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Abstract— Direct methods for trajectory optimization are
traditionally based on a priori temporal discretization and collo-
cation methods. In this work, the problem of node distribution
is formulated as an optimization problem, which is to be in-
cluded in the underlying non-linear mathematical programming
problem (NLP). The benefits of utilizing the suggested method
for on-line trajectory optimization are illustrated by a missile
guidance example.

I. INTRODUCTION

The paradigm of qualitative control design, that is as-
sociating a measure of the “utility” of a certain control
action, has been a foundation of control engineering thinking.
Consequently, optimal control is regarded as one of the
more appealing possible methodologies for control design.
However, as captivating and appealing as the underlying
theory might be, real-world applications have so far been
scarce. Some of the reasons for this might be the level
of mathematical understanding needed, doubtful viability of
optimization under uncertain conditions, and high sensitivity
against measurement and modeling errors. Another particu-
larly important factor origins from the high computational
demand for solving nonlinear Optimal Control Problems
(OCP). As a matter of fact, by extending their “free path
encoding method” [1], Canny and Reid have demonstrated
the NP - hardness of finding a shortest kinodynamic path
for a point moving amidst polyhedral obstacles in a three
dimensional environment [2]. Consequently, attention have
been paid to approximation methods and computationally
efficient algorithms that compute kinodynamically feasible
trajectories that are “near-optimal” in some sense. Due to
the rapid development of both computer technology and
computational methods, the above picture has begun to
change. Besides avionics and chemical industry, increasingly
many new industrial applications of optimal control can now
be observed. In this paper, the problem of missile guidance
will be in focus.

It is a well-established fact in numerical analysis, that a
proper distribution of grid points is crucial for both the ac-
curacy of the approximating solution, and the computational
effort (see e.g. [3], [4]). In general, grid adaption is carried
out by some combination of re-distribution (strategically
moving the nodes), refinement (adding/deleting nodes), or
employing higher order numerical schemes in regions where
the local accuracy needs to be improved (consult e.g. [5]). In
most cases however, there exist a trade-off between accuracy

and efficiency in terms of computational effort. In this paper,
the focus is on improving accuracy for a given efficiency
requirement. More precisely, once the number of nodes in
the temporal discretization has been decided (depending on
e.g. computational resources), the question of optimal node
distribution is raised.
Although adaptive grid methods - which mainly concern
node distribution in the spatial domain - have been an active
field for the last couple of decades, to the best of our
knowledge, utilizing them for adaptive node distribution (in
the temporal domain) and on-line trajectory optimization has
not been considered elsewhere.

This paper is organized as follows. In Section II some
background material regarding computational methods for
solving optimal control problems is presented. Subsequently
in Section III, we advocate that in any computationally
efficient method, node distribution should be a part of the
optimization process and show that the receding horizon
control (RHC) method can be considered as an outcome
of such a paradigm. In Section IV, the benefits of utilizing
the suggested method are confirmed by a missile guidance
example. Finally, this paper is concluded in Section V with
some expository remarks.

II. COMPUTATIONAL OPTIMAL CONTROL

Consider the following trajectory optimization or Optimal
Control Problem (OCP):

minimize
u J =

∫ T

0
L(x, u)dt + Ψ(x(T ))

s.t. ẋ = f(x, u)
g(x, u) ≤ 0

x(0) ∈ Si

x(T ) ∈ Sf ,

where the state x ∈ R
n, the control u ∈ R

m, and the con-
straints g : R

n × R
m → R

p. All mappings in this paper are
assumed to be smooth and the dynamical system complete
so that every control input, u(·), results in a well-defined
trajectory, x(·). An underlying assumption however is that
due to imperfect information, the kinematic constraints, as
well as the target set, might change drastically during the
course of flight. Consequently, we can not use the family
of techniques that rely on off-line generation of a trajectory
database for on-line interrogation [6]–[9]. Also, assuming the
problem originates from a complex, real-world application,



the existence of analytical solutions is disregarded, thus
seeking fast computational algorithms for solving the OCP.

Problem Transcription

For the actual design of the computational algorithm, the
infinite dimensional problem of choosing a control function
in a given space, has to be turned into a finite dimen-
sional optimal parameter selection problem, i.e. a non-linear
mathematical programming problem (NLP). This process of
representing the continuous time functions by a finite number
of parameters, is referred to as transcription and is typically
achieved by either temporal discretization or finite sum of
known basis functions1 [12]. Since this latter transcription
method leads to implicit constraints and gradient expressions,
which in turn may give increased computational complexity,
the focus in this paper will be on transcription methods based
on temporal discretization.
It is further conceptually important to differ between direct
and indirect transcription methods (see Figure 1). For a given
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Fig. 1. Direct and in-direct transcription methods.

OCP, indirect methods, which are based on the calculus
of variations, start off by introducing the Hamiltonian and
formulating the optimality conditions according to the Pon-
tryagin Maximum Principle (PMP). They then proceed by
transcribing the associated two point boundary value problem
(TPBVP) (denoted OCPλ in Figure 1).
In contrast, direct methods transcribe the OCP directly, hence
turning it into a large NLP (denoted OCPN in Figure 1).
The dual to this NLP and the Lagrange multipliers may be
achieved by way of the Lagrangian and the Karush-Kuhn-
Tucker (KKT) conditions. The direct- and indirect methods
have a particular simple relation for the so called complete
methods [13], for which transcription and dualization indeed
commutes, so that the Lagrange multipliers of the NLP are
a multiple of the discretized values of the adjoint variables
associated with the PMP.

Although indirect methods are considered to produce more
accurate results, they are not typically used to solve problems
having complex dynamics or constraint set. Neither are
they suitable for problems where the underlying OCP is
considered to be changeable in terms of the final manifold,
Sf and/or the constraint set, g(x, u). This is mainly due to the
inherent ill-conditioned properties of the TPBVP, but also the

1Certain choices for basis functions, blur the distinction between the two
mentioned transcription methods (see e.g. [10], [11]).

occasionally tedious derivation of the necessary conditions
via PMP. Bearing in mind the type of problems considered in
this paper, the focus will therefore be on direct transcription
methods.
In most direct methods (see e.g. [12] and the references
therein), transcription is achieved by a priori partition of the
time interval into a prescribed number of subintervals whose
endpoints are called nodes. The NLP variables may then be
taken as the value of the controls and the states at these
nodes. The integral cost functional and the constraint set
are discretized similarly and approximated by any preferred
quadrature rule (consult e.g. [3], [14]). Finally, additional
constraints are imposed on the NLP variables so that the state
equations are fulfilled at the so called collocation points.

III. ADAPTIVE NODE DISTRIBUTION

It is a well-established fact in numerical analysis, that
a proper distribution of grid points is crucial for both the
accuracy of the approximating solution, and the computa-
tional effort (see e.g. [3], [4]). Consequently, the use of
adaptive grid methods has for long been an essential element
in the sphere of numerical solution of partial differential
equations (PDE) as well as ordinary differential equations
(ODE) [15]. Despite being an active field for the last couple
of decades, to the best of our knowledge, utilizing adaptive
grid methods for finding on-line solutions to the trajectory
optimization problem has not been considered elsewhere.
The basic idea is that by concentrating the nodes and hence
computational effort in those parts of the grid that require
most attention (e.g. areas with sharp non-linearities and large
solution variations), it becomes possible to gain accuracy
whilst retaining computational efficiency.
This is in fact one of the explanations to the success of
the receding horizon control (RHC) or model predictive
control (MPC) methods (see e.g. [16], [17]). Here, the
doubtful viability of long term optimization under uncertain
conditions is adhered, so that instead of solving the OCP on
the full interval [0, T ], one repeatedly solves it on the interval
[tc, tc+Tp] instead. Here tc denotes the current time instance
and Tp is the planning horizon. However, even in the RHC
case, the sub-horizon OCP on [tc, tc + Tp] is most often
solved based on, if not equidistant (uniform), but at least a
priori temporal discretization techniques.

In general, there exist three types of grid adaption tech-
niques [5]:

1) h-refinement: strategically adding extra nodes to the
existing grid in order to improve local grid resolution.

2) p-refinement: employing higher order numerical
schemes in regions where the local accuracy needs to
be improved.

3) r-refinement: maintaining a fixed number of nodes, but
relocating them strategically over the interval.

Generally, trajectory optimization run-times are critically
depending on the number of variables in the NLP. These
in turn, are proportional to the number of nodes in the
temporal discretization, hence-forth denoted N . How the
solution time varies as a function of N is depending on the



particular NLP solver used. Figure 2 illustrates the average,
and maximum run-times of NPOPT; the solver used for all
simulations here-within. NPOPT is an updated version of
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Fig. 2. The increasing average and maximum run-times of NPOPT as
a function of N . Computations are performed on a shared Linux cluster,
using one of its four 2.80 GHz Intel R© Xeon processors.

NPSOL; a sequential quadratic programming (SQP) based
method for solving NLPs [18]. It it worth mentioning, that
the average and maximum have been taken both over a
number of planning horizons (typically 10 different values)
and iterations (typically 100 − 150 iterations per planning
horizon).
The essence of Figure 2 is that the choice of N , is to a large
extent restricted by real-time computational requirements.
Hence, it is extremely important to keep N as low as pos-
sible when aiming at constructing computationally efficient
methods for trajectory optimization. Therefore, it is the idea
of r-refinement that suits our purposes best. To this end, let
p = [t1, · · · , tN ] ∈ R

N denote a partition of [0, T ],

0 = t1 < t2 < · · · < tN−1 < tN ≤ T.

Adaptive grid methods are then based on either equidistribu-
tion of a monitor function, or functional minimization (FM)
[4], [5], [19].
The equidistribution principle (EP) requires a chosen positive
definite monitor function (or weight), w, to be equidistributed
over all subintervals. Mathematically, the EP can be ex-
pressed in various equivalent forms, e.g.:

mi(p)=

∫ ti+1

ti

w dt−
∫ T

0
w dt

N − 1
= 0, i = 1, · · ·, N−1,

mi(p)=

∫ ti

ti−1

w dt−
∫ ti+1

ti

w dt = 0, i = 2, · · · , N−1.

As an example, w ≡ 1 gives rise to the oftenly used uni-
form (equidistant) discretization method. Other commonly
employed monitor functions include the “arclength monitor

function”, w =
√

ε + ẋ2 (claimed to be the most efficient
among all choices), and “curvature monitor function”, w =
(ε + ẍ2)

1
4 . Here the design-parameter, ε ≥ 0, decides how

dense the nodes are lumped in the circumvent of areas with
large solution variations.
The functional framework to grid generation (FM), is based
on the principle of specifying a measure of the grid quality.
Traditionally, principles as smoothness, orthogonality and
clustering properties of the grid are included in the func-
tional, I(p), [4], [19]. Minimizing I(p) will produce an
optimal partition with respect to the chosen grid quality
measure.

Based on the two existing frameworks for adaptive grid
generation (EP and FM), we now outline a generalized
approach. Regardless the choice of w, we remark that node
allocation by the EP, can be determined by imposing a
number of grid constraints, m(p) ≤ 0. These constraints are
to be augmented with the original constraints, g(x, u). Note
that this approach introduces constraints and state variables
(namely p) in the augmented NLP. However, it also enable
us to use a partition with smaller number of nodes compared
with an a priori and fixed discretization method, so that
the total number of variables and constraints might still be
reduced.
The idea is then to formulate the problem of node distribution
as a constrained optimization problem:

minimize
p

I(p) (1)

s.t. m(p) ≤ 0,

which is to be augmented with the underlying NLP. From (1)
it is plainly seen that EP and FM are merely special cases of
the suggested approach. We conclude this section by giving
examples of the usage of this approach.

Example 1: Setting di = ti+1 − ti, i = 1, · · · , N − 1, the
solution to the following optimization problem:

minimize
d I(d) =

∑N−1
i=1 di − ε ln di

s.t. m(d) =
∑N−1

i=1 di − T ≤ 0 (di ≥ 0),

is the equidistant RHC discretization scheme with ε deciding
the step length (and hence planning horizon). This follows
since if (N − 1)ε ≤ T , then

∇iI(d) = 1 − ε

di

= 0 =⇒ di = ε.

Example 2: The linear constraint

m(d) =

ε1(N−1)∑
i=1

di − ε2T ≤ 0,

reflects the objective of distributing ε1 parts of the nodes in
the first ε2 parts of the time interval.
The main reason for being interested in this types of
constraints lies along the line of thought of RHC/MPC
approaches; that is considering current information as per-
ishable so that it is favorable to concentrate the nodes in the
near future.



IV. DESIGN STUDY: MISSILE GUIDANCE

Traditionally, the problem of steering a missile to its
target is broken down into (at least) two subproblems: the
problem of trajectory optimization and the problem of auto-
pilot design. This can be viewed as a control system having
two degree of freedom; an inner loop (the auto-pilot) and
an outer loop (the trajectory optimizer) (see Figure 3). The
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Fig. 3. Two level separation of the missile guidance problem.

trajectory optimizer provides a feasible feed-forward control
and reference trajectory that is optimal in some specified
sense with respect to e.g. time to intercept or intercept
velocity, and subject to constraints on e.g. terminal aspect
angle (given by warhead efficiency and target vulnerability)
or path segment location (dictated by tactical considerations).
It is then the task of the auto-pilot to perform the trajectory
following.
By virtue of this separation, only suboptimal solutions can
in general be found, but the advantage is that the details of
the dynamics of the missile only enters into the trajectory
optimization part of the problem as (relatively simple) con-
ditions on the reference trajectory. In this work, the existence
of an auto-pilot is assumed, so that the focus will solely be
on the trajectory optimization part.

By means of standard approximation procedures in flight-
community (see e.g. [20], [21]), the six-degree-of-freedom
(6DoF) equations of motion of the missile in R

3, can
be reduced to 3DoF planar movement in two orthogonal
subspaces, namely the pitch-, and yaw-plane. Since the
3DoF equations of motions in these planes are similar and
decoupled, in what follows, just the pitch-plane dynamics
will be considered.
The 3DoF equations of motion in the pitch plane consider
the rotation of a body-fixed coordinate frame, (Xb, Zb) about
an Earth-fixed inertial frame, (Xe, Ze) (see Figure 4).
The governing dynamic equations are

u̇ =
Fx

m
− qw − g sin θ

ẇ =
Fz

m
+ qu + g cos θ

q̇ =
M

Iy

θ̇ = q

ẋe = u cos θ + w sin θ

że = −u sin θ + w cos θ,
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Fig. 4. Missile system variables.

where u and w are the Xb and Zb components of the velocity
vector, xe and ze denote the position of the missile in the
inertial frame (Xe, Ze), q is the pitch angular rate, θ denotes
the pitch angle, m is the missile mass, g is the gravitational
force, while Iy denotes the pitching moment of inertia. The
system inputs are the applied pitch moment, M , together
with the aerodynamic forces, Fx, Fz , acting along the Xb

and Zb axis respectively. During the simulations we adopt the
constants given in Reference [22] and set m = 204.02 kg,
g = 9.8 m/s2 and Iy = 247.437 kg m2.
Referring to Figure 5 and 6, the first simulation shows the
terminal guidance part of a missile trajectory optimization
problem. The missile starts off horizontally from (0, 10)
aiming at a target in (700, 0) with terminal aspect angle − π

2 .
Figure 5 depicts the reference trajectories with the missile
velocities (in the inertial frame) indicated by small line
segments.

0 100 200 300 400 500 600 700 800
−10

0

10

20

30

40

50

60

Xe (m)

Z
e 

(m
)

Fig. 5. Reference trajectories: static (◦) and adaptive (�).

In the adaptive case, an EP based on the arclength monitor
function together with a linear I(p) is used. Seeing beyond
the unequal axis scales, the nodes have been distributed more
evenly over different path segments. In fact, there are 7



nodes/100 m path segment in the adaptive case, while the
same figure varies between 5 − 13 in the static case.
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Fig. 6. The accuracy of the approximating control.

Figure 6 shows the optimal control approximation error as
a function of N . It can be noted that, for a given N , the
extra degree of freedom provided by distributing the nodes
is used constructively to improve accuracy. This illustrates
the soundness of the proposed approach. Moreover, Figure 6
reveals the nonuniform convergence rate of the approxima-
tion error which - in our particular case - is seen to be
minimized for N = 25. The reason for this is the pronounced
nonlinearity of the considered NLP together with the fact that
the used optimization routine (NPOPT) is a local optimizer,
i.e. does not guarantee convergence to a global minimum. It
is therefore not possible to expect that a higher value on N
should always yield a better trajectory approximation.
As previously mentioned, in general, there is a trade-off
between accuracy and efficiency in terms of computational
effort. Once we have observed that re-distributing the nodes
improves the accuracy of the approximation, one might won-
der how this effects the computation time. Figure 7 shows the
average CPU-time used in the simulations for different values
on N . It can be noted that adopting the proposed adaptive
grid generation scheme, does not bring any increase in the
average computational time. We believe that the nonlinearity
of the original set of equations describing the motion of the
missile, is one of the main reasons for this.

V. CONCLUDING REMARKS

The main purpose of this paper have been to advocate the
use of adaptive grid generation techniques for on-line trajec-
tory planning. In this work, we have chosen to concentrate
on the use of the so called r-refinement technique; that is
strategically re-distributing a given number of nodes over
the time domain. The main reason for this have been the
pronounced inter-relation between the number of nodes in
the temporal discretization and trajectory optimization run-
times.
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Fig. 7. The average CPU-time for the uniform- and adaptive grid generation
scheme as a function of N .

It is argued that in any computationally efficient method,
node distribution should be a part of the optimization pro-
cess. This, in order to minimize the discretization error and
gain accuracy, without bringing any drastic increase in the
computational effort. Here-within, re-distributing the nodes
have been formulated as a constrained optimization problem
which is to be included in the underlying NLP.
The missile guidance problem considered, showed that the
extra degree of freedom provided by distributing the nodes is
used constructively to improve accuracy. These advantages
accrue particularly in the case when having a nonlinear
dynamic system at hand. The reason for this being that
having the node positions as variables in the underlying NLP,
turns a linear system into a bilinear one, which may then give
rise to an undesirable increase in computational complexity.
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