
On-line trajectory planning using adaptive temporal discretization

David A. Anisi†
Optimization and Systems Theory

Royal Institute of Technology
100 44 Stockholm, Sweden

anisi@math.kth.se

Abstract— Direct methods for trajectory optimization are
traditionally based on a priori temporal discretization and collo-
cation methods. In this work, the problem of node distribution is
formulated as an optimization problem, which is to be included
in the underlying NLP. The benefits of utilizing such adaptive
temporal discretization method for trajectory optimization, are
illustrated by a missile guidance example.

I. INTRODUCTION

Consider the following optimal control problem (OCP):

min J =
∫ T

0
L(x, u)dt + Ψ(x(T ))

s.t. ẋ = f(x, u)
g(x, u) ≤ 0

Ψi(x(0)) ∈ Si ⊆ R
n

Ψf (x(T )) ∈ Sf ⊆ R
n,

where the state x ∈ R
n, the control u ∈ R

m, and the
constraints g : R

n × R
m → R

p. Assuming the problem
originates from a complex, real-world application, the ex-
istence of analytical solutions is disregarded, thus seeking
fast computational algorithms for solving the OCP. To this
end, the infinite-dimensional problem of choosing a control
function, u, in a given space, have to be transcribed into
a finite dimensional non-linear mathematical programming
problem (NLP). This work focuses on direct transcription
methods based on temporal discretization. In most direct
methods (see e.g. [1]), the transcription is achieved by a
priori partition of the time interval into a prescribed number
of subintervals whose endpoints are called nodes. Generally,
trajectory optimization run-times are critically depending on
the number of variables in the NLP. These in turn, are
proportional to the number of nodes or collocation points1,
N , in the temporal discretization. Therefore, it is extremely
important to keep N as low as possible when aiming at
constructing computationally efficient methods for trajectory
optimization. In most cases however, there exist a trade-off
between accuracy and efficiency in terms of computational
effort. Here-within, the focus is on improving accuracy for
a given efficiency requirement. More precisely, once the
number of collocation points has been decided, the question
of optimal node distribution is raised.
Although adaptive grid methods have been an active field
for the last couple of decades, to the best of our knowledge,
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1Since the nodes and collocation points have the same cardinal number,
they are here-whithin considered to be conceptually equivalent.

utilizing them for trajectory optimization has not been con-
sidered elsewhere.

In what follows, we advocate that in any computational
efficient method, node distribution should be a part of the
optimization process and show that the receding horizon
(RH) approach is merely an outcome of such a paradigm.
In Section III, the benefits of utilizing the suggested method
are confirmed by a missile guidance example.

II. ADAPTIVE TEMPORAL DISCRETIZATION

It is a well-established fact in numerical analysis, that a
proper distribution of grid points is crucial for the accuracy
of the approximating solution. By concentrating the nodes
and hence computational effort in those parts of the grid that
require most attention (e.g. areas with sharp non-linearities
and large solution variations), it becomes possible to gain
accuracy whilst retaining computational efficiency.
In general, there exist three types of grid adaption tech-
niques [2]. However, as trajectory optimization run-times
are critically depending on N , it is the idea of maintaining
a fixed number of nodes, but relocating them strategically
over the interval that suits the on-line trajectory optimization
problem best (this is referred to as r-refinement). To this end,
let p = [t1, . . . , tN ] ∈ R

N denote a partition of [0, T ],

0 = t1 < t2 < · · · < tN−1 < tN ≤ T.

Adaptive grid methods are then based on either equidis-
tribution of a monitor function, or functional minimization
(FM) [2], [3]. The equidistribution principle (EP) requires a
chosen positive definite monitor function (or weight), w, to
be equidistributed over all subintervals. Mathematically, the
EP can be expressed in various equivalent forms, e.g.:

mi(p) =
∫ ti+1

ti

wdt −
∫

T

0
wdt

N−1 = 0, i = 1, . . . , N − 1, or

mi(p) =
∫ ti

ti−1
wdt −

∫ ti+1

ti

wdt = 0, i = 2, . . . , N − 1.

Commonly employed monitor functions include the “ar-
clength monitor function”, w =

√
ε + ẋ2, and “curvature

monitor function”, w = (ε + ẍ2)
1
4 . Regardless the choice of

w, we remark that node allocation by the EP, can be deter-
mined by imposing a number of grid constraints, m(p) ≤ 0.
The functional framework to grid generation (FM), is based
on the principle of specifying a measure of the grid quality.
Traditionally, principles as smoothness, orthogonality and
clustering properties of the grid are included in the func-
tional, I(p) [3]. Minimizing I(p), will produce an optimal
partition with respect to the chosen grid quality measure.



Based on the two existing frameworks for adaptive grid
generation (EP and FM), we now outline a generalized
approach. The idea is to formulate the problem of collocation
point distribution as a constrained optimization problem:

min I(p)
s.t. m(p) ≤ 0,

(1)

which is to be augmented with the underlying NLP. From (1)
it is plainly seen that EP and FM are merely special cases of
the suggested approach. We conclude this section by giving
examples of the usage of this approach.

Example 1: Setting di = ti+1 − ti, i = 1 . . . , N − 1, the
solution to the following optimization problem:

min I(d) =
∑N−1

i=1 di − ε ln di

s.t. m(d) =
∑N−1

i=1 di − T ≤ 0 (di ≥ 0),

is the equidistant RH discretization scheme with ε deciding
the step length (and hence planning horizon). This follows
since if (N − 1)ε ≤ T , then

∇iI(d) = 1 − ε

di

= 0 =⇒ di = ε.

Example 2: The linear constraint

m(d) =

ε1(N−1)∑

i=1

di − ε2T ≤ 0,

reflects the objective of distributing ε1 parts of the nodes in
the first ε2 parts of the time interval.

III. DESIGN STUDY: MISSILE GUIDANCE

The 3DoF equations of motion in the pitch plane consider
the rotation of a body-fixed coordinate frame, (Xb, Zb)
about an Earth-fixed inertial frame, (Xe, Ze). The governing
dynamic equations are

u̇ =
Fx

m
− qw − g sin θ

ẇ =
Fz

m
+ qu + g cos θ

q̇ =
M

Iy

θ̇ = q

ẋe = u cos θ + w sin θ

że = −u sin θ + w cos θ,

where u and w are the Xb and Zb components of the velocity
vector, xe and ze denote the position of the missile in the
inertial frame (Xe, Ze), q is the pitch angular rate, θ denotes
the pitch angle, m is the missile mass, g is the gravitational
force, while Iy denotes the pitching moment of inertia. The
system inputs are the applied pitch moment, M , together
with the aerodynamic forces, Fx, Fz , acting along the Xb

and Zb axis respectively. During the simulations, we set
m = 204.02 kg, g = 9.8 m/s2 and Iy = 247.437 kg m2.
Referring to Fig. 1 and 2, the first simulation shows the
terminal guidance part of a missile trajectory optimization
problem. The missile starts off horizontally from (0, 10)
aiming at a target in (700, 0) with terminal aspect angle − π

2 .

Fig. 1 depicts the reference trajectories with the missile
velocities (in the inertial frame) indicated by small line
segments.
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Fig. 1. Reference trajectories: static (◦) and adaptive (�).

In the adaptive case, an EP based on the arclength monitor
function together with a linear I(p) is used. Seeing beyond
the unequal axis scales, the nodes have been distributed more
evenly over different path segments. In fact, there are 7
nodes/100 m path segment in the adaptive case, while the
same figure varies between 5 − 13 in the static case.
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Fig. 2. The accuracy of the approximating control.

Fig. 2 shows the optimal control approximation error as a
function of N . It can be noted that, for a given N , the
extra degree of freedom provided by distributing the nodes
is used constructively to improve accuracy. This illustrates
the soundness of the proposed approach.
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