel spacing of 160 and 2560
meters respectively. In the vertical direction, there are five
horizontal layers with 600 meters in between. The vertical
positions of each node depend on the altitude of the terrain
at that particular point of the map, as explained above. The
non-uniform grid built this way, can be seen as stretching
out the layers of a uniform grid on the terrain surface.

4500,

Fig. 4.
maneuvers.

The resulting trajectory, and a subset of the planned safety

Running the algorithm we get the trajectory shown in
Figure 4. The plot also shows every tenth safety maneuver.
Note that none of these were actually executed. New im-
proved plans were iteratively replacing the old ones, before
the vehicle reached the climbing part of the trajectories.

As discussed earlier, it is the terminal cost, ¥(p), that
captures the global characteristics of both the environment
and the mission objectives. This is readily done by varying
the costs in the graph representation of the environment.
Figure 5 shows the effect of switching on a radar having a
detection radius of 10km. The position of the radar is marked
with a black triangle, while yellow circles are used to map
out the volume where the vehicle is visible to the radar.
The path with circles, shows the outcome of the trajectory
planner when the radar is not accounted for. Unaware of
its existence, the generated path passes right through the
detection area of the radar. The other path, namely the one
marked with squares, shows the outcome when the terminal
cost incorporates the radar. The threat exposure is now
minimized by flying at a much lower altitude, utilizing the
protection provided by the terrain and thereby avoiding radar
detection.

Fig. 5. The effect of threat exposure on the generated path.

V1. CONCLUSION

The solution to the on-line trajectory optimization problem
presented in this paper uses a novel combination of ideas to
guarantee safety and finite time task completion. A central
idea is to use a conditional plan changing strategy, where,
starting from a feasible solution, a new plan for the remaining
part of the mission is only accepted if it gives an incremental
decrease to the terminal cost. The key problem is then to
retain safety and finite time task completion when the plan
is changed. This problem is solved by making a safety
maneuver, which guarantees both obstacle avoidance and
existence of a goal termination trajectory, a condition which
is incorporated into the short term planning NLP problem.
The safety maneuver also has the beneficial side effect that
it makes it easy to cope with hard real-time constraints. The
choice of whether to change to a new plan or keep the old
one is based on the terminal cost ¥ which is meant to act



as a more easily computed (but conservative) alternative to
the (optimal) cost to go. The terminal cost is determined off-
line, or on a much more slowly evolving time scale than the
short term planning, and this makes it possible to reduce the
real-time computational burden drastically.
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