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Abstract— An important class of non-uniformly observable
systems come from applications in mobile robotics. In this
paper, the problem of active observer design for such systems
is considered. The set of feasible configurations and the set
of output flow equivalent states is defined. It is shown that
the inter-relation between these two sets serves as the basis
for design of active observers. The proposed observer design
methodology is illustrated by considering a unicycle robot
model, equipped with a set of range-measuring sensors.

I. INTRODUCTION

Since 1970’s there has been an extensive study on
the design of observers for nonlinear control systems,
[1]–[7]. It is known that for such systems, observability
does not only depend on the initial conditions, but also
on the exciting control. Most current methods, such as
observers with linearizable error dynamics [3] and high
gain observers [6], [7], lead to the design of an exponential
observer. As a necessary condition for the existence of
a smooth exponential observer, the linearized pair must
be detectable [5]. In fact, most of the existing non-linear
observer design methods are only applicable to uniformly
observable nonlinear systems. This is witnessed in [8],
where it is pointed out that one of the key questions in
nonlinear control is “how to design a nonlinear observer for
nonlinear systems whose linearization is neither observable
nor detectable”.
An important class of non-uniformly observable systems
come from applications in mobile robotics. For such sys-
tems, due to environmental restrictions and the way the
sensors function, constraints have to be put on the control.
This thus presents an interesting issue: how to design an
exciting control to maximize the rate of convergence for
an observer, namely how to design an active observer.
Maximizing “observability” has been an important issue
in the field of active perception in robotics and computer
vision [9]. However, study from the systems and control
point of view in terms of observer design still lacks, [10].
This paper considers the problem of active observer de-
sign for mobile robotic systems and an alternative design
method is presented. The disposition is as follows; In
Section II, a brief review on nonlinear observability and
observers is given. This would set stage for our study on
observability and active observer design for mobile robotic
systems in Section III. To illustrate the concepts introduced
in Section III-A, a case study is given in Section III-B. The
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simulation results thereof are presented in Section IV and
finally, some concluding remarks are made in Section V.

II. PRELIMINARIES

Consider the nonlinear control system

Σ :

{

ẋ = F(x, u) (system dynamics)
y = h(x) (system output)

with state x ∈ X , control u ∈ U and output y ∈ Y . Here
X ,U and Y are smooth manifolds of dimension n, p and
m respectively. All mappings in this paper, are assumed to
be smooth. If Σ is complete, the composed mapping from
u(·) to y(·) is referred to as the input-output map of Σ at
x0 [11]:

IOΣ
x0

: u(·) 7→ y(·).

The most common definitions of the observability prop-
erties of Σ then boil down to the injectivity properties of
IOΣ

x0
with respect to the initial condition, x0. Consider

two states, x1 and x2, being equivalent (denoted x1 ∼ x2)
if and only if they have the same input-output map for all
admissible inputs, i.e.

x1 ∼ x2 ⇐⇒ IOΣ
x1

(u(·)) = IOΣ
x2

(u(·)), ∀u(·) ∈ U .

Further, let I(x0) denote the equivalence class of x0, i.e.
let I(x0) = {x ∈ X : x ∼ x0}. Based on this, we arrive at
the following two definitions [12], [13].

Definition 1 (Indistinguishability): Two states, x1 and
x2 are said to be indistinguishable iff they are equivalent.

Definition 2 (Observability): Σ is said to be observable
at x0 if I(x0) = {x0}. It is further said to be observable
if I(x) = {x} for all x ∈ X .
It is notable that the equivalence relation on X , and hence
observability, is a global concept in two senses:

Property 1: All states in X are to be distinguished from
each other.

Property 2: The generated trajectories are unrestricted.
Also, observability is an infinite-horizon concept, since:

Property 3: There is no upper bound on the time-
interval that has to be considered in order to distinguish
points.
Consequently it is possible to introduce various restric-
tions, or relaxations on Definition 2. Some of these
modifications are considered below.1

Given a system Σ and an open set Ω ⊆ X , the restriction
ΣΩ refers to a control system with state space Ω, defined

1The observability nomenclature is not standardized. In this article, the
terms used by Hermann and Krener in [12] and Respondek in [13] are
merged.



by the restriction of F and h to Ω×UΩ and Ω respectively.
Here UΩ denotes the subset of all admissible inputs that
generates trajectories that lie in Ω.

Definition 3 (Ω-indistinguishability): Two initial states,
x1, x2 ∈ Ω are said to be Ω- indistinguishable if

IOΣΩ

x1
(u(·)) = IOΣΩ

x2
(u(·)), ∀u(·) ∈ UΩ.

This relation will be denoted x1
∼
Ω x2 and IΩ(x).

Definition 4 (Strong observability): The system Σ is
said to be strongly observable at x0 if for every open
neighborhood Ω of x0, IΩ(x0) = {x0}. Σ is called strongly
observable if it is strongly observable for all x ∈ X .
Note that strong observability implies observability since
IΩ(x) = {x} for all Ω ⊆ X gives I(x) = {x} for the
special choice of Ω = X .

Definition 5 (Weak observability): The system Σ is
called weakly observable at x0 if there exist a neighbor-
hood of x0, N(x0), such that I(x0) ∩ N(x0) = {x0}. Σ
is weakly observable if it is weakly observable at every
x ∈ X .

Definition 6 (Instant observability): The system Σ is
said to be instantaneously observable at x0 if there exist a
neighborhood N(x0), such that for every open neighbor-
hood Ω of x0 contained in N , IΩ(x0) = {x0}. Σ is called
instantaneously observable if it is so at every x0 ∈ X .

For the dynamical system, Σ, an observer may be
defined as follows (cf. [1], [4], [14]).

Definition 7 (Observer): A dynamical system with state
manifold Z , input manifold U×Y , together with a mapping
F̂ : (Z ×U ×Y) → TZ is an observer for the system Σ,
if there exists a smooth mapping Ψ : X → Z , such that
the diagram shown in Figure 1, commutes and the error
trajectory x(t) − x̂(t) converges to zero as t → ∞.
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Fig. 1. Commutative diagram defining an observer.

In diagram 1, Ψ∗ denotes the tangent mapping, π is
projection upon a cartesian factor, while τ denotes the
projection of the tangent bundle.
According to Definition 7, the objective when designing a
general observer, is to track Ψ(x), rather than x itself. Note
that the same observer dynamics, F̂ , may allow several
different full observer mappings, Φ, and that in general, a
full state observer

Σ̂ :

{

ż = F̂(z, u, y)
x̂ = Φ(z, u, y)

may not be put in the form ˙̂x = Ξ(x̂, u, y).

III. MOBILE ROBOTIC SYSTEMS

One distinguishing feature of mobile robots is the use
of exteroceptive sensors for sensing the environment and
aid localization. The output of Σ is next extended to more
explicitly incorporate exteroceptive sensor readings.
Bearing in mind the particular applications encountered
in the robotics community, it seems convenient to split
the state vector, x ∈ X , into two parts; one defining the
state of the platform in its work-space, W , and the other
only in its configuration-space, C, so that x = (xw, xc) ∈
W ×C = X . The work-space of the robot, W , is assumed
to be a smooth and connected manifold of dimension
nw ∈ {1, 2, 3}. However, the configuration-space, C, might
have arbitrary dimension, nc, and includes typically the
description of the internal states of the platform.
Consider control-affine dynamic systems of form:

Σrob :















ẋw = fw(x) + gw(x)u
ẋc = fc(x) + gc(x)u

y = h̃(x, sθ(x))
q = θ(sθ),

where xw ∈ W , xc ∈ C, u ∈ U and y ∈ Y . We use sθ(x) to
indicate the interaction of the sensors with the environment
but also to emphasize the dependence of the output on the
environmental map, θ. In this paper, the case where the
components of the environment (e.g. surrounding terrain,
obstacles or walls) can be modeled as a single, connected,
(nw − 1)-dimensional smooth manifold (hyper-surface) in
W will be in focus. It is further assumed that this hyper-
surface can be parametrized as

q = θ(sθ), sθ ∈ S ⊆ R
(nw−1),

where θ is known. This last assumption relates to one of the
fundamental problems in robotics, namely the simultane-
ous localization and map building problem (SLAM), where
one tries to reconstruct the environmental map, θ, and the
full state vector, x, at the same time. By assuming the map
to be given, we focus on a subproblem in SLAM, namely
the re-localization problem where the state vector, x, is to
be reconstructed based on a combination of exteroceptive
and introceptive sensor-readings.

Example 1: Consider a nonholonomic vehicle equipped
with a range sensor mounted along its direction of orienta-
tion, φ. It moves inside an elliptic field, with half-axes c1

and c2, centered at the origin of W . Then the hyper-surface

(q1

c1

)2

+
(q2

c2

)2

− 1 = 0,

models the surrounding in R
2. It can be parameterized by

the angle τ ∈ S1, so that

q =

[

q1

q2

]

=

[

c1 cos(τ)
c2 sin(τ)

]

= θ(sθ),

with sθ = [τ c1 c2]. The control system can be modeled



as

ẋ1 = u1 cos(φ)
ẋ2 = u1 sin(φ)

φ̇ = u2

y = (c1 cos(τ) − x1) cos(φ) + (c2 sin(τ) − x2) sin(φ),

where (x1, x2) ∈ R
2 is the position of the reference point

on the robot, φ ∈ S1 denotes its orientation and the two
control inputs, u1 and u2 are the robot’s linear- and lateral
velocities respectively. In addition, τ as a function of the
state is implicitly defined by

c2 sin(τ) − x2

c1 cos(τ) − x1
= tan(φ).

Example 2: Consider a nonholonomic mobile robot
equipped with a centrally mounted video camera. The
environment consists of the goal flag and the start flag.
The task for the robot is to map the environment while
localizing itself in the map. Naturally, one of the easiest
ways to construct a coordinate system is to set the goal
flag as the origin and set the start flag on the x1-axis, i.e.
with coordinates (d0, 0). If we assume that on the image
plane what we can identify is the distance of the vertical
line feature to the center and the focal length of the camera
is one, then the output of the system can be expressed as

y1 = tan(φ − atan(−x2, d0 − x1))
y2 = tan(φ − atan(−x2,−x1)).

A. Observability and active observers

As pointed out in Section II, observability is an infinite-
horizon concept (Property 3). To adapt this for the area in
mind, the following is suggested.

Definition 8 (Small-time observability): A nonlinear
system, Σrob, is said to be small-time observable at x1,
if for any x2 ∈ X and T > 0, there exists a control,
u(·) ∈ U and t0 ≤ T , such that

h̃(x(t0, x1, u(·)), sθ) 6= h̃(x(t0, x2, u(·)), sθ).

It is further said to be small-time observable if it is so at
every x1 ∈ X .
Although not made explicit due to space limitation,
modified versions of Definition 8 (i.e. weakly/strongly
small time observability) can be obtained in apparent
manners.
To stress the distinction between the newly intro-
duced definition and those of Section II, recall that Ω-
distinguishability, the underlying concept of Definition 4,
only involves separation of points in the restricting Ω.
In extension, the term “instantaneously” in Definition 6
has to be interpreted in two senses; namely that a point
can be instantly distinguished from its instant neighbors.
Therefore there is no natural setting for solely modify-
ing Property 3, without necessarily modifying Property 1
and/or 2. In contrast, small-time observability requires
instant distinction of x1 from all other states x2 ∈ X ,
or in the case of weakly small-time observability, instant
distinction of x1 from all x2 in some open neighborhood

of x1. Hence, they only restrict the time-interval that have
to be considered in order to find deviating output.

Given the environmental map θ(sθ), the sensor mea-
surements are considered as a mapping, h̃ : X → Y . For a
given measurement, y ∈ Y , the inverse image of y under h̃

is the set of all x ∈ X such that h̃(x, sθ) = y. In general,
X and Y do not have the same cardinal number so that a
measurement might correspond to more that one state in
X .

Definition 9 (Set of feasible states): The set of feasible
states with respect to y, denoted FSy , is defined as the
inverse image of y under h̃ in the state-space, i.e.

FSy = {x ∈ X : h̃(x, sθ) = y}.
To introduce a measure of how well a certain point in the
state-space matches a given measurement, a functional or
value-function is needed:

Definition 10 (Value-function): A non-negative func-
tional,

Vy : X → R
+,

such that,
x ∈ FSy ⇐⇒ Vy(x) = 0,

is called a value-function.
It is notable that Definition 10 is well-suited for scenarios
where one might have noisy measurements. In such cases,
the feasible states may consist of all x, such that Vy(x) ≤
ε, for some ε ∈ R

+.
By utilizing the value-function, it is possible to drive the

state estimation within the set of feasible states, FSy . This
will be shown in greater detail in Section III-B. Next, we
focus on the problem of localizing the actual state within
this set. In order to distinguish the states in FSy , it is
necessary that the system output do not remain constant,
i.e. the exciting control has to be designed such that ẏ 6= 0.
For each point x0 ∈ X , it is possible to associate another
set to it consisting of all points that have the same output
flow.

Definition 11 (Set of output flow equivalent states):
Given any admissible control, u(·) ∈ U , for each state
x0 ∈ X , the set of states that are output flow equivalent
to x0 under u(·), denoted OFu

x0
, is defined as all states

x1 ∈ X , such that there exists T > 0 such that for all
t ∈ [0 T ],

h̃(x(t, x1, u(·)), sθ) − h̃(x1, sθ) ≡

h̃(x(t, x0, u(·)), sθ) − h̃(x0, sθ).
By means of the two sets defined in this section, it is
possible to put constraints on the exciting control.

Proposition 1: Given x0 ∈ X , if there exists an exciting
control, u0(·) ∈ U , and a neighborhood, N(x0) such that

FSy ∩ OFu0

x0
∩ N(x0) = {x0}, (1)

then the system is weakly small-time observable at x0.
Proof: We prove by contradiction. Suppose the

system is not weakly small-time observable at x0, i.e.

∃ x1 ∈ N(x0)\x0 and T > 0 : ∀t ∈ [0 T ] and ∀u(·) ∈ U ,

h̃(x(t, x1, u(·)), sθ) ≡ h̃(x(t, x0, u(·)), sθ). (2)



For the special choise of t = 0, Equation (2) gives

h̃(x1, sθ) = h̃(x0, sθ) = y, (3)

meaning that x1 ∈ FSy . Consider then the special choice
of u(·) = u0(·), which together with Equation (3) and
Definition 11 implies that x1 ∈ OFu0

x0
. Hence we have

shown that assuming (2) implies the existence of x1 such
that

(x1 ∈ N(x0)\x0) ∧ (x1 ∈ FSy) ∧ (x1 ∈ OFu0

x0
), ⇔

FSy ∩ OFu0

x0
∩ N(x0) 6= {x0}.

Constraint (1) serves as the basis for design of active
observers.

B. Design study

In this section, we revisit the robot model from Exam-
ple 1. The sensor readings however will differ. It is now
assumed that the robot is equipped with l range-measuring
sensors, oriented at angles αi, i = 1, · · · , l with respect to
φ. Referring to Figure 2, sensor i measures distance ρi

against some smooth closed curve, θ : S1 → R
2, that

models the terrain. Each sensor is directed along a ray
making an angle of φ + αi with the x1-axis. Thus the
outputs for the system are

yi = ρi, i = 1, · · · , l.PSfrag replacements
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Fig. 2. The unicycle robot equipped with l range-measuring sensors.

The goal is to reconstruct the full state, x, based on sensor
readings ρ = (ρ1, · · · , ρl). As remarked in conjunction
with Definition 7, the objective when designing a general
observer is to track z = Ψ(x), rather than x itself. To this
end, it is noted that the problem of reconstructing x in this
particular problem, is equivalent to the reconstruction of
vehicle orientation, φ, and the parameter values, si ∈ S1,
i = 1, · · · , l, corresponding to the points on the curve
measured against. It is so since the relative orientation
angle of each sensor, αi, is known. Setting the observer
state

z = Ψ(x) = [s1, · · · , sl, φ]T ∈ Z,

the following geometrical relationship between x and z

holds:

θ(si) = [x1, x2]
T + ρiR(φ+αi)e1, i = 1, · · · , l, (4)

where e1 = [1 0]T and Rα denotes the rotation matrix,

Rα =

[

cos(α) sin(α)
− sin(α) cos(α)

]T

.

Aiming at constructing an appropriate value-function that
can aid the observer design, for each sensor i, define a
mapping vi : Z → R

2 according to

vi(z) = θ(si) − ρiR(φ+αi)e1.

Intuitively, vi(z) points out where measurement i indicates
that the vehicle is located in R

2. Next, define vij : Z →
R

2 as
vij(z) = vi(z) − vj(z),

which indicates the difference between the vehicle location
estimated by measurements ρi and ρj . Finally, the value-
function is defined as

Vρ(z) =

l−1
∑

i=1

∑

j>i

vij(z)T vij(z).

The non-negative value-function, Vρ(z), serves as a mea-
sure of how well z, matches a set of measurements, ρ. To
see this, it is noticed that Vρ(z) = 0 implies that in the
observer state, z (which naturally corresponds to a state,
x ∈ X , by relation (4)), the vehicle precisely measures
the distances ρi against the points θ(si), i = 1, · · · , l. In
the other direction, clearly if ρ are the measured distances
and z is the actual observer state, then vi(z) = [x1, x2]

T ,
for all i, and hence Vρ(z) = 0. This allows us to specify
the set of feasible states by means of the value-function,
as discussed earlier. In addition, the value-function can be
used in the observer design as follows: the time derivative
of Vρ(z) ∈ R equals

V̇ρ(z) =
∂Vρ(z)

∂z
ż.

Then by choosing the steepest descent direction, it is clear
that the gradient flow

żV = −kV

[∂Vρ(z)

∂z

]T

,

should be included in the observer design. It serves to drive
the state estimation within the set of feasible states. As for
the set of output flow equivalent states, from (4) we obtain

0 = θ′(si)
T Rφ(u1e2 + ρ̇iRαi

e2 − ρiu2Rαi
e1) , Qi(z),

by first differentiating with respect to time and the mul-
tiplying by θ′(si)

T Rπ

2
from the left. Then, the mapping

Q : Z → R
l, defined by

Q(z) = [Q1(z), · · · , Ql(z)]T = 0,

characterizes the set of output flow equivalent states for
this system. Under suitable assumptions on the exciting



control, the sensor orientations and the environmental map
(see [15] for details), it can be shown that this set and
the set of feasible states together fulfill the condition of
Proposition 1, which implies that we are bound to have
weakly small-time observability.
Setting VQ(z) = QT (z)Q(z) ∈ R

+, gives

V̇Q(z) = 2QT (z)
∂Q(z)

∂z
ż.

Again, with the choice of the steepest descent direction, the
following term is to be included in the observer dynamics,

żQ = −kQ

[∂Q(z)

∂z

]T

Q(z).

Putting it all together, the following observer dynamics is
proposed for this particular problem:

ż = żV + żQ = −kV

[∂Vρ(z)

∂z

]T

− kQ

[∂Q(z)

∂z

]T

Q(z),

where kV , kQ > 0 are suitably chosen observer gains.
To complete the observer design, the full observer map-

ping, Φ, is to be decided (cf. Figure 1). By relation (4),
any parameter value, si, together with φ, suffice for
reconstructing x. Thus there are several choices for Φ.
However, in the case of faulty measurements, different
parameter values might give inconsistent state estimation,
why for instance a simple vector average can be chosen.

IV. SIMULATIONS

In this section we consider the case when the robot
is equipped with two range-measuring sensors (l = 2)
and moves inside the same elliptic field as considered in
Example 1. In what follows, x and z will denote the true
states while x̂ and ẑ will denote the estimations of them.
All true states will be plotted with blue/dashed lines, while
estimations will be graphed in red/solid. The robot starts
off from x(0) = [1, −1, π

2 ]T , which corresponds to
z(0) = [ 23π

4 , 242π
1101 , π

2 ]T in the Z−space. The observer
is initialized at ẑ(0), a randomly generated point in the
vicinity of z(0). The observer gains are set to kV =
5, kQ = 1.
Figure 3 shows the trajectory of the components of z(t)
(in dashed/blue) and ẑ(t) (in solid/red). This, together with
Figure 4, where the relative errors have been plotted, shows
the convergence of the observer in the Z-space.
Of more practical importance however is the convergence
of x̂(t) to x(t) in the state-space, X . Figures 5 and 6
show the observation and relative errors as measured after
mapping ẑ into x̂ by means of the full observer mapping,
Φ.

Noisy measurements

Next, attention is paid to the case when the presence
of measurement noise is recognized. The noise parameter
has been chosen such that the relative measurement errors
amount to approximately 5%. Referring to Figure 7, it
can be noted how the observer rejects the disturbance
and tracks the true observer state quite well even in the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3
Errors in z−space; estimations in red/solid

s 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

s 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

Time

φ

Fig. 3. Observation error in Z-space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8
Relative error in z−space

s 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

s 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

Time

φ

Fig. 4. Relative error in Z-space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Errors in x−space; estimations in red/solid

x 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.5

0

x 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

Time

φ

Fig. 5. Observation error in X -space.

presence of measurement errors. This statement is verified
when considering the time history of x(t) and x̂(t) in the
state-space (Figure 8). In cases when (4) is inconsistent
for i = 1 and 2, a simple vector average has served as the
estimated position. One desirable property of this choice
is that a true measurement from one sensor can be used
constructively to compensate for the faulty measurement
of the other one. Thus we notice in Figure 8 that, in the
presence of measurement noise, the position estimation is
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much better than the estimation of the orientation angle,
φ.
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V. CONCLUDING REMARKS

In this paper, the extension of the concepts of observ-
ability and observer design to the field of mobile robotics
is considered. Such systems have several distinguishing
features. Firstly, mobile robots are typically non-uniformly
observable systems so that the observer gains, as well as
its convergence properties will depend on the system input.
In addition, beacuse of the interaction of the exteropective
sensors with the environment, the convergence of the
observer typically will also depend on the environment.
Therefore, in order to succeed in reconstructing the state,
the exciting control has to be chosen in a deliberate
manner, i.e. an active observer has to be designed. Fi-
nally, since most existing observer design techniques are
only applicable to uniformly observable nonlinear systems,
alternative approaches that aid the observer design are
needed. The set of feasible configurations, its relation with
the value-function, the set of output flow equivalent states,
and the inter-relation between these two sets, provide such
a setting. The design study presented here-within, serves to
illustrate the use of these concepts in the observer design
process.
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