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Abstract

The main body of this thesis consists of six appended papers. In the first two,
different cooperative surveillance problems are considered. The second two consider
different aspects of the trajectory planning problem, while the last two deal with
observer design for mobile robotic and Euler-Lagrange systems respectively.

In Papers [Al and [Bl a combinatorial optimization based framework to cooperative
surveillance missions using multiple Unmanned Ground Vehicles (UGVs) is proposed.
In particular, Paper [A considers the the Minimum Time UGV Surveillance Prob-
lem (MTUSP) while Paper [Bl treats the Connectivity Constrained UGV Surveillance
Problem (CUSP). The minimum time formulation is the following. Given a set of
surveillance UGVs and a polyhedral area, find waypoint-paths for all UGVs such that
every point of the area is visible from a point on a waypoint-path and such that the
time for executing the search in parallel is minimized. The connectivity constrained
formulation extends the MTUSP by additionally requiring the induced information
graph to be kept recurrently connected at the time instants when the UGVs perform
the surveillance mission. In these two papers, the NP-hardness of both these prob-
lems are shown and decomposition techniques are proposed that allow us to find an
approximative solution efficiently in an algorithmic manner.

Paper [C] addresses the problem of designing a real time, high performance tra-
jectory planner for an aerial vehicle that uses information about terrain and enemy
threats, to fly low and avoid radar exposure on the way to a given target. The high-level
framework augments Receding Horizon Control (RHC) with a graph based terminal
cost that captures the global characteristics of the environment. An important issue
with RHC is to make sure that the greedy, short term optimization does not lead to
long term problems, which in our case boils down to two things: not getting into situa-
tions where a collision is unavoidable, and making sure that the destination is actually
reached. Hence, the main contribution of this paper is to present a trajectory planner
with provable safety and task completion properties.

Direct methods for trajectory optimization are traditionally based on a priori tem-
poral discretization and collocation methods. In Paper[D] the problem of adaptive node
distribution is formulated as a constrained optimization problem, which is to be in-
cluded in the underlying nonlinear mathematical programming problem. The benefits
of utilizing the suggested method for online trajectory optimization are illustrated by
a missile guidance example.

In Paper [E the problem of active observer design for an important class of non-
uniformly observable systems, namely mobile robotic systems, is considered. The set
of feasible configurations and the set of output flow equivalent states are defined. It
is shown that the inter-relation between these two sets may serve as the basis for
design of active observers. The proposed observer design methodology is illustrated by
considering a unicycle robot model, equipped with a set of range-measuring sensors.

Finally, in Paper [[ a geometrically intrinsic observer for Euler-Lagrange systems
is defined and analyzed. This observer is a generalization of the observer proposed by
Aghannan and Rouchon. Their contractivity result is reproduced and complemented
by a proof that the region of contraction is infinitely thin. Moreover, assuming a priori
bounds on the velocities, convergence of the observer is shown by means of Lyapunov’s
direct method in the case of configuration manifolds with constant curvature.

Keywords: Surveillance Missions, Minimum-Time Surveillance, Unmanned Ground
Vehicles, Connectivity Constraints, Combinatorial Optimization, Computational Op-
timal Control, Receding Horizon Control, Mission Uncertainty, Safety, Task Com-
pletion, Adaptive Grid Methods, Missile Guidance, Nonlinear Observer Design, Active
Observers, Non—uniformly Observable Systems, Mobile Robotic Systems, Intrinsic Ob-
servers, Differential Geometric Methods, Euler-Lagrange Systems, Contraction Anal-
ysis.
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Introduction

HIS thesis deals with three problems in the field of control, namely: concurrent task
Tassignment and path planning; trajectory planning; and observer design. Here—below,
all these subjects, as well as their inter-relation, are explained in an introductory manner.
Consequently, the more familiar reader may prefer to skip it at a first reading. The three
subsequent sections provide a more detailed treatment of these problems.

In order to provide the big picture first, Figure[ll depicts a possible structure for decom-
posing the overall system architecture.

‘ Strategical objectives & constraints

Mission
Planning

‘ Tactical objectives & constraints

Task
Assignment

v

Path
Planning

v

Trajectory
Planning A

Yy

Motion
Control

Observer

Uyef Yy
Y

Actuator | Uc_ Vehicle/P1
Control —| Vehicle/Mlant

Figure 1: Possible structure of a modular design of an autonomous system.

The first problem area of this thesis, that is considered in Papers[Aland [Bl is concurrent
task assignment and path planning. The term concurrent here refers to the fact that the task
assignment- and path planning processes are occurring simultaneously in an interweaved
fashion. This has been indicated in Figures [l and by arrows going in both directions
between the task assignment- and path planning box. In contrast, as seen in Figure
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2 INTRODUCTION

an alternative approach would be to assign the tasks and plan the paths sequentially. In
this latter case, the path planner is not used during the task assignment process. In general,
recognizing the coupling between these two processes leads to a better overall solution while
neglecting it lowers the computational complexity.

Tactical

Objectives/
Constraints _| |Task ™ Path Reference Path
Assignment | 4 | Planning

(a) Concurrent task assignment and path planning.

Tactical

Objectives/
Constraints _| |Task Path Reference Path
Assignment Planning

(b) Sequential task assignment and path planning.

Figure 2: Two possible interaction structures between the task assignment- and path plan-
ning processes.

The second problem area, namely trajectory planning, is an instance of the motion
planning problem, which is used as a collective term including both trajectory- and path
planning (¢f. Figure B). In its most basic form, motion planning is about finding a feasible
trajectory connecting two given configurations, denoted p; and py, for a single robot in a
static and known environment. A path is the image of a continuous function v : [0,1] — C,
such that v(0) = p; and (1) = ps, which means that it connects the two given configu-
rations. Here, C denotes the robot’s so called configuration space [1]. A path should also
fulfill the robot’s configuration-level constraints, for instance, physical obstacles in the en-
vironment. A trajectory can then be defined by specifying the time evolution of a path [1].
Motion planning as described here, is a purely geometric problem that ignores the inher-
ent dynamic limitations of the robot. Some authors therefore prefer to define a trajectory
as time dependent configuration— and velocity functions, that are also consistent with the
robot’s dynamic constraints. This definition is adopted in this thesis.

In a similar fashion as in the task assignment and path planning problem, there are
two ways to decompose the motion planning problem. The first alternative is sequential
motion planning, i.e., finding a feasible trajectory through refinement [1,2] (see Figure B(b)).
Given the task assignment objectives and constraints, the path planner first provides a
geometrically feasible path. It is then the task of the trajectory planner to convert this path
to a trajectory that is consistent with the robot’s dynamic constraints. This decomposition
is however not necessary and there exists methods that perform the path- and trajectory
processes concurrently (see Figure B(a)). The framework adopted in Papers [ and [,
namely that of Computational Optimal Control, serves as an example of this alternative
approach that merges the path- and trajectory planning part (see Section EZTI).

Once we have a feasible reference trajectory at hand (denoted z,ef in Figure[ll), we would
like to use feedback control to make the robot follow the prescribed trajectory. Feedback
control design techniques require information about at least some parts of the state vector. If
all the state variables necessary for the control design can not be directly measured, which
is a typical situation in complex systems, attention must be directed towards estimating
them. This is achieved by designing an observer, whose task is to reconstruct missing



Task Assignment Motion Planner
Objectives/
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Path [ Traj. Trajectory
Planner »| Planner

(a) Concurrent path- and trajectory planning.

Task Assignment Motion Planner
Objectives/
Constraints Reference
Path | Traj. Trajectory
Planner Planner

(b) Sequential path- and trajectory planning.

Figure 3: Possible decompositions of the motion planning problem.

state information while only using available measurements, y. Observers are defined more
rigorously in Section Bl and observer design, which constitutes the third problem area of
this thesis, has been considered in Papers [E and [[

An important point to notice is that although concurrent task assignment and path
planning, trajectory planning and observer design are all vital sub-problems in the creation
of autonomous systems, they are not the only problems that have to be addressed. Other
important aspects include high—level mission planning (i.e., making strategic global plans),
controller design, actuator design and sensor fusion. Truly optimal design of autonomous
robotic systems requires concurrent solution of all these sub-problems. Such an approach is
however beyond our current reach. As a natural step then, we limit ourselves to a modular
and sub-optimal design scheme, where only parts of the interactions between the modules
are taken into consideration.






Cooperative Surveillance using Multiple
Unmanned Ground Vehicles

In both civil and military applications, surveillance is performed in order to assist in the
prevention, detection and monitoring of intrusion, theft or other safety-related incidents.
Application areas and facilities that require such supervision are numerous and include
airport facilities, military installations, territorial borders, storage buildings, harbors, power
plants, banks, factories and offices. Todays surveillance and security solutions are based on
a combination of

e human guards (manned gates, airport screeners, store detectives),
e electronic systems (cameras, intrusion alarms, fire detection),

e physical security (fences, gates), and

software (reporting, verification, logging).

In the ideal case, surveillance should be performed in a continuous manner and cover the
entire facility, although in practice, financial and head-count constraints limit it to only
encompass the most important and critical areas. Recent scientific and technological devel-
opments is however taking us towards more autonomous and mobile solutions. The market
for semi-autonomous sentry vehicles is in fact already established and growing. As for to-
day, there are a few tailor-made safety and security vehicles on the market, but so far,
they possess a quite limited capabilities and thus functionality [3]. From a performance
standpoint, the potential benefits with adopting an Unmanned Ground Vehicle (UGV) for
security and surveillance applications are numerous and include:

1. Cost savings.
2. Removal of humans from direct exposure to potentially harmful situations.
3. Elimination, or at least reduction, of the risk of "inside jobs".

4. More effective performance of many security and surveillance routines as autonomous
systems - unlike humans - do not get bored and thereby inattentive during long work-
ing hours.

In comparison with stationary surveillance cameras, a more mobile solution has several
advantages, most apparently that of flexibility, in the sense of being able to cope with
application areas that are changing in time. For instance, using stationary cameras, a
great deal of camera redundancy would be required to fully monitor a harbor area where
the container setup is varying on a daily basis. However, using surveillance UGVs, these
changes can be easily incorporated in the planning scheme.

Here-below, in order to concretize a specific problem instance and thereby put the reader
in the right frame of mind, a fictitious motivating example is described and discussed in
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6 INTRODUCTION

more detail. Following that, we start Section by arguing that the considered example is
in fact an instance of a larger problem class, namely concurrent task assignment and path
planning for multi vehicle systems. The remaining part of Section is therefore devoted
to formally defining this problem class. Finally, Section [ provides an overview of related
research.

1.1 Motivating Example: Constrained rounds of patrol

Traditionally, patrolling rounds are performed by humans. To obtain maximal security,
these rounds should be performed in a continuous manner. However, having a full-time
guard 24 hours a day, 7 days a week will cost more than 3 full-time employees. This fact
has prevented EsCoTer, a (fictious) company in Stockholm, from obtaining this high level
of security. EsCoTer is an importer and distributer of Asian scooters, ATVs and dirt-
bikes into the Swedish market. As such, it has a warehouse that has repeatedly been an
object of interest for intruders and burglars. Faced with this problem, the owner of the
company has therefore looked for alternative solutions to complement the traditional way
of patrolling. The most flexible and cost effective offer so far has been delivered by a security
company called Sentry Inc. and involves using a small group of semi-autonomous vehicles
for performing these patrolling rounds.

The most basic solution Sentry Inc. provides is to engage a group of sentry UGVs that
cooperatively visit a set of known and predefined sites in a regular and repetitive manner.
On their way between the sites, each UGV should survey its surroundings using its on-board
sensors. Possible onboard sensors include laser scanners, IR-cameras and chemical sensors
with which one can detect, e.g., intruders, fire, gas leaks or even abnormal radioactivity. As
a more refined solution for more challenging scenarios, Sentry Inc. provides a solution that
can handle patrolling rounds which are constrained to fulfill different conditions. According
to the specifications, possible constraints that could be elaborated upon include, but are
not limited to:

Temporal and/or spatial visiting constraints: It might for instance be desirable to
assure that sensitive sites of high priority are visited at least once during given time
intervals. This imposes a temporal constraint on the solution. Sensors with limited
field of view provide a prototype example of spatial constraints.

Line of sight constraints: In addition to visiting the sites, the threat situation may call
for monitoring of the UGVs themselves. It is therefore of interest to have the capability
to perform the patrolling rounds while mutually keeping the line of sight between the
UGVs clear.

Non-predictability constraints: Performing the rounds in a regular manner, makes it
easy for potentially hostile forces to plan their actions and circumvent this line of
defense. Therefore, it is desirable to introduce some degree of non-predictability in
the patrolling rounds.

Verifiability constraints: These are introduced to attain a quality certification, i.e., as-
sure a certain levels on key features. This might for instance involve guarantees that
the non-deterministic rounds will not neglect any site completely.

The owner of EsCoTer realizes that the more enhanced alternative suits the needs of his
company better and therefore signs a two year contract with Sentry Inc. within a matter of
weeks.
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1.2 Concurrent task assignment and path planning for
surveillance and security applications

In this section, we argue that the example of Section [[Ilis an instances of a larger problem
class, namely Concurrent Task Assignment and Path Planning (C-TAPP). To see this,
notice that visiting any of the sites can be seen as a task and the goal is to plan the paths
for all the UGVs such that these tasks are performed in an optimal manner while fulfilling
the constraints. Next, to set a common ground for the subsequent sections, a more formal
definition of C-TAPP is given.

Problem 1.1 (Concurrent Task Assignment and Path Planning (C-TAPP)). Given N
UGVs and M tasks that they have to perform, concurrently assign the tasks and find paths
for all the vehicles in a cooperative manner. The task assignment and the generated paths
are to fulfill all the constraints imposed on them while minimizing a given cost function.

Notice that this problem formulation allows some of the N vehicles to remain idle in
their initial position. This could be of great strategical interest since the inactive vehicles
can be used for performing other missions in parallel.

Remark 1.1. Obviously one of the keywords in Problem [l is cooperation. Surprisingly,
occurrence of concrete definitions of the meaning of this term within the multi-vehicle field
are sparse in the literature. For now, we define cooperation from an optimization perspec-
tive: "Cooperation emerges from the objective of minimizing the given cost function"!. In
Section [[3 however, we follow [4] providing a list of some alternative definitions of cooper-
ation.

Before presenting various choices of objective functions and constraints in C-TAPP, we
make a small digression to put it into perspective by presenting our view on how C-TAPP
enters the overall system architecture. As discussed earlier in the introduction, in this work,
an overall modular design of the system architecture is assumed. Figure[[Ildepicts a way of
decomposing the overall problem of designing a multi-UGV system, where only parts of the
interactions between the modules are counted for. The principal interest of Problem [[1]lies
on the task assignment and path planning module of Figure [Tl Hence, this formulation
neglects several other crucial subproblems, such as, trajectory planning, actuator control,
observer design, sensor fusion, communication technology issues and sensor detection. We
assume these modules are available to us, so that for instance the vehicles are assumed to
know their positions, either through direct measurements from on-board sensors, or through
a suitably deigned observer.

Having put the C-TAPP problem into perspective, we proceed by listing some relevant
choices of objective function and constraints in C-TAPP. This list particularly emphasizes
C-TAPP problems for surveillance and security applications.

1. Possible objective functions:

a) Minimize the total time for completing the tasks?.
b) Minimize the distance traveled while performing the tasks.
¢) Minimize the maximal or accumulative threat encountered during the mission.

d) Minimize a combination of task completion time and number of vehicles used.

LBy this we are also able to distinguish cooperation from coordination, which can be thought of as an
implication of the constraints of an optimization problem.
2 Assumption on constant vehicle speed gives an equal work-load formulation.



INTRODUCTION

Detection & —
Classification
\
Missign Trajectory Motion
Planning Planning Control
‘ i
)
[y
0 —»[ Communication Device Observer Sensors}<—
P
E
([ J [ J W
R 6]
A R
T D ion & L
etection
O D
R
Trajectory Motion
Planning Control
A
AN
| v
4—4:[ Communication Device Observer ]4:[ Sensors]<—

Figure 1.1: Possible modular structure of a multi-UGV system.

e) Minimize a combination of the previous objectives.

f) Provide soft ordering by associating revenues to all tasks and maximizing the
total revenue (cf. [6-7]).

g) Maximize total utility as defined by the difference between total cost and total
revenue [5, §].

Remark 1.2. Problem [Tl is a generalization of the Traveling Salesmen Problem
(TSP) and is therefore also NP-hard. Consequently, we can not expect to solve all
problem instances to optimality within a reasonable amount of time. In practice, some
heuristic algorithm may be used for solving Problem [Tl A possible constraint on the
solution would then be:

e to obtain e-optimal solutions, i.e., solutions whose costs are within an ¢ factor
from the optimal one.

2. Possible task assignment constraints:

a) No task should be neglected.
b) Every task should be assigned to one and only one UGV.
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¢) Number of tasks assigned to each vehicle is bounded from above.
d) A task, m, must have at least n,, > 1 UGVs assigned to it.
e) Different UGVs have different capabilities so that not all vehicles can perform all
tasks.
f) Temporal constraints such as:
¢ time-windows for the completion of certain tasks,
e ordering, e.g., that task m; has to be performed before task m;.

g) Non-predictability.
3. Possible path planning constraints:

a) Line of sight/communication maintenance constraints.
b) Spatial constraints such as:
e upper bound on the total path length for some of the vehicles (fuel con-
straint).
e given/free initial and/or final positions for some of the vehicles.
e collision free paths.
In addition to these, one might consider other spatial constraints imposed by
such tasks which cannot be solved if:
e the distance to the task location is larger than a given threshold,
¢ the task location is approached from certain directions.

Both these examples are highly relevant for camera surveillance scenarios.

¢) Dynamic feasibility (i.e., the needs of the trajectory planner is addressed, cf.
Figure [[T)).

d) Non-predictability.

1.3 C-TAPP Related Research

A vast amount of research and a huge number of publications have been devoted to problem
formulations more or less related to the C-TAPP problem, as defined in Section In this
section a broad overview of the research that is currently ongoing in this field is provided.
The exposition is neither complete nor self-contained, hence appropriate external references
are provided in order to allow the interested reader to probe more deeply into the subject®.

In essence, C-TAPP related research has so far been quite informal, concept-oriented
and primarily focused on:

1. Specification of particular problem instances. Often, this is done with some real-world
application in mind.

2. Presentation of some heuristic, empirical or ad hoc solution method, e.g., a proper
coordination and cooperation architectures and different problem decomposition tech-
niques.

3. Validation of the proposed solution method through simulations or experiments in a
proof-of-concept fashion.

3Short reviews of some of the referenced papers can be found in [3].
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These three steps are the foundation of the overwhelming majority of the papers in this
field. The first step involves specification of the objective function to be minimized and
relevant constraints imposed on the task- and path planner. As previously mentioned, this
step is normally inspired from a particular application-domain. As an illustrative example,
reference [9] considers a scenario where a group of N vehicles are required to visit M/ known
target locations within a hostile environment with P static threats. The objective function
consists of a combination of risk minimization, balancing the workloads between the vehicles
and minimizing the mission completion time. As for the task- and path-wise constraints,
the authors require all M targets to be visited, while avoiding collisions and flying within
predefined length limits (fuel constraint). To make the problem more realistic, the authors
may further impose timing and ordering constraints on the tasks as well as an upper limit
on the number of targets that can be assigned to each vehicle.

As for the second step, the literature includes a wide variety of techniques and ideas. This
is also usually where the main research focus lies. A classical approach to solve challenging
combinatorial optimization problems such as C-TAPP is based on clustering [8,10]. The
two main ideas here are to either cluster-first-route-second or the other way around. In order
to improve solution quality, the clustering and routing phases can be iteratively repeated —
at the expense of computational load. As an example, reference [9] approximates an exact
MILP formulation of C-TAPP in four different ways using the clustering ideas presented
here-above. These approximations have lower computational complexity and are therefore
better suited for online purposes. The approach taken by Maddula et al. [11] illustrates
another distinguished way of tackling the C-TAPP problem. In a first phase, an initial
assignment is constructed. In a second phase, this initial assignment is refined using four
target exchange operators that are defined in the paper. The same idea is elaborated upon
in several other papers encountered in this domain. Heuristic ways of improving an initially
feasible solution include

e Tabu search [6,12] (which are known to perform well on various routing problems [10,
13,14]),

¢ stochastic hill-climbing [15],
e ant colony optimization [16],
e genetic algorithms [17].

As mentioned earlier, there is a natural way of decomposing the C-TAPP problem into
two subproblems, namely the optimal task assignment- and the optimal path planning
problem. Unless the objective function in the task assignment problem is path independent,
this modular scheme is bound to produce sub-optimal solutions (cf. Figure . Having
a path independent objective function is hardly the case in most realistic surveillance and
security applications. Consequently, the ideal case from this thesis’ point of view, is to
solve these two subproblems concurrently. This approach has been depicted in Figures [[T]
and

Since the field of cooperative multi-vehicle systems is a relatively young research do-
main, some important aspects of C-TAPP have been largely untreated in the literature.
In particular, the following two aspects deserve much more attention from the research
community.

1. More theoretical aspects and frameworks for formal analysis [5, 18],

2. Evaluative and comparative studies [13,19].
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As indicated in Remark [Tl occurrence of concrete definitions of the meaning of the
key term "cooperation" are sparse in the multi-vehicle literature. Next, we follow [4] and
provide a list of some alternative definitions of this term. Explicit definitions of cooperation
include:

1. "joint collaborative behavior that is directed toward some goal in which there is a
common interest or reward",

2. "a form of interaction, usually based on communication",

3. "[joining] together for doing something that creates a progressive result such as in-
creasing performance or saving time".

This last definition is probably the one closest to the definition provided in Remark [Tk
"Cooperation emerges from the objective of minimizing the given cost index". This defi-
nition originates from an optimization perspective. Also, as mentioned earlier, this point
of view allows us to distinguish cooperation from coordination, which can be thought of as
something emerging from the constraints of an optimization problem.

In the literature, there exists a body of work that aims at providing a suitable classifica-
tion scheme and taxonomy for the field of cooperative multi-robotics (see, e.g., [4,5,18,20,
21]). These papers also provide excellent surveys of the literature at different times. Next,
a handful of selected topics from these important papers will be discussed.

In [20] the authors present a taxonomy that classifies cooperative teams. In addition,
a rather comprehensive survey of existing work as it appeared in the mid 90’s is provided.
Seven important aspects are mentioned and include collective size, the systems commu-
nication and computational capabilities. A summary of the proposed taxonomic axis can
be found in Table [Tl It can be noted that the communication issue constitutes a rela-
tively large fraction of the classification dimensions. In order to illustrate the usefulness of

| Taxonomic Axis | Description |

Collective Size The number of robots in the group

Collective Reconfigurability | Rate for spatial re-organization

Collective Composition Group being homogeneous or heterogeneous

Communication Range Upper limit on the inter-robot distance such
that communication is still possible

Communication Topology Describes possible inter-robot communication

Communication Bandwidth | Amount of information that can be transmitted

Processing Ability Each units model of computation

Table 1.1: Summary of the taxonomic axis as they appear in [20].

the suggested taxonomy, [20] sorts the surveyed papers according to their position in the
taxonomy.

Another important work that provides natural dimensions along which multi-robot sys-
tems can be separated is [4]. In this paper, the authors identify five important "research
axis", or taxonomic axis, that can be used when comparing different system designs.

Group Architecture: this axis can be described as the "infrastructure upon which col-
lective behaviors are implemented". Concepts such as group differentiation (homo-
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geneity/ heterogeneity)?, control type (centralization/ decentralization) and commu-
nication structure fall into this category.

Resource Conflict: strategy for resolving possible group conflicts, e.g., the collision avoid-
ance problem in mobile robotics or the multi-access problem in computer networks.

Origin of Cooperation: (biologically/socially inspired) mechanisms that motivate and
achieve cooperation in systems where this has not been "explicitly engineered" into
the system.

Learning: strategies for finding correct values for design parameters, e.g., reinforcement
learning, genetic algorithms or neural networks.

Geometric Problems: issues tied to the embedding of the system in a two- or three-
dimensional world. Examples include multi-robot path planing and moving to forma-
tion.

Also in [4], the authors provide a survey of existing work and discuss some open research
problems, technological constraints and the influence of other academic disciplines that
have shaped the field of cooperative robotics. The reader is urged to consult [4] for a fuller
discussion. It must be emphasized however that the task assignment problem is largely
overlooked in [4]. From the C-TAPP’s point of view, the task decomposition and allocation
aspects certainly requires axes on their own.

A possible classification of different coordination schemes is that of explicit vs. implicit
coordination [18,22]°. A multi-vehicle team may coordinate ezplicitly using communication
or negotiations. An example of one such mechanism is market-based coordination [§],
where individual vehicles competitively bid for the tasks to be performed. This auction-
based approach is based on some given bidding rule [24]. However, multi-vehicle teams
may also cooperate implicitly. In this case, communication is mediated through inter-
vehicle and vehicle-world interactions. This type of communication is called stigmergic
in the biological literature [25]. As an example, a box-pushing application is considered
in [26] that achieves cooperation without communication. This is possible since the object
being manipulated also functions as a channel of communication that is shared by all the
robots. The relative merit of these two coordination schemes remains an open question.
According to [18] however, it is in general easier to perform a formal analysis on explicit
approaches. They are also considered to produce more accurate and near-optimal solutions.
On the downside, explicit coordination schemes are not as flexible, robust and — due to the
inherent computation and communication complexity — scalable as the implicit approach.

Another feature than can be used for classifying different architectures is whether the
system is centralized or not [4]. In centralized systems, the decisions regarding cooperation
and coordination are made at one single central control unit. Decentralized systems on the
other hand, are characterized by the lack of such a unit. Instead, robots rely solely on locally
available and processed knowledge. As far as pros and cons are considered, decentralized
systems are generally considered to be inherently more reliable, robust and scalable [8,18].
In reality however, there is a continuum of possible system designs that span the spectrum
between the two extreme cases. Market-based approaches serve as a typical example that
resides in the middle of the spectrum.

A challenging and highly relevant extension to the C—TAPP problem is to explicitly
recognize the presence of uncertainty. In the face of measurement noise, parametric un-
certainty, modeling errors and other disturbances, the deterministic nature of Problem [[T]

4Which corresponds to the "collective composition" axis of [20].
5This can also be referred to as intentional vs. emergent coordination [21,23].
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falls short. One approach in the literature to handle this issue is to pose the C-TAPP
problem within a stochastic or robust optimization framework. To reasonably limit its
scope, the main focus of this chapter will however be on a more implicit approach to handle
the uncertainty issue, namely requiring fast solutions to the C-TAPP problem. The low
computational time allows us to perform re-planning online as new information about the
environment or mission objectives is gathered. This information can then be processed and
fed back regularly to the C-TAPP planner. This way, feedback is incorporated and a cer-
tain degree of robustness is obtained. The reader should however be aware of the important
work and significant progresses that have been made in explicitly incorporating uncertainty
in the problem formulation. Stochastic or robust versions of problems related to C-TAPP
have been considered in, e.g., [7,15,27-29].






Kinodynamic Trajectory Planning

Trajectory planning arises as a natural and vital sub-problem of the noble ambition to
design an autonomous system. Once implemented, it lifts the question of vehicle control to
a higher level, where the input descriptions will specify the nature of the task to be carried
out, rather than how to do it. In its most basic form, trajectory planning is about finding a
feasible trajectory connecting two given states, for a single, fully actuated point, present in a
static and known environment. Important extensions include the case of stochastic planning,
temporal constraints, multi-vehicle planning, and trajectory planning from a given initial
point to a terminal set. In this thesis, we are mainly interested in kinodynamic trajectory
planning. The term kinodynamic planning was introduced by Canny et al. [30,31] and refers
to motion planning problems that have both kinematic (holonomic/nonholonomic), as well
as dynamical constraints.

Another realistic issue, which is at the center of discussion in Papers [ and [DJ, involves
imposing computational constraints on the trajectory planner. This requirement may orig-
inate from an assumption on having an imperfect world-model, i.e., severe information
uncertainty with respect to the current objectives and constraints. In such a setting, the
trajectory has to be re-planned in a fast and safe manner as time evolves, so that planning
and execution phases can be interweaved. This is a non-trivial task, since it is known
(see, e.g., [30] and chapter 6.1 in [1]) that the solution time for the basic planning problem
depends exponentially on the vehicle’s degrees of freedom. This difficulty is reinforced by
the fact that every extension of the basic planning problem, such as multiple robots and
moving obstacles, adds new degrees of freedom to the problem. Therefore, in order to meet
the online computational requirement, attention must be given to approximative solutions
that are of low computational complexity.

The exposition of the planning approaches in this section is neither complete nor self-
contained. The reader is referred to [1,2,32] for fuller discussions. The objective of this
section is rather to explain a number of important issues for the main approach used in this
thesis, namely computational optimal control. This is the subject of Section 11

2.1 Computational Optimal Control

The paradigm of qualitative control design, which is associating a measure of the "utility"
with a certain control action, has been a foundation of system engineering thinking. Optimal
control is therefore regarded as one of the more appealing methodologies for trajectory
planning. However, as captivating as the underlying theory might be, real-world impact
have so far been moderate, particularly due to the high computational demand for solving
nonlinear Optimal Control Problems (OCP). Consequently, attention has been paid to
approximation methods and computationally efficient algorithms that compute solutions
which are "near-optimal" in some sense. In this section, we treat a number of important
issues for algorithmic solution of optimal control problems. Also, some major classes of
computational methods are emphasized. A more comprehensive survey of computational

15
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methods for solving OCPs, as they appeared in the mid 90’s, can be found in Chapter 2
of [33].

The discussion of this chapter will be focused around the following optimal control
problem:

T
minimize J = / L(z,u)dt + ¥ (z(T)) (OCP)
“ 0
such that z = flz,u)
dz,u) < 0
z(0) = a;
z(T) € 5S¢

where the state z(t) € X, the control u(t) € U, the constraints d : X x U — R? and
the terminal time, 7', is a possibly free variable. Also, X and U are smooth manifolds of
dimension n and p respectively. To further unburden the discussion, we make a standing
assumption that all mappings are assumed to be sufficiently smooth, the state trajectory
is uniquely defined and stays feasible at all time instances, that all stated minimization
problems with respect to u are well-posed and that the minimum is attained.

Unless the objective function J, the system dynamics and the constraints of the OCP
are simple enough, finding optimal controls analytically is not a viable approach. Assuming
that the considered OCP originates from a complex, real-world application, the existence
of analytical solutions is thus deemed unlikely. Our objective is then to solve the OCP
numerically.

For the actual design of the computational algorithm, the infinite dimensional problem
of choosing the control function in a given space, has to be turned into a finite dimensional
optimal parameter selection problem. This process of representing the continuous time
functions by a finite number of parameters, is referred to as transcription and is typically
achieved by either finite difference methods or finite sum of known basis functions [33,34]'.

It is further conceptually important to differentiate between direct and indirect tran-
scription methods (see Figure EZTl). These two categories will be dealt with in Section 211
and ZT A respectively.

direct transcription

> N
OCP L OCP
consistency
Hamiltonian Lagrangian
Adjoints Lagrange multipliers
PMP/DP KKT
indirect trancription
;\‘ 1n - N}\,
OCP”" OCP
consistency

Figure 2.1: Direct and indirect transcription methods.

LCertain choices for basis functions, blur the distinction between the two mentioned transcription meth-
ods (see, e.g., [35,36]).
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2.1.1 Indirect Transcription Methods

For a given OCP, indirect methods start off by introducing the Hamiltonian
H(ﬂ?, u, >\) = /\Tf(x7 u) - ;C(.I‘, U),

where )\ denotes the adjoint variables, and formulating the optimality conditions either
according to the Pontryagin Maximum Principle (PMP) [37] or Dynamic Programming
(DP) [38]. The PMP leads to an associated two point boundary value problem (TPBVP),
while DP gives rise to the Hamilton-Jacobi-Bellman (HJB) partial differential equation.
These infinite dimensional problems are denoted OCP* in FigureZdl Indirect transcription
methods then proceed by approximating and numerically solving the TPBVP /HJB. Possi-
ble approaches for doing so include, (multiple) shooting method, finite difference method,
collocation method and Galerkin method [39].

In general, indirect methods are considered to produce more accurate results [40,41].
In essence, direct methods which circumvent the PMP and DP by transcribing the OCP
directly and using nonlinear programming techniques, have no way of fully utilizing the
special structure of OCPs (¢f. Footnote[ll). Nevertheless, indirect methods are not typically
used to solve problems having complex dynamics or constraint set. This is most often due
to the:

e Tll-conditioned properties of the TPBVP2.

e Occasionally tedious derivation of the optimality conditions via PMP/DP3.

e Analytic intractability of solving the derived (nonlinear) optimality conditions.
¢ Analytic intractability of solving the HJB partial differential equation.

e "Curse of dimensionality", i.e., the inherent exponentially increasing computational
complexity for solving HJB as the problem size increases [38].

Notice also that for problems where the underlying OCP is changeable in terms of the
objective function, J, the final manifold, Sy and/or the constraints, d(x,u), the optimality
conditions must be restated. This in fact makes indirect methods less suitable for this class
of problems. Bearing in mind the assumption on information uncertainty made in this
thesis, the principal interest will therefore be on direct transcription methods.

2.1.2 Direct Transcription Methods

The essential idea behind direct transcription methods is to use a finite number of basis
functions to approximate the control manifold ¢/ and/or the state manifold X. Which
space, or spaces to parameterize and what basis functions to adopt, are some of the pivotal
differences between existing direct transcription methods. Let us therefore discuss these
two issues in greater detail.

2The associated TPBV can in fact be singular, in which case numerical solutions must be disregarded.
This issue has been demonstrated in [42,43] by applying the PMP to a most simple OCP, namely the so
called Dubins’ problem [44].

3Symbolic mathematical packages have facilitated this procedure to a certain degree. Nevertheless,
such luxuries cannot be enjoyed in a large class of interesting real-world applications, where look-up tables
dominate data presentation.
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Space Parameterization

Regarding the choice of suitable space(s) to parameterize, there is no unambiguous and
clear-cut answer. In the literature, parameterization of state [45], control [46,47], and both
the state and control [48-50], has been suggested. As a consequence of the regularity as-
sumption on the control system, it follows that every control trajectory yields a unique state
trajectory. In principle, it is therefore sufficient to only parameterize the control space, U.
Since the size of the transcribed optimization problem (denoted OCPY in Figure ) is
proportional to the number of approximation parameters, only parameterizing U/ results
in a comparatively small optimization problem, OCP". This approach is vindicated by
the fact that optimization routines typically converge faster and more reliably on smaller
problems. Nevertheless, it turns out that from a computational and implementation point
of view, it might still be preferable to introduce parameterization variables in both ¢/ and
X. This is since in typical control applications, parts of the objective function J, as well
as some of the constraints of the OCP, are state dependent. Examples include threat mini-
mization objectives and various kinematic constraints, such as obstacle avoidance. In such
cases, only parameterizing the control, leads to implicit constraint and gradient expressions
in the transcribed optimization problem, OCP”, which in turn may result in severely in-
creased computational complexity. Finally, if only the state space, X, is parameterized,
the parameters have to be constrained as to be achievable by some feasible control. This
method thus results in a differential inclusion formulation and is practically applicable for
the limited class of problems, where

S(z) ={f(zx,u) € T,X :uelU,d(x,u) <0},

which is a mapping from a point z € X to a subset of the tangent space, T, X, can be
easily characterized or approximated. The set S(x) is termed holograph in [51]. Note that
in order to solely involve the state parameters in the differential inclusion formulation, one
must be able to also eliminate the control from the objective function .J, as well. Interesting
contributions, regarding the computational efficiency of the differential inclusion method,
versus that of parameterizing both I/ and X, can be found in [52-54].

To summarize this discussion, it is the author’s belief that the choice of proper space(s)
for parameterization should be made based on the particular OCP at hand. The leitmotiv
should be to keep possible convexities of the objective function, and/or constraint set intact,
even after the parameterization. Since, "the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and non-convexity" [55], transforming these will
most likely result in increased computational complexity (cf. [52,56]). The statement that
optimization routines converge faster and more reliably on smaller problems, holds true
if two problems with similar structure and complexity (in terms of non-convexity), but
different number of variables are compared. The importance of problem structure versus
that of number of variables is however an open and case specific question.

A parallel discussion, is that of using the flatness properties of a system for trajectory
planning. Parameterizing the flat outputs — in addition to becoming a static problem —
generally reduces the number of variables in OCP”, but as noted in, e.g., [57,58], this pa-
rameterization might transform the objective function and constraints in a possibly complex
(nonconvex) form, and consequently have negative influence on the convergence properties

and/or the solution times®.

4In [57], the evidence of the hypothesis that the solution time is an exponential decreasing function of
the relative degree of the transformed system, are given by numerical experiments on a specific problem
and can therefore not be considered as a firm affirmative proof.



KINODYNAMIC TRAJECTORY PLANNING 19

Basis Functions

From the theory of approximation (see, e.g., [59,60]), by choosing the real parameters o,
i=1,---,n, appropriately and n large enough, the finite sum

Fa(t) =Y cudi(t),
i=1

can be made to approximate a well-behaved function, f(t), to any degree of accuracy in
any reasonable function space. Here, {¢;(¢) : ¢ € N}, is a family of known basis functions
that span the function space in question. Different choices of basis functions, manage to
approximate functions with different degrees of smoothness. As an example, consider the
basis functions ¢;(t) = t*, i.e., approximating f(t) by polynomials on a (compact) interval, I.
If f(t) is a continuous function, uniform convergence of f,(t) to f(t) follows by Weierstrass
theorem, which states that the space of polynomials is dense in the space of continuous
functions [61].

In principle, any preferred basis functions can be employed. The reader is referred
to the introductory part of Ma’s thesis [33], for a concise summary of different applicable
approximation schemes. In practice however, piecewise polynomials [49], in particular cubic
spline functions [48], belong to the classical choices. More recently, different orthonormal
basis functions, e.g., Chebyshev polynomials [36,50,62] and Legendre polynomials [35,63],
have been extensively considered for trajectory optimization problems.

Parameterizing I/ and/or X turns the infinite dimensional OCP into a finite dimensional
optimal parameter selection problem, which can be seen as an implicit nonlinear mathe-
matical programming problem (NLP). Implicit, since computing the integral cost, finding
the state trajectory solution consistent with the prescribed dynamics and fulfilling the con-
straints d(x,u) < 0, are all still infinite dimensional problems. Numerical procedures require
further approximations. In most direct methods (see, e.g., [34] and the references therein),
this is achieved by a priori temporal discretization and approximation of the differential op-
erator. The integral cost can then be approximately evaluated by any preferred quadrature
rule (consult, e.g., [39,64]). In addition, the state and control constraints, d(z,u) < 0, are
imposed at the temporal nodes and treated as regular constraints of the NLP. Finally, addi-
tional constraints are imposed on the NLP variables so that the generated state trajectory
is consistent with the approximating differential operator.

From this discussion, one can realize that the accuracy of the obtained solution will
generally depend on the temporal discretization scheme. As mentioned, a priori parti-
tion of the time interval into a prescribed number of sub-intervals, is the most intuitive,
straightforward and widespread approach for this. It is however a well-established fact in
numerical analysis (see, e.g., [39,65]), that a proper distribution of grid points is crucial for
both the accuracy of the approximating solution, and the computational effort. The basic
idea is that by concentrating the nodes and hence computational effort in those parts of the
grid that require most attention (e.g., areas with sharp non-linearities and large solution
variations), it becomes possible to gain accuracy whilst retaining computational efficiency.
Since the solution is not known in advance, a priori node distribution has no way of pay-
ing attention to the particular problem at hand. To remedy this, iterative mesh refinement
techniques have been suggested [66]. However, strategically adding new nodes to the current
grid in an iterative manner, results in increased running times, which is counter productive
for our online computational objectives. In Paper [Dl an adaptive temporal discretization
method for trajectory optimization is suggested, where a fixred number of nodes are opti-
mally distributed as to improve the accuracy of the approximation. The node distribution
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scheme is formulated as a constrained optimization problem, which is to be augmented to
the underlying NLP and solved on the fly.



Observers for Nonlinear Systems

In complex real-life systems, it is typically some state variables which cannot be directly
measured. If needed — for instance for feedback control design or monitoring purposes —
one must aim at obtaining an estimate of these unknown state variables. For a dynamical
system, an observer is another dynamical system whose task is to reconstruct missing state
information while only using available measurements. The input to the observer is the
output of the original system (which may include its input), and the observer is expected
to produce as output an estimate of some state function of the original system.

This section gives a brief and expository treatment of observers for nonlinear systems.
One of the main objectives has been to relate the material to our viewpoint, and in exten-
sion, the relevant augmented papers (Paper [El and [E). The disposition is as follows. To
start with, a concise and conceptually clear definition of an observer is given in Section Bl
This definition is minimalistic in the sense that it specifies the minimal characteristics of an
observer. For practical purposes, additional desired properties, such as domain of attrac-
tion, convergence rate, etc., may be further specified. In particular, Section B is concerned
with how to demonstrate the convergence properties of an observer. Other observer char-
acteristics and classification thereof, are discussed more thoroughly in Section One of
the main paths for observer design, namely via nonlinear coordinate transformations, is dis-
cussed in Section B4l Finally, the main purpose of Section B3 is to pinpoint the nontrivial
relationship between the concept of observability and observer existence for general nonlin-
ear systems. This is an important point to make, not the least because of the treacherous
similarities in the terminology.

3.1 Observer Definition

Consider the nonlinear control system

oF & = F(z,u) (system dynamics)
"1y = h(z,u) (system output)

with state x € X, control v € Y and output y € ). Here X', U{ and ) are smooth manifolds
of dimension n,p and m respectively. In the following, in addition to the measurements,
the output y is supposed to include known control inputs. For the dynamical system ¥, an
observer may be defined as follows.

Definition 3.1 (Observer). A dynamical system with state manifold Z, input manifold Y,
together with a mapping F (ZxY) — TZ is an observer for the system X, if there exists a
smooth mapping V : X — Z, such that the diagram shown in Figure 1l (the dashed arrow
excluded), commutes. The observer gives a full state reconstruction if there in addition is a
mapping ® : (£ xY) — X such that the full diagram in Figure[Z1 is commutative (cf. [67]
and [68]).

Here, U, denotes the tangent mapping, m is projection upon a Cartesian factor, while T
denotes the projection of the tangent bundle.

21
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L TZ
s N
X F F Z
i :TX\ (\Ifoﬁx,h) /:TZ
! X xU Zx)Y
@ |

Figure 3.1: Commutative diagram defining an observer.

According to Definition BT} the objective when designing a general observer, is to track
U(z), rather than x itself. Note also, that the same observer dynamics F, may allow several
different full state observer mappings, ®, and that in general a full state observer

.2 = Flzy)
Lz = 2(zy)
may not be put in the form & = =(z,y).

As a consequence of this definition, an observer has the following basic property.

Property 3.1. z(tg) = VU(z(to)) at some time instance to, yields z(t) = V(x(t)) for all
t > to.

Proposition 3.1. An observer has Property [Tl if and only if the diagram in Figure [Tl is
commutative.

Proof. Assume we have Property Bl i.e.,
2(t) = W(x(t)), Vt>to.
Then taking the derivative with respect to time, yields

ov ov

= —i=—F .

i= ot =5 (z,u)
Comparing this with the expression for f), we see that property Bl implies that

ov .
x
which is exactly what the commutativity of the diagram in Figure @) suggests.
In the other direction, assume that the diagram in Figure Bl commutes and that

2(tg) = ¥(x(tp)) for some tg € RT. Solving the differential equation governing z, we have

t

z(t) — z(to) = /t F(z,y)dr = /t g—idedT = [\I/(x(T))LO = U(x(t)) — 2(to),

the second and last equality following from the two assumptions made. O

Definition Bl thus provides a clear representation of Property Bl which is the minimal
requirement that an observer has to fulfill. In particular, this definition does not impose any
convergence requirements on the observer. This follows the line of thought in the pioneering
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work of Luenberger [69]. For practical purposes however, additional desired properties for
an observer, such as domain of attraction, convergence rate, etc., may be specified. This
topic is discussed more thoroughly in Section In particular, it is reasonable to require
the following additional property.

Property 3.2. As time proceeds, the trajectories z(t) and ¥(x(t)) converge.

This property, i.e., the convergence properties of an observer, may be demonstrated and
defined in different ways. The convergence issue will be discussed in more detail in Sec-
tion B where two approaches for showing convergence, namely Lyapunov-based methods
and contraction analysis, are presented.

3.2 Convergence Analysis

3.2.1 Lyapunov-based methods

Lyapunov stability theory, and in particular Lyapunov’s direct method, is a possible ap-
proach to determine the stability properties of a nonlinear system

w = f(t,w), teRY wew,

which may also represent controlled systems in closed loop form. As the subject is very well
documented in the literature (consult, e.g., [70-73]), the main emphasis here-within will be
on using the Lyapunov theorems for showing observer convergence.

If one is able to find a (locally) positive definite, decrescent, continuously differentiable
function, V (¢, w), whose total time derivative along the system dynamics, f,

oV IV

V= ot + awf(t,w)
can be shown to be (locally) negative definite, then (local) uniformly asymptotic stability of
the origin follows from Lyapunov theory (see, e.g., Theorem 4.9 in [71]). Notice that in the
case of time autonomous systems, the Lyapunov function may be taken as a time invariant
functional. This result, is a strong, sufficient condition for stability and as such, incorpo-
rates a certain degree of conservatism. Despite the existence of converse theorems [74,75],
the main limitation of the Lyapunov based methods are that they are non-constructive,
in the sense that they do not provide any systematic procedure for determining Lyapunov
functions. Although natural Lyapunov candidates may be provided by Lyapunov-like "en-
ergy" functions, the choice of V' is to a large extent a trial and error process that may be
practically impossible for systems of high order.

In the observer design context of ours, we are interested in Lyapunov functions V' (z, ¥(z))
such that
V(z,¥(z)) =0 <= 2z =V(x).

In local coordinates, the objective is to determine the stability of the error dynamics, i.e.,
we wish to examine if the estimation error decays to zero. The more general choice is to set
w(t) = z(t) — U (z(t)), and consequently, W = Z. For full-state observers however, another
possibility would be to consider the convergence of & = ®(z,y) to x in X—space instead,
i.e., setting w(t) = Z(t) — x(¢), and consequently, W = X. Because of its generality, we
shall concentrate on the former case.

With w(t) = z(t) — W(x(t)), the error dynamics becomes

wzé—g—ii:]:(z,y)—g—i]:(m,u)éf(t,w). (3.2)

v
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It is noteworthy that the commutativity of the diagram in Figure Bl makes the origin,
z(t) = W(x(t)), an equilibrium point of ([B2) (see also BI])). In general, error dynamics (B2
is nonlinear and is further a function of the true state, x, which: first of all is unknown to us,
and secondly is not a fixed quantity. These facts clarify the need of techniques beyond the
linear theory for analyzing the error dynamics ([B2). They also demonstrate the difficulty
in making any statements regarding the convergence properties of the observer without any
further specification of the functions involved.

3.2.2 Contraction Analysis

One way to determine the convergence properties of a dynamical system, such as the ob-
server dynamics

= F(z,9),

is to use contraction analysis [76]. As a concept on a smooth Riemannian manifold, Z,
convergence of two neighboring trajectories is defined with respect to a given metric tensor,
g. In essence, the dynamics F is said to be a strict contraction with respect to the metric
g, if for all inputs of o, y € ), the symmetric part of its covariant derivative is negative
definite. Since the Lie derivative of g with respect to the vector field F , denoted L zg, is
proportional to the symmetric part of the covariant derivative of F, contraction may be
characterized by negative definitiveness of £ zg.

To see this, let p, denote the geodesic curve at time ¢ between two neighboring trajecto-
ries, z1(+) and z2(-) (see Figure B.2). Let T}po denote the evolution of the geodesic curve,

po, under the dynamics F, at time ¢. Further, let 7 : [0,1] — Z be a parameterization of
the curve Y% po such that 7(0) = 21(t) and 7(1) = z2(t). We have

d 1 dr dr
< ds = S(Lr9) (5L, S0a
7/ " / ,,, 3ERE

so if £ zg is negative definite (£zg < 0) for every input y € ), then

22(t) 22(0)
/ ds £ inf ds < / ds < / ds £ inf ds,
Pt z1(t) T%po P0 21(0)

that is, the Riemannian distance between any two trajectories tends to zero as time proceeds
(cf. [76])-

Contraction solely implies that the Riemannian distance between neighboring trajecto-
ries tends to zero. In order to draw conclusions regarding observer convergence, one must
also verify that the observer dynamics contains the actual plant trajectory as a particular
solution. This issue is actually the essence of Property Bl In conjunction with contraction,
Property Bl automatically yields Property B2 i.e., observer convergence. In other words,
if the observer dynamics, F , is a strict contraction with respect to g and further turns the
diagram of Figure Bl commutative, then the observer is convergent.

Remark 3.1. Contraction, as described above, is a property of the control system on Z
alone. In particular, it does not involve neither the control input, nor output of the original
system, X.

'Which naturally coincide with the outputs of X.
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2’2(0)

Figure 3.2: The length of the geodesic curve p;, between two trajectories decreases if £zg <
0.

With this point of view, the control synthesis and observer design are decoupled processes
and do not interact. To set the stage for the concept of active observer design of Paper El
requiring the symmetric part of the covariant derivative of F to be negative definite for all
inputs, y € ), is an unnecessarily strong condition. As a convincing example, consider the
case when the output map of X, h : X x U4 — ), is not onto. What can be done in the
case when there are some y that do not turn F contractive? Let the collection of y for
which F is contractive, be denoted by V.. If the input to the original system, u(-), can be
chosen such that y(-) € )., then the convergence of the observer is secured. The term active
observer design refers to this integrated fashion of control synthesis and observer design (cf.
Paper[H). The idea is to design the exciting control, while bearing in mind the convergence
properties of the observer. This is an important issue since it is known that for nonlinear
systems in general, the so called separation principle does not hold. That is, separate design
of a stabilizing state feedback controller and a convergent observer, does not always result
in a stabilizing output feedback controller. For a counter—example, consult [77].

The assumption that the observer dynamics is contractive, is however very restrictive
and in many cases Property has to be shown by means of Lyapunov-based methods.

3.3 Observer Properties and Classification

The advantages of representing an observer as in Definition Bl accrue particularly in the
case of observer classification. This definition is minimalistic in the sense that it specifies
the minimal characteristics of an observer, namely that the observer dynamics contains the
actual plant trajectory as a particular solution. For practical purposes, additional prop-
erties may be further specified. This viewpoint, facilitates keeping the added properties
separated and thereby achieving a transparent classification scheme for observers. In this
section, a number of such properties are discussed. Moreover, some of the different observer
types occurring in the literature are classified and related to these properties. The material
presented in this section is of independent interest since observer nomenclature is not stan-
dardized and is to a large extend "author dependent". The list of observer properties and
definitions in this section, by no means cover all characteristics that could be associated
with observers. It rather provides the foundation for further elaboration and extensions.

As one of the key properties, convergence of observers has at least three aspects associ-
ated with it: the domain of attraction, the rate of convergence and its dependence on the
choice of system input. These are the first three properties to be discussed below.
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Domain of attraction:

A most natural question involves the extension of the domain of attraction, i.e., the set
of initial points for which the observer converges. This characteristic basically tells us
how far from the true state the initial estimation can be made without jeopardizing
the convergence properties of the observer. In other words, this property puts a
constraint on the distance between ¥(z(ty)) and z(to) in Z-space. There are at least
three different restrictions to be discussed, namely:

o Global domain of attraction: There is no restriction, i.e., the observer converges for
all z(to) € Z. Using the terminology of [76], having a global domain of attraction
means that Z is a region of contraction.

e Local domain of attraction: For all z(tg) € X, there is a ¢ > 0 such that the
observer is convergent for all z(tg) € B(V(z(to)),e). Here, B(¥(z(to)), ) denotes
the e-ball, centered at W (z(to)).

e Semi—global domain of attraction: This refers to the cases in which it is possible
to design observers that converge on every compact subset of Z. For instance,
if for all d > 0, one can possibly tune the observer design parameters so that
convergence is guaranteed for all z(tg) € B(¥(xz(to)),d).

Remark 3.2. Unless ¥(xz(to)) is a priori known, which is seldom the case, global
domain of attraction is the only fully implementable version listed above. Having
only a local domain of attraction, renders observer initialization practically a trial
and error procedure (since € is unknown and might potentially be very small). The
semi—global version of the domain of attraction property could be of interest, for
instance, when there are a priori known bounds on the systems domain of operation?
(in X). If compact, then by the smoothness (and hence continuity) of ¥, this also
bounds ¥(z(t9)) in Z.

Rate of convergence:

This property concerns the rate with which the estimation error decays to zero. As the
notion of "convergence rate" might be familiar to most readers, the most frequently
discussed ones are simply listed.

¢ Asymptotic convergence rate
e Exponential convergence rate

¢ Finite-time convergence

It is noteworthy that finite-time convergence is not possible to obtain with locally
Lipschitz vector fields. Some other issues related to the rate of convergence are to be
found in Definition and Remark

Input dependent convergence:

For forced nonlinear systems in general, convergence of the observer is an input de-
pendent property. As a particular example, which will be at the center of discussion
in Paper [E] consider the case of a mobile robot equipped with exteroceptive sensors.
For simplicity of discussion, it is assumed that the system is globally observable, i.e.,
for any two initial states, x1,x2 € X, there exist a control trajectory, u(-) € U, that
distinguishes the outputs, y1(-) = h(X (1, u(:)),u()) and y2(-) = h(X (2, u(:)), u(:))-

2The operation domain of a system is yet another observer property to be discussed later in this section.
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Here, X (z1,u(-)) denotes a solution of ¥ using the control input, u(-) with x; as the
initial condition. Despite this strong assumption, there might be control inputs for
which the observer does not converge. As in the example of a unicycle robot model,
the zero input corresponds to the mobile platform standing still and therefore not
collecting any new data. As the output remains constant and no new information
arrives to the observer, the estimation procedure can not proceed, hence observer
convergence is not possible.

With this in mind, it is possible to distinguish the following observer properties

(cf. [78)]).

o Uniform convergence: This most demanding version of this property requires con-
vergence of the observer for all control inputs, u € U.

o Semi—uniform convergence: A more moderate version is to require observer con-
vergence whenever the input is restricted to given compact subsets of U, for
instance, dictated by ways of norm restrictions. The bounding set is however
allowed to be arbitrarily large, possibly with the observer design parameters
varying accordingly.

o Non—uniform convergence: This refers to the case when there are control inputs
for which the observer does not converge.

Remark 3.3. The attentive reader might here discern the connection of input depen-
dent convergence with Remark Bl and the succeeding discussion on active observer

design (cf. Paper [E).

The two last characteristics to be discussed, involve different restrictions on the observer-
and system trajectories respectively.

Domain of operation of the observer:

Another distinguishable property of an observer, concerns whether or not the observer
state, z(t), is restricted to remain close to ¥(z(¢t)). This is an extremely important
concept, not the least for safety critical output feedback controllers. In such sys-
tems, special attention has to be paid to the "peaking phenomenon" of the estimation
error [79], i.e., the potentially large mismatch between ¥(z(t)) and z(t), and in ex-
tension, between the output feedback controllers, u(y(t), U(x(t))) and wu(y(¢), z(t)).
Similar restricted concepts have already been defined in the case of accessibility, con-
trollability, stabilizability and observability (see, e.g., [79,80] and [43] page 11).

The global case implies unrestricted observer trajectories, i.e., the mismatch between
z(t) and U(x(t)) may vary arbitrarily. An observer having semi—global domain of
operation, refers to the case when z(¢) can be made to stay in a chosen neighborhood
of ¥(z(t)). The semi-global version is of utmost practical interest, since it puts an
upper bound on the maximum estimation error. Finally, the most restricted version,
termed local, restricts the generated observer state, z(t), to stay in any prescribed
neighborhood of ¥(xz(t)). Here, we assume that the observer is initiated at a point
inside the given neighborhood. Thus it is possible to dictate the estimation accuracy
of an observer with a local domain of operation, which is a very strong requirement.

Domain of operation of the system:

Yet another characteristic worth mentioning, is the region of the state space in which
the system is operating. This issue involves whether or not we have restrictions on the
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unmeasured states of the system and exists in a global, semi—global and local version
(cf. [81]). If the state, z(t), may vary arbitrarily on the state space, X', without jeop-
ardizing the convergence properties of the observer, then the corresponding observer
is termed global. The semi-global version refers to those cases when it is possible to
design a convergent observer, once the unmeasured states are restricted to a given
compact subset of the state space. The size of this region is however allowed to be
made arbitrarily large, possibly with the observer design parameters varying accord-
ingly. Finally, the local version refers to those cases when it is possible to design an
observer that converges only if the unmeasured states are restricted to a neighborhood
of a given state, xg.

Remark 3.4. The intrinsic observer of Paper [[] serves as an illustrative example of
the importance of the system’s domain of operation in observer design and convergence
analysis.

From this discussion, it should be clear that the terminology for observers and observer
design is not a trivial matter. For instance, a "local observer" might refer to several distinct
properties. Therefore, one should always strive to adopt a descriptive nomenclature and
keep the properties and the spaces they live in separated. To this end, Table Bl collects
the properties listed in this section.

| Observer property | Restricted versions | Property space |
Domain of attraction Global, semi-global, local Z
Rate of convergence Asymp., Exp., Finite—time Zor X
Input dependent conv. Unif., semi—unif., non—unif. u
Observer’s domain of oper. | Global, semi—global, local Z
System’s domain of oper. Global, semi—global, local X

Table 3.1: By keeping the observer properties and their associated spaces separated, it is
possible to set up a transparent classification scheme and adopt a descriptive nomenclature.

We proceed by relating some of the observer types occurring in the literature to the
concepts and properties listed so far.

Definition 3.2 (Asymptotic, Exponential, and Finite-time Observer). An observer whose
estimation error has an asymptotic (exponential) rate of decay, is called an asymptotic (ex-
ponential) observer. Finite-time observers provide a correct estimation of ¥(x(t)) within
finite—-time.

Remark 3.5. Despite the fact that neither asymptotic, nor exponential observers are able
to reconstruct W(x(¢)) within finite—time, they are the most frequently existing observers
in the literature. One explanation of this might be that finite-time convergent observers
require non-smooth vector fields, F.

Definition 3.3 (Identity Observer). The special case when U equals the identity map and
Z = X, is often referred to as an identity observer.

Definition 3.4 (Smooth and Continuous Observers [81]). Referring to diagram [Z1, if ¥—1
is a smooth map (i.e., U is a diffeomorphism), the observer is referred to as a smooth
observer, while ¥~ being merely continuous (i.e., ¥ being a semi-diffeomorphism), yields
a continuous observer.
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A continuous observer might be of interest whenever the smooth exponential observer
falls short, which occurs exactly when the Taylor linearization of system ¥ is undetectable [82].
For an example, explicitly constructed to show the non-existence of a smooth observer and
point out the potential of continuous observers, consult [83].

Definition 3.5 (Reduced Order, Full Order and Expanded Order Observers [81,83]). These
three classes can be distinguished according to the dimension of Z, which defines the order of
the observer. An observer is termed reduced order if its order is less than n (the dimension
of X). It is called full order if it is of order n and the full-state estimate does not depend
directly on y, i.e., & = ®(z). Finally, an observer of order greater than n is called expanded
order.

Definition 3.6 (Uniform and Non—Uniform Observer [78]). An observer whose convergence
properties does not depend on the input to the original system, X, is called a uniform
observer. Else, it is termed non—uniform observer.

Remark 3.6. If one considers disturbances as unknown (unmeasured) inputs to the original
system, robust observers [84] may be seen to equal the concept of uniform observers.

3.4 Coordinate Transformations and Linear Error Dynamics

The problem of existence and synthesis of observers for linear systems is fully under-
stood [69]. It may then seem natural that for the design of observers for nonlinear systems,
significant amounts of research have been conducted with the aim of finding special coor-
dinate systems — but also conditions for the existence of them — in which one can adopt
techniques from linear systems theory. In fact, one of the main paths for observer design
for nonlinear systems, goes via nonlinear coordinate transformation. The idea is to turn the
original nonlinear system into some specific "observer form", utilizing, e.g., diffeomorphism
or immersion [85-91]. In these new coordinates, classical methods from linear systems
theory are employed to complete the observer design procedure.

In two seminal papers [86,87] — which treat the case of unforced single output and MIMO
systems respectively — the idea of using state transformations in order to turn the nonlinear
system into a linear one up to output injection was permanently established. In a first step,
the authors seek diffeomorphisms,

&=T(x) and g=Ts(y),

such that the original nonlinear system

R

|

with (A,C) an observable pair. System ¥ is an observable linear system up to output
injection which is known to admit Luenberger type of observers. Notice that both these
papers require the output map to be linear as well. The observer design procedure is then
completed in a second step by adopting a Luenberger style observer

is transformed into

= AT —g(y,u),
= (C7z,

< &Re

z{x T e g+ G- 0o
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where L is the constant observer gain. To see the main advantage with the proposed
transformation, one must have a look at the error dynamics;

%(z —¥)=2—2=Az—g(y,u)+ L —Cz) — Ai + g(y,u) = (A — LC)(z — &). (3.3)
Since (A, C) is an observable pair, pole placement can be used to obtain exponential con-
vergence (with arbitrary rate) for the linear error dynamics B3).

More recently, Kazantzis and Kravaris [92] have proposed to rather seek a diffeomor-
phism, & = T'(z), that transforms the original nonlinear system to a system having linear
dynamics up to output injection (the output map may however be nonlinear)

S j = Ai._g(yvu)
> { y = WIT\(3)

where the matrix A is Hurwitz and ¢(y, u) is locally analytic around the origin with ¢(0,0) =
0. It is then possible to propose a full-state observer for the original system, ¥, namely the
= Az—g(y,u)

dynamic system
I
(i

with the associated linear stable error dynamics

K[ W

d

—(2—2) = A(z — ).

e—8) = Az - )

This will serve as a smooth observer having exponential error decay. In terms of the original
set of coordinates, the following dynamic system

& = F(#,u) + L(#) [g(y, u) — g(h(2), )], (3.4)

with nonlinear gain

L@ = [ @)]

is a full-state observer for the original system, X.
These described approaches have some drawbacks.

e The structural requirements are extremely stringent so that large classes of nonlinear
systems are excluded. In particular, it is noteworthy that both ¥ and ¥ exclude the
class of non-uniformly observable systems.

e Finding the right state transformation may be difficult since it involves solving a
system of first-order partial differential equations. In order to overcome this and
make practical use of the described approaches, different approximation schemes may
be adopted. In [92] and [93]* approximation schemes based on series expansions are
proposed.

e The observer has only local properties, more specifically where the coordinate transfor-
mation is valid. Global statements require that the collection of local transformations
are consistent, i.e., form an atlas.

3Mind the important erratum to this paper [94].
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3.5 Observability and the Existence of Observers

The main purpose of this section is to pinpoint the nontrivial relationship between the
concept of observability and observer existence for general nonlinear systems. This is an
important point to make, not the least because of the treacherous similarities in the termi-
nology. By using two examples, it will be shown that for nonlinear systems in general, and
non-uniformly observable systems in particular, observability may not imply, nor is implied
by the existence of an observer. A more suitable concept from the observer design point of
view, is that of detectability [78,83]. This is in accordance with linear systems theory.

Example 3.1 (observability + observer). Consider

& = -+ uxd

. 2
> Ty = T+ T}

y = 11

It is easy to show that X; is (non-uniformly) observable by noting that ug(-) = 1 distin-
guishes all initial points. To see this, assume there are two initial states

T = [xll $12]T and Ty = [$21 $22]T such that

yo(;vl, t) = yo(ﬁg, t), vt > 0. (35)

Here yo(z;,t) denotes the output trajectory when the system is initiated at z;, ¢ = 1,2 and
driven by the input function ug(-) = 1. From B3) we immediately obtain x1; = x21, for
the special choice of ¢t = 0. Equation (B3H) also implies

go(x1,t) = go(z2,t) VE>0

which yields x12 = x99, for the special choice of ¢ = 0. Hence we conclude that z1 = x», i.e.,
uo(-) = 1 distinguishes all initial points. However, it has been shown in [95] (see also [83])
that there does not exist any smooth observer with asymptotically stable error dynamics
for X1, due to the positive eigenvalue associated with x5.

Example 3.2 (observability <= observer). Consider

x'l = Uu
w Ty = X1+ x%
2 T3 = —x3-+ To
y = 22

which is not observable since x3 is neither measured nor affects the dynamics of 1 or xs.
Still it can be shown by considering the error dynamics, that for proper choice of o and

R T = u+t aly — 2)
Yo @p = @1+yP+ By —d2)
£3 = _563 + Y,

acts as an input-independent observer for ¥. This is because the dynamics for x3 is stable
in itself, once the other two states have been driven to zero.

This concludes this part of the thesis. In the next section, the reader will be guided
through each of the six appended papers.






Reader’s Guide

This section offers a brief and descriptive summary of the six papers appended in this thesis.
Papers [Al and [Bl deal with different cooperative surveillance missions using multiple UGVs
and in particular focus on the minimum time and connectivity constrained formulations
which are treated within an optimization based framework. The subsequent two papers
(Papers [0 and D) consider different aspects of the online trajectory planning problem.
Finally, Papers [H and [H deal with observer design for mobile robotic and Euler-Lagrange
systems, respectively. Next, a short description of all these papers follows.

Paper [Ak Minimum Time Surveillance using Multiple Unmanned Ground Vehicles, coau-
thored with P. Ogren.

In Paper [Alan optimization based framework for dealing with cooperative surveillance
missions involving multiple UGVs is proposed. More precisely, this paper focuses
on the so called Minimum Time UGV Surveillance Problem (MTUSP). Informally,
MTUSP can be described as follows. Given a set of surveillance UGVs and an area
to be surveyed, find waypoint-paths for all UGVs such that every point of the area
is visible from a point on a waypoint-path and such that the time for executing the
search in parallel is minimized. Here, the field of view of the sensors are assumed to
have limited coverage range and be occluded by the obstacles.

In the case when maximum sensor range is the only limitation on the sensors’ field
of view - which is relevant in application domains such as vacuum cleaning and dem-
ining [96,97] - many papers study the minimum time coverage problem. However,
when occlusion is also taken into account, as in the MTUSP formulation, we have
found no paper addressing the minimum time objective. The main contribution of
this paper is to formulate such a problem, show N ’P-hardness of it and then propose
decomposition techniques that allow us to find an approximative solution efficiently
in an algorithmic manner.

The MTUSP solution method presented in this paper has been implemented both in
MATLAB and in C**. The later implementation runs as a part of a demonstration
testbed developed within the Technologies for Autonomous and Intelligent Systems
(TAIS) project! and has been depicted in Figure The performance of the pro-
posed solution algorithm will be further evaluated in real-world experiments that are
to be carried out in mid April 2009 in cooperation with Rotundus AB, the manufac-
turer of the surveillance UGV Groundbot (see Figure [AT]).

Paper [Al is based on:
A1l: D.A. Anisi, P. Ogren and X. Hu, Cooperative Minimum Time Surveillance with

Multiple Ground Vehicles, Submitted to the IEEE Transactions on Automatic
Control, Jan., 2009.

1Project 297316-LB704859.
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A2: D.A. Anisi, P. Ogren and X. Hu, Cooperative Surveillance Missions with Multiple
UGVs, IEEE Conference on Decision and Control (CDC), Cancun, Mexico, Dec.,
2008.

A3: D.A. Anisi and P. Ogren, Minimum Time Multi-UGV Surveillance, In Optimiza-
tion and Cooperative Control Strategies, Lecture Notes in Control and Informa-
tion Sciences, Springer-Verlag, 2008.

A4: J. Thunberg, D.A. Anisi and P. Ogren, A Comparative Study of Task Assignment
and Path Planning Methods for Multi-UGV missions, In Optimization and Co-
operative Control Strategies, Lecture Notes in Control and Information Sciences,
Springer-Verlag, 2008.

A5: D.A. Anisi and J. Thunberg Survey of Patrolling Algorithms for Surveillance
UG Vs, Scientific Report, Swedish Defence Research Agency (FOI), FOI-R-2266—
SE, Apr., 2007.

Paper Connectivity Constrained Surveillance using Multiple Unmanned Ground Ve-

hicles, coauthored with P. Ogren and X. Hu.

The Connectivity Constrained UGV Surveillance Problem (CUSP) considered in Pa-
per [Bl can be described as follows. Given a set of surveillance UGVs and a user defined
area to be covered, find waypoint-paths for all UGVs such that every point of the area
can be seen from a point on a waypoint-path, the induced information graph is kept
recurrently connected at the time instants when the UGVs perform the surveillance
mission, and the time for cooperatively executing the search in parallel is minimized.
Hence, the CUSP formulation is an extension of the MTUSP considered in Paper [Al
where connectivity constraints where not taken into account.

In this formulation, the field of view of the onboard sensors are assumed to be occluded
by the obstacles and limited by a maximal sensor range. Also, connectivity constraints
of both line-of-sight and limited sensor range types are considered.

Paper [Bl provides a formal definition of CUSP, shows that this optimization problem
is N"P-hard and subsequently, presents decomposition techniques that allow us to find
an approximative solution efficiently in an algorithmic manner. In this context, we
also introduce and utilize the notion of recurrent connectivity of a graph, which is a
significantly more flexible connectivity constraint than, e.g., the 1-hop connectivity
constraint. The main motivation for introducing this weaker notion of connectivity is
security and surveillance applications where the sentry vehicles may have to split tem-
porary in order to complete the given mission efficiently but are required to establish
contact recurrently in order to exchange information or to make sure that all units are
intact and well-functioning. From a theoretical standpoint, recurrent connectivity is
shown to be sufficient for exponential convergence of consensus filters for the collected
sensor data.

Paper [Bis based on:

B1: D.A. Anisi, P. Ogren and X. Hu, Cooperative Minimum Time Surveillance with
Multiple Ground Vehicles, Submitted to the IEEE Transactions on Automatic
Control, Jan., 2009.

B2: D.A. Anisi, P. Ogren and X. Hu, Cooperative Surveillance Missions with Multiple
UGVs, IEEE Conference on Decision and Control (CDC), Cancun, Mexico, Dec.,
2008.
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B3: D.A. Anisi, P. Ogren and X. Hu, Communication Constrained Multi-UGV Surveil-
lance, IFAC World Congress, Seoul, Korea, July, 2008.

B4: D.A. Anisi, T. Lindskog and P. Ogren, Algorithms for the Connectivity Con-
strained UGV Surveillance Problem, European Control Conference (ECC), Bu-
dapest, Hungary, Aug., 2009.

Paper Online Trajectory Planning fo?j Aerial Vehicles: Safety and Task Completion,
coauthored with J. Robinson and P. Ogren.

In this paper, online trajectory planning for aerial vehicles subject to simultaneous
kinematic and dynamic constraints is considered. The main objective is to use infor-
mation about terrain and enemy threats to fly low and avoid radar exposure on the
way to a given target. An underlying assumption however, is that due to imperfect
information, the kinematic constraints, as well as the location of the target and pos-
sible threats, might change during the course of flight. Hence, the trajectory planner
should be able to incorporate information updates. Also, assuming that the problem
originates from a complex, real-world application, the existence of analytical solutions
is disregarded; thus seeking fast computational algorithms for approximately solving
the trajectory optimization problem.

In order to cope with the real-time objectives, the high-level framework utilized in
this work combines the well known approach of Receding Horizon Control (RHC)
with a sporadically updated terminal cost that captures the global characteristics
of the environment and mission objectives. The terminal cost is calculated off-line
and passed to the online receding horizon planner. It should however be mentioned
that the possibility of updating the "off-line" computed terminal cost should not be
overlooked. As pointed out in [98], the term "off-line" is rather to be interpreted as,
at a much slower sampling rate than the trajectory planning loop, i.e., in the order
of tens of seconds. As new information about the environment or mission objectives
is gathered when the mission unfolds, it can be processed and fed back regularly to
the online planner through an updated terminal cost, as discussed in [99].

An important issue with RHC is to make sure that the greedy, short term optimization
does not lead to long term problems. In the vehicle control domain - since the terminal
cost is most often calculated from a graph representation of the environment and as
such neglects the vehicle’s dynamic constraints - this issue often boils down to two
things: not getting into situations where a collision is unavoidable, and making sure
that the destination is actually reached.

These issues have been the leitmotivs of Paper[Cl Its main contributions are two-fold;
by augmenting a so called safety maneuver at the end of the planned trajectory, this
paper extends previous results by addressing provable safety properties in a 3D setting.
In addition, assuming initial feasibility and existence of a maximal terrain inclination,
the planning method presented is shown to have finite time task completion. This
is due to a combination of ideas which include a novel safety maneuver combined
with a task completing trajectory and a conditional plan-changing strategy, where,
starting from a feasible solution, a new plan for the remaining part of the mission is
only accepted if it gives an incremental decrease to the terminal cost. As a subsidiary
consequence, it is noteworthy that introducing the safety maneuver, also makes it
possible to cope with hard real-time systems as well as various optimization routine
failures including non—convergence and abnormal termination.

Paper [ is based on:
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C1: D.A. Anisi, J. Robinson and P. Ogren, Online Trajectory Planning for Aerial
Vehicles: Safety and Task Completion, Submitted to the ATAA Journal of Guid-
ance, Control, and Dynamics, Mar., 2009.

C2: D.A. Anisi, P. Ogren and J. Robinson, Safe Receding Horizon Control of an
Aerial Vehicle, IEEE Conference on Decision and Control, San Diego, CA, Dec.,
2006.

C3: D.A. Anisi, J. Robinson and P. Ogren, Online Trajectory Planning for Aerial
Vehicles: a Safe Approach with Guaranteed Task Completion, ATAA Guidance,
Navigation and Control Conference and Exhibit, Keystone, Colorado, Aug., 2006.

C4: D.A. Anisi, J. Hamberg and X. Hu, Nearly Time-Optimal Paths for a Ground
Vehicle, Journal of Control Theory and Applications, Nov., 2003.

Paper Adaptive Node Distribution for Online Trajectory Planning.

For the design of a computational algorithm for solving a trajectory optimization
problem — like the one considered in Paper [(l — the infinite-dimensional problem
of choosing a control function in a given space, has to be transcribed into a finite
dimensional parameter selection problem, or a nonlinear mathematical programming
problem (NLP).

Direct transcription methods are traditionally based on a priori partition of the time
interval into a prescribed number of subintervals whose endpoints are called nodes.
Generally, trajectory optimization run-times are critically depending on the number
of variables in the NLP. These in turn, are proportional to the number of nodes in
the temporal discretization. Therefore, it is important to keep the number of nodes
as low as possible when aiming at constructing computationally efficient methods for
trajectory optimization.

It is a well-established fact in numerical analysis, that a proper distribution of grid
points is crucial for both the accuracy of the approximating solution, and the compu-
tational effort (see, e.g., [39,65]). The basic idea is that by concentrating the nodes
and hence computational effort in those parts of the grid that require most attention,
e.g., areas with sharp non-linearities and large solution variations, it becomes possible
to gain accuracy whilst retaining computational efficiency.

Inspired by this, Paper [Dl advocates that in any computationally efficient method for
trajectory optimization, node distribution should be a part of the optimization pro-
cess. More precisely, once the number of nodes in the temporal discretization has been
decided (depending on, e.g., computational resources), the question of optimal node
distribution is raised. Based on two existing frameworks for adaptive grid generation,
namely equidistribution principle and functional minimization, node distribution is
formulated as a constrained optimization problem, which is to be augmented with the
underlying NLP. Although adaptive grid methods - which mainly concern node distri-
bution in the spatial domain - have been an active field for the last couple of decades,
to the best of the author’s knowledge, utilizing them for adaptive node distribution
(in the temporal domain) and online trajectory optimization has not been considered
elsewhere. The benefits of utilizing the suggested adaptive node distribution method
for online trajectory optimization, are illustrated by a missile guidance example.

This paper is based on:
D1: D.A. Anisi, Adaptive Node Distribution for Online Trajectory Planning, Congress

of the International Council of the Aeronautical Sciences (ICAS), Hamburg, Ger-
many, Sep., 2006.
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D2: D.A. Anisi, Online Trajectory Planning Using Adaptive Temporal Discretization,
Swedish Workshop on Autonomous Robotics (SWAR), Stockholm, Sweden, Sep.,
2005.

Paper [Et Nonlinear Observability and Active Observers for Mobile Robotic Systems, coau-
thored with X. Hu.

Feedback control design techniques require knowledge about at least some parts of
the state vector. If all the state variables necessary for the control system can not be
directly measured, which is a typical situation in complex systems, attention must be
directed towards obtaining an estimate of the unknown state variables. Most current
methodologies for observer design, such as observers with linearizable error dynam-
ics [86,87,92] and high gain observers [100,101], lead to the design of an exponential
observer. As a necessary condition for the existence of a smooth exponential observer,
the linearized pair must be detectable [82]. In fact, most of the existing nonlinear ob-
server design methods are only applicable to uniformly observable nonlinear systems.
Study for observer design of non-uniformly observable systems is still lacking, except
for bilinear systems. This is witnessed in [102], where it is pointed out that one of the
key questions in nonlinear control is "how to design a nonlinear observer for nonlinear
systems whose linearization is neither observable nor detectable".

An important class of non-uniformly observable systems comes from applications in
mobile robotics. A mobile robot typically operates in an environment (work-space)
with obstacles, and is equipped with exteroceptive sensors to aid localization. For
such systems, due to environmental restrictions and the way the sensors function, the
exciting control has to be chosen in a deliberate manner, i.e., an active observer has
to be designed.

Paper [El considers the problem of active observer design for mobile robotic systems and
proposes an alternative design methodology. Moreover, it extends the observability
concept to the field of mobile robotics by proposing a new concept called small-time
observability.

The main ingredients of the proposed methodology include:

e The set of feasible configurations

o The set of output flow equivalent states

In this paper, it is shown that the inter-relation between these two sets may serve
as the basis for design of active observers. Namely, the main theoretical result states
that if the exciting control is chosen such that the intersection of the two sets is a
singleton, then the system is small-time observable.

In order to give a conceptually clear description of the main ingredients and steps
required in the construction, a design study is presented. There-within, an active
observer is designed for a unicycle robot model, equipped with a set of range-measuring
sensors. Finally, by means of Lyapunov’s direct method, it is shown that the designed
observer has locally bounded error and that this bound can be made arbitrary small
by tuning the observer gains.

This paper is based on:

E1: D.A. Anisi and X. Hu, Nonlinear Observability and Active Observers for Mobile
Robotic Systems, Submitted to Automatica, Jan., 2009.
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E2: D.A. Anisi and X. Hu, Observability and Active Observers for Mobile Robotic
Systems, International Symposium on Mathematical Theory of Networks and
Systems (MTNS), Kyoto, Japan, Jul., 2006.

Paper [Ft Riemannian Observers for Euler-Lagrange Systems, coauthored with J. Ham-
berg.

In the last paper of this thesis, a geometrically intrinsic observer for a class of nonlin-
ear systems is defined and analyzed. The subclass considered is that of Euler-Lagrange
systems, where the output of the system is assumed to be the generalized position
and force, and the goal is to reconstruct the generalized velocities. An often prac-
ticed solution to the problem of reconstructing the velocity variables is to numerically
differentiate the known position measurements. This approach however, fails to per-
form for high and fast varying velocities, but naturally also when noise has made the
position measurements havoc.

It is known that the Euler-Lagrange equations are intrinsic and may be written in a
coordinate-free way (see, e.g., [103]). It is then natural to keep this coordinate inde-
pendence in the observer design as well. The Riemannian geometric point of view has
influenced part of control theory, e.g., optimal control and control design. However,
the impact on observer design, has been modest. Suppressing unnecessary coordinates
in the observer design has several prominent features. Beside the obvious advantage of
having one universal observer for all coordinate systems, the minimum quantities for
defining an observer become evident. These issues are two of the principal interests
of the work presented in this paper.

The presented observer is a generalization of the one proposed by Aghannan and Rou-
chon [104]. There, the authors successfully adopt contraction analysis [76], to address
convergence of an intrinsic observer for Euler-Lagrange systems with position mea-
surements. In this paper, their contractivity result is reproduced and complemented
by a proof that the region of contractivity is infinitely thin. In addition, the results
of [104] are extended by using Lyapunov theory to show convergence in the constant
curvature case, whenever we have a priori given bounds on the generalized velocities.
In the case of physical (e.g., mechanical or electrical) Euler-Lagrange systems, this
assumption is a realistic one.

Finally, the convergence properties of the observer are illustrated by an example where
the configuration manifold is the three-dimensional sphere, S3.

A more compressed version of this paper has been previously published as
F1: D.A. Anisi and J. Hamberg, Riemannian Observers for Euler-Lagrange Systems,
IFAC World Congress, Prague, Czech Republic, July 2005.

4.1 Remark on Notation

In the six independent papers that follow, the notation is introduced separately in each
paper. The reader is urged to mind notational collision.



Main Contributions and Limitations

The main contributions of this thesis are:

_I_

+

Papers [A] and [Bl present an optimization based framework for solving various multi-
UGYV surveillance missions. In particular, both the minimum time- and connectivity
constrained UGV surveillance problems are formulated, their AP-hardness are shown
and decomposition techniques are presented that allow us to find an approximative
solution efficiently in an algorithmic manner.

The concept of a mazimal convex cover is introduced and utilized in Papers [Al and
This is a generalization of a convex partitioning and enables improved minimum time
solutions.

Paper [Bl also introduces the notion of recurrent connectivity of a graph, which is
further shown to be sufficient for convergence of consensus filters for the collected
sensor data.

Paper [0 extends previous results regarding Receding Horizon Control (RHC) of au-
tonomous vehicles, by addressing safety and task completion properties in a 3D setting.

Paper [D presents an adaptive node distribution scheme for online trajectory planning.

A concise and conceptually clear definition of an observer is given. This definition
underlies the results of Paper [E] and [Fl

Based on this definition, several distinguished observer properties are listed and a
classification scheme for observers is proposed.

Paper [E proposes an alternative methodology for designing active observers for mobile
robotic systems.

Paper [El also proposes a new observability concept called small-time observability and
provides sufficient condition for it.

Paper [H defines and analyzes a geometrically intrinsic observer for Euler-Lagrange
systems with position measurements.

The main limitations of the results of this thesis are:

— The performance of the solution algorithms proposed in Papers [Al and Bl have to

be further evaluated, both in real-world experiments' and in comparison with the
globally optimal solutions.

1Real-world experiments are to be conducted in mid April 2009 in cooperation with Rotundus AB, the
manufacturer of the surveillance UGV Groundbot (see Figure [A]).
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— Papers [Al and [Bl could also be extended to recognize the presence of uncertainty
more explicitly. This could for instance be handled within a stochastic or robust
optimization framework.

— The main results of Paper [ and [0 should be interweaved. That is, investigation
should be pursued about the possibility of increasing the accuracy of the safe trajectory
planner of Paper [O by using the adaptive node distribution scheme proposed in
Paper

— In Paper [E] the important question of the relation between the given environmental
map and the global convergence properties of the proposed observer, should be more
extensively studied.

- Using the approach of Paper [H on more general spaces is prohibitive. Approximation
schemes are called for.

— The observer of Paper [ should be combined with an intrinsic formulation of state-
feedback control. This idea has been elaborated upon in [105,106] in the special case
when the manifold is a Lie group and the kinetic energy is left invariant.

5.1 Work Division

Regarding Papers [Al and [Bl the problem formulations and the proposed decomposition
techniques for solving them efficiently have been developed in close cooperation with Petter
Ogren. The subsequent three papers are mainly due to the first author. The coauthors
have here provided invaluable inputs by pointing out unclear arguments and suggesting
improvements. The lion’s share of Paper [His profoundly based on the arsenal of differential
geometric tools of Johan Hamberg. The first author made contributions mostly in the
introductory part, the formulation of the given proofs and the section on Euler-Lagrange
systems. He also served as a critical reviewer of the extensive index gymnastics.
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Abstract

This work addresses the problem of cooperative surveillance using Unmanned
Ground Vehicles (UGVs) such that a user defined area is covered by the UGVs’ sensors
in minimum time. Here, the field of view of the onboard sensors are assumed to be
occluded by the obstacles and limited by maximal sensor range. We first formulate the
problem, and show that it is in fact A/P-hard. We then propose a solution algorithm
that decomposes the problem into three subproblems. The first is to find a maximal
convex covering the search area. Most results on static coverage use disjoint partitions
of the search area, e.g., triangulation, to convert the continuous sensor positioning
problem into a discrete one. However, by a simple example, we show that a highly
overlapping set of maximal convex sets is better suited for minimum time coverage.
The second subproblem is the combinatorial assignment and ordering of the sets in the
cover. Since the Tabu search algorithm is known to perform well on various routing
problems, we use it as a part of our proposed solution. Finally, the third subprob-
lem utilizes a particular shortest path sub-routine in order to find the vehicle paths,
and calculate the overall objective function used in the Tabu search. The proposed
algorithm is illustrated by a number of simulation examples.

Keywords: Surveillance Mission, Minimum-Time Surveillance, Unmanned Ground
Vehicles, Combinatorial Optimization

A.1 Introduction

URVEILLANCE is an application area that has received an increasing amount of attention
Sover the last decade. In civilian as well as military applications, automated solutions
ranging from security cameras to surveillance UGVs are used in increasing numbers. It
is therefore not surprising that the research area of automated positioning and control of
surveillance sensors is also active and growing. In this paper we investigate how small scale
UGVs, such as the one depicted in Figure [AJ] can be used in surveillance and security
applications.

For the purpose of this paper, we divide the rich set of work in this field into the following
three categories: First moving sensor platforms where the main limitation on field of view
is the physical sensor range. Applications where such a formulation is reasonable include

49
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demining, vacuum cleaning and UAV-search. The second category consists of problems
dealing with positioning of static sensors where occluding objects and walls present the
main limitation on field of view. Such formulations are found in the so called Art Gallery
Problems, where the number of guards required to monitor a building is to be minimized.
The third category consists of problems where moving sensors are to cover an area where
again, occluding objects and walls present the main limitation of field of view. This last
category includes applications such as pursuit-evasion games or exploration and mapping,
in urban or indoor environments. We will now discuss each of these categories in more
detail.

Figure A.1: Within the TAIS project, close cooperation exists with Rotundus AB, the
manufacturers of the Surveillance UGV Groundbot, depicted above, which will be used in
real-world experiments in mid April, 2009.

In the first category, where sensor range is the main limitation on the extension of the
visible area, we find problems such as vacuum cleaning and demining, [1,2], general cover-
age [3-5], multi robot coverage [6] and some robotic security applications [7]. Furthermore,
a number of UAV surveillance papers, such as [8-10] fall into this category. The last set
of papers also consider the combined problems of ordering a set of surveillance areas, and
planning the search sweep of each individual area. The pursuit-evasion problem, where a
number of pursuers try to find an evader is sometimes also formulated in this way [11].

In the second category, the field of view of stationary sensors is limited by occluding
objects instead of physical sensor range. This corresponds to indoor or urban environments,
where the distance between, e.g., walls, is in general smaller than the range of the sensor,
e.g., a camera or a laser scanner. A large group of results in this category comes from
combinatorial geometry, and addresses Art Gallery Problems, see e.g., [12,13] and the
excellent survey in [14]. This work has then been built upon in [15] where a feedback
solution to the guard positioning was proposed.

In the third category, where the field of view of moving guards is mainly limited by
occluding walls and other objects, we also find results building on the Art Gallery work. In
an indoor environment, the pursuit-evasion problem can be solved with a guarantee that
the evader will be caught. Such results are found in [16,17]. Some of this work also deals
with the situation where the area is unknown. These problems are sometimes referred to
as exploration and mapping, and examples include [18,19].

Some papers address coverage problems that do not fall into one of the above categories.
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Examples include [20], where the mean squared distance from a sensor to a random event
is minimized, and [21], where both sensor range and occlusions are incorporated into a
combined planning of both UAV and sensor movements.

In the first category, many papers study the problem of covering an area in minimum
time. However, when occlusions also limits the field of view, as in the third category, we
have found no paper addressing the minimum time coverage problem. The main contri-
bution of this paper is to formulate such a problem, show NP-hardness of it and propose
decomposition techniques that allow us to find approximative solutions efficiently in an al-
gorithmic manner. In particular, the proposed decomposition method use the concept of a
mazimal convex cover. A convex cover is a generalization of a convex partitioning, a well
known tool for addressing surveillance problems [12]. If the free space to be surveyed is
partitioned into convex sets it is enough to visit these sets to survey the whole area. When
using a maximal overlapping convex cover instead of a convex partition, we get larger sets,
enabling more freedom in the construction of waypoint-paths visiting them, which in turn
results in shorter waypoint-paths (see Example [A-1] and Remark [A-7)).

The organization of this paper is as follows. In Section some concepts and re-
sults from combinatorial geometry and multi vehicle routing problems are given. Then,
in Section [AZ3] we state our problem and propose a solution in Section [AZ4l Simulations
illustrating the approach are presented in Section [AAl Finally, the paper is concluded in
Section

A.2 Preliminaries

This paper assumes a previous knowledge of some basic concepts in combinatorial geometry
and combinatorial optimization. In particular the so called art gallery problems [12-14] and
the multiple traveling salesman problem [22,23] are at principal focus and will be discussed
below.

Combinatorial Geometry: Art Gallery Problems

In this section we closely follow Urrutia [14], but add the sensor range R into some of the
definitions.

The areas to be searched in this paper are all going to be so called orthogonal polygons
with holes (obstacles), thus we denote them A, for area. The orthogonality property is how-
ever only important for the maximal convex cover subproblem considered in Section [AZ1l
It should be noted that the rest of the proposed solution algorithm is not limited to the
orthogonal case, but can handle any general polygon-with-holes type of environment.

Definition A.1 (Orthogonal polygons with holes). A polygon @ in the plane is enclosed
by an ordered sequence of points qi,...,q, € R%, n > 3, called vertices of Q together with
the line segments q; to q;+1 and q, to q1, called edges. In the following we assume that none
of these edges intersect. A polygon is called orthogonal if adjacent edges are orthogonal.
Given an orthogonal polygon Q) and a set of h disjoint polygons Q1,. .., Qp, that are likewise
orthogonal and contained in Q, we call the set A = Q\{Q1U...UQ} an orthogonal polygon
with A holes.

It is now time to state an important result from combinatorial geometry:

Theorem A.1 (Guarding polygons with holes). |“t| point guards are always sufficient
and occasionally necessary to guard a polygonal art gallery with h holes and a total number
of v vertices.
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(a) An orthogonal polygon with holes (Def- (b) Convex Cover of the polygon. No-
inition [AT)) tice that this cover is not maximal (Defi-

nition [AZ3)
Figure A.2:

The constructive proof of this result can be found in [12,13]. The main idea of the proof
is to partition the area A into a set of triangles and note that if there is a guard inside each
triangle, then all of that triangle is visible, and hence all of A is guarded. This observation
obviously holds for any convex set with diameter less than the maximal sensor range, R.
The following definitions and lemma generalizes this argument.

Definition A.2 (Guardiance). Given two points p and q in A we say that p is visible from
q if the line segment joining p and q is contained in A

ap+(l—a)ge A, Yae[0 1]
and the distance between them is not greater than the sensor range,
lp—all <R

A set of points H = {hy,...,hi} C A guards A if for all p € A there exists h; € H such
that p is visible from h;.

Definition A.3 (Maximal convex cover). A convex cover of A is a set of conver sets

C ={c¢;} such that |c;| < R and A C U;¢;. Here, |¢;| = sup dist(a,b) denotes the diameter
a,bec;

of the set ¢;. We define a maximal convez cover of A to be a convex cover C' = {¢;} of A,

such that for all i, there is no convex set s C A such that |s| < R and s D ¢;.

Definition A.4 (Visiting waypoint-path). A waypoint-path P is an ordered set of points
P =(p1,...,pn) € RZ*"™. Any convex cover C is said to be visited by the waypoint-path P
if Ve, € CEij eP: Pj € C;.

Lemma A.1. If there exists a convex cover C of A such that the waypoint-path P wvisits C,
then P guards A

Proof. Since P visits C, and every set ¢; in C' is convex with |¢;| < R, P guards every
set ¢;. Furthermore, since A C U;¢;, P guards A. O
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Combinatorial Optimization: Multiple Traveling Salesmen Problem

Following [22], the Multiple Traveling Salesmen Problem (MTSP) can be stated as follows.
Given a set of cities and the inter-city distances, let there be N salesmen located at given
depot nodes. Then the MTSP consists of finding at most N tours, who all start and finish
at given depots, such that each city is visited exactly once and the total cost of visiting all
cities is minimized.

The MTSP can be considered as a relaxation of the closely related Vehicle Routing
Problem (VRP), with the capacity restrictions removed [24,25]. This means that all the
formulations and solution methods proposed for the VRP are also valid and applicable to
the MTSP by assigning sufficiently large capacities to the salesmen (vehicles). It is a well-
known fact that the MTSP and the closely related VRP are N'P-hard, and thus represent
optimization problems that may be very hard to solve to optimality, see, e.g., [22,24]. Since
it has been noted in [24-26] that Tabu search (TS) is an efficient heuristic for a wide range
of routing problems, it is reasonable to assume that TS is a good choice for the MTUSP
as well and consequently, will be a part of our solution method. Briefly described, TS is
a metaheuristic optimization method than can escape local minimas by classifying certain
search directions as tabu.

A.3 Problem Formulation

In this section we first informally state the Minimum Time UGV Surveillance Problem
(MTUSP) and then show that it is N"P-hard.

Informally, the problem we are studying is the following: Given a set of surveillance
UGYVs and a user defined area to be surveyed, find waypoint-paths such that every point
of the area can be seen from a point on a waypoint-path and such that the time for coop-
eratively executing the search in parallel is minimized. As stated earlier, the field of view
of the onboard sensors are here assumed to be occluded by the obstacles and limited by a
maximal sensor range.

Problem A.1 (Minimum Time UGV Surveillance Problem (MTUSP)). Given N UGVs
and an orthogonal polyhedral area A, find a set of N waypoint-paths P = (P',..., PN) that
solve the following optimization problem

nifl
min max Z lp% — ol l
P ieZX j=1 ’ Uy

such that U;P® guards A,

where P' = (pi,....pl )i € Z ={1,... N}, and || - || denotes the shortest obstacle free
distance. The start depots, denoted by pi, are given while the finish depots, p; , may be
either free or given.

An example solution to a MTUSP can be found in Figure A3

Remark A.1 (Sensor field of view). In the problem statement above we demand that each
point in A is visible from some point in P. This is reasonable in the case of omni-directional
sensors. It is however also relevant in the case of cameras mounted on pan-tilt units. In
these cases the time right before and after passing pé must be used to cover the areas visible
from pz If necessary, the UGVs will have to slow down to facilitate the sensor coverage. A
similar argument can be made for the case when the sensor is one or more laser scanners.
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Figure A.3: An approximate solution to the MTUSP involving two UGVs. Note that all
the obstacle free area can be seen from some point on the UGV waypoint-paths. Details on
this and other simulations can be found in Section

Remark A.2 (Variations). Throughout this paper we are focusing on the minimum time
coverage problem. However, other closely related problems can also be addressed using
the same approach. For instance when surveillance of some particular region has higher
priority, or when battery power is a scarce resource and the user wishes to minimize the
overall distance traveled by the UGVs. A third option is to make the UGVs avoid high
threat areas. All these variations can be incorporated into the solution algorithm presented
below by simply varying the considered objective function and edge costs.

Remark A.3 (Way-point following). In this problem formulation, it is assumed that there
exists a low level controller for each UGV capable of following the generated waypoint-path
with bounded error.

We end this section with showing that the problem defined above is N'P-hard.
Proposition A.1. Problem [A7 (MTUSP) is N'P-hard.

Proof. The proof will built upon a polynomial reduction from an arbitrary instance of a
well-known A/P-hard problem, namely the Euclidean-TSP (ETSP)! to a special instance of
MTUSP2.

Given an ETSP instance, (n, [d;;]), where n is the number of cities to be visited and [d;;]
denotes the inter-city distances, we are free to choose the following parts of Problem [AT]
(MTUSP) such that the achieved optimal solution corresponds to that of the given ETSP.

The number of UGVs, N
The start and finish depots for all UGVs, pi,pt . .i € Z3
The obstacle configuration

The area to be surveyed, A

ov R W =

The maximal sensor range, R.

IThe ETSP is a special case of MTSP discussed in Section A9 with only one salesmen and the inter-city
distances fulfilling the triangle inequality

dijgdik-i-dkj, V’i7j7k2€{l,...,n}.

2Consult [23,27] to read more about showing A“P-hardness through reduction.



MiINIMUM TIME UGV SURVEILLANCE 55

Regarding the number of UGVs, N = 1 is a natural selection. In order to achieve a tour for
this single UGV, we may locate the start and finish depot, pi, p. 41 at an arbitrary city cite,
as long as they are set equal. Further, an obstacle-free environment is chosen and the area
A is taken as the union of isolated points located at the city cites. Finally, we set R = 0.
Due to these choices, the area A is fully guarded if and only if the UGV visits all the
city locations and since the distances are preserved, the optimal solution of this specially
designed instance of the MTUSP will coincide with the optimal solution of the given ETSP.
This completes the proof. O

Knowing that MTUSP is A'P-hard, we can not hope to solve all problem instances to
optimality in reasonable time but must adopt heuristic solution methods. The comparative
runs presented in Figure and Table ATl serve as a testimony of this. In fact, the more
comprehensive comparative study [26] shows that for similar class of problems, finding
globally optimal solutions (by using an exact Mixed Integer Linear Programming (MILP)
formulation) is not a viable approach for larger problem instances.

A.4 Proposed Solution

In this section we will propose a solution to the MTUSP described above. The solution
encompasses three subproblems, as illustrated in Figure A4l In the first subproblem, the

Find a maximal convex cover

Assign and order the convex sets using Tabu Search

Find the paths by solving Shortest Path Problems

Figure A.4: The proposed solution relies on decomposing the problem into three subprob-
lems.

computationally intractable problem of finding the minimum time waypoint-paths that
enable complete regional surveillance, is turned into a finite dimensional combinatorial op-
timization problem. This is achieved by finding a mazimal convex cover of A, as defined in
Section In the second subproblem, the order in which to visit the sets in the cover is
determined using Tabu search (TS). The third subproblem, which is called as a subroutine
of the second one to evaluate the objective function in the TS, involves a shortest path
problem on a graph, constructed from the given visitation order.
Formally we state the algorithm below.

Algorithm A.1 (Proposed solution for MTUSP). The algorithm consists of the following
two steps where the second step involves the iterative solution of two subproblems:

1. Create a maximal convex cover C = {c1,...,cp} of A in accordance with Algo-
rithm A2
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2. Solve the following combined assignment and ordering problem using TS:

™

min F(7) = ozmlaxfi(w) + (1 - )X fi(m), (A1)

where 7 is a permutation of Z, N> representing the assignment/ordering of the M
convex sets to the N vehicles (see Examples ATl and B2), « € [0 1], and f;(7) is
the optimal path length of UGV i given the visitation constraints dictated by 7. The
value of f;() is found in a sub-routine by using a shortest path formulation to solve
the following optimization problem:

film) = minpi  Xpl[py — Pl (A.2)
s.t. P guards Urr ¢;

+
[7—1

P visits Crr () before cI,Z'(j+1)7j €z

In[A2 IT is the index of the sets in C' that are assigned to UGV i in the minimization

of F. In (A1), @ = 1 corresponds to the minimum time problem and o = 0 corresponds to
the minimum distance problem. Examples of both these options are found in Figures [A17

and [A-T] in Section

Example A.1. A simple example problem with one UGV is depicted in Figure [A-3 where
the start position, p1, is given while the end point is a free variable. In step 1 of Algorithm
[A1] the maximal convex cover C = {ci1,co,c3,cq} is created. In step 2 the visitation
ordering m = (5,2, 3,4,1) is first tried. In accordance with Example [A2 this permutation
corresponds to the UGV (which has id number 5) visiting the convex areas in the following
order: c; — c3 — c4 — c1. The shortest possible waypoint-path visiting the sets in
this order is (p1,p2, p3), and is thus returned in step 3, after minimizing f;(7). In the next
iteration of step 2 the ordering m = (5, 1, 2, 3, 4) is chosen, with step 3 returning only (p1, p2).
After some additional iterations no improvement is found and the algorithm terminates and
returns (pq, p2)-

Figure A.5: An example MTUSP problem. One UGV starts at p; with free endpoint.
The optimal solution corresponds to the dashed line, while a suboptimal one also includes
p3, as explained in Example [0l The four sets of the maximal convex cover are denoted
C1,C2, €3, C4.

Remark A.4. If a convex partitioning was used instead of a maximal convex cover, the
corresponding shortest waypoint-path visiting all sets would not be as short as the solution

above (cf. Figure [A6).
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Remark A.5. Note that decomposing the problem into subproblems, might remove the
optimal solution from the new set of feasible solutions. However, since it is shown in
Proposition [AJ] that Problem [AJ] (MTUSP) is A'P-hard, our aim is not to solve the
problem to optimality, but rather to produce good-enough solutions in reasonable time.

Remark A.6. One straight-forward solution to the MTUSP would be to first solve an art
gallery problem as suggested by the constructive proof of Theorem [ATlto find a small set of
points guarding A, and then solve an MTSP visiting these points. This approach however
is not suitable for the minimum time objective considered in MTUSP since the surveillance
points are chosen to be as few as possible, not to permit short vehicle paths.

Having stated Algorithm [AJ] we first note that it does indeed result in a complete
covering of the surveillance area A, i.e., it produces a feasible solution to Problem [A1l

Proposition A.2. Algorithm [A1 produces a feasible solution to Problem [A1l (MTUSP).

Proof. This is clear from Lemma [A] and the following three observations regarding Algo-

rithm [ATt
1. A convex cover is created.
2. All sets are assigned to different UGVs in (AJ).
3. waypoint-paths visiting all assigned sets are created in (A2).
O

It is now time to describe and motivate the different subproblems in detail. This will be
done in Section A4l through [A=43

A.4.1 Finding a maximal convex cover

Since the polygons are all orthogonal, one can see that the maximal convex sets must be
rectangles aligned with the polygon. With this fact in mind we can apply the following
procedure to find a maximal convex cover.

Algorithm A.2 (Maximal convex cover).

1. Make a discretization of the area A and construct the corresponding graph represen-
tation, G(A). Since A is orthogonal, a variable sized grid can be created with grid
boundaries intersecting all points in the polygon @ and holes Q, ..., Q-

2. Find a yet uncovered cell, p.

3. Start growing a rectangle ¢; from p until it is bounded by |c¢;| < R, or the holes on all
four sides.

4. While uncovered cells exist, goto 2.

When no more uncovered grid cells can be found the process terminates and A is covered,
A C U;¢;. Having described how to find a maximal convex cover in detail, we now discuss
a number of related issues.

The benefit of a maximal convex cover is illustrated in Figure (cf. Example [AJ)). If
the area A is cross—shaped, as depicted in the figure, then the entire area can be instantly
surveyed from any point in a; Nas. Using disjoint orthogonal sets however, the minimum
time waypoint-path for visiting all the orthogonal polygons (b1, ba, b3), and thereby be sure
to have surveyed the entire area, is strictly larger than zero.
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(a) Maximal convex cover.  (b) Rectangular disjoint convex
cover.

Figure A.6:

A.4.2 Assignment and ordering of the convex sets

In this section we describe how we propose to solve the optimization problem in (A1), i.e.,

mgn F(r) = v max film) + (1 — )% fi(m).

Here, 7 is a permutation representing the assignment /ordering of the M convex sets to the
N UGVs, and f;(r) is evaluated by solving another optimization problem, as explained in
Section [A43 below.

In order to solve the assignment and ordering problems simultaneously we first give the
sets and UGVs id-numbers. Assign the id numbers 1,..., M to the convex sets ¢;,i € Zz\t[-
Let furthermore the N vehicles have id numbers M + 1,..., M + N. The search space for
the TS then consists of permutations of the id numbers, i.e., Z}, +n~- The interpretation of
a sequence of id numbers is then best explained by means of the following example.

Example A.2. Let M =14, N = 3, and the final sequence be
m = (15, 1, 4, 17, 10, 14, 9, 3, 8, 16, 2, 13, 12, 7, 6, 5).

This corresponds to the following assignments:

| Set with id numbers | assigned to UGV with id number |

14 15
21312765 16
1014938 17

The details of the implementations are, apart from the evaluation of f;(7), identical to
those presented in [28]. Hence we refer the interested reader to that paper for a detailed
description. We just note that the neighborhood search is performed by pairwise inter-
changing components in 7 and the Tabu condition corresponds to requiring a minimum
number of iterations before switching a particular pair again.

We now turn to see how the function f;(7) is evaluated in each Tabu step, and how the
individual UGV waypoint-paths are found.



MiINIMUM TIME UGV SURVEILLANCE 59

A.4.3 Path planning and functional evaluation

In the Tabu step above, each UGV is assigned a number of sets ¢; and an order of visitation.
Let IT denote this ordered set. The problem is now to decide what part of each convex set
to pass through, in order to make the resulting UGV waypoint-path as short as possible
while respecting the visitation order dictated by /7. Formally, we need to solve the following
optimization problem.

film) = minp:  ylpf — pleiyll
s.t. p? guards Urr ¢

P! visits Crr(5) before CI,?(j{,l),j S Z\—,I—,."\—l

We will now rewrite this problem as a standard shortest path problem on a so-called Route
Graph. Given a pair of starting and finishing positions for each vehicle?, we construct a
particular graph for each vehicle. This graph, which is termed a Route Graph, has the
starting and finishing positions as its first and last node. As depicted in Figure [A7 the
intermediate nodes are extracted from the ordering 7 and correspond to the nodes of G(A)
inside the convex sets c;, j € I7. To obtain the edge costs for the Route Graph, an all
pairs shortest path problem [23] is solved in the graph representation of A, G(A).

P CIm(1) CIr(2) Crr (1) P2

Figure A.7: A graph representation of the route of one UGV.

We illustrate the Route Graph with the following example.

Example A.3. Assume as in the table above that the UGV with id number 15 starts from
some point p; and is assigned to visit first ¢; and then ¢4 on its way to p2. These sets and
positions can be found in Figure AR

The shortest waypoint-path starting from p;, visiting at least one node in ¢; and then
visiting at least one node in ¢4 and finally ending up at ps, is plotted in the figure as well
as in the Route Graph. As can be seen, the fact that ¢; and c4 overlap makes ¢; 4 coincide
with g4 3, enabling a very short waypoint-path.

The evaluation of f;(m) corresponds to solving a shortest path problem in the Route
Graph; a task for which polynomial time algorithms such as Dijkstra or A* exist. Note that
the solution of this optimization problem yields both the UGV waypoint-path P? and its

length f;(m).
A.5 Simulations

The suggested MTUSP solution method presented in Algorithm [A-Jl has been implemented
both in MATLAB and in C*. The later implementation runs as a part of a demonstration

3For applications indifferent to finishing point, it is possible to let the optimization routine choose it
freely.
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Figure A.8: Example scenario with corresponding Route Graph and optimal waypoint-path
(dashed). Note how the fourth node in ¢1, ¢1 4, coincides with the third one in ¢4, q4.3,
hence the cost of the edge between them equals zero in the Route Graph.

testbed* as depicted in Figure A0

R he RS, Simulator
Operator l LA l
Control I

-
UL/ SSsIC B
ALG

Figure A.9: The high-level design of the demonstration testbed. The algorithm runs on a
separate computer and communicates with the UGVs over a network. This setup allows us
to work in a mixed HW /SW setting where some of the UGVs only exist in the simulation
environment while others are physical robots operating in the real world (R1-R3).

In Figures and [ATT], the areas to be surveyed are bounded within a (white) polygon
and the waypoint-paths of the UGVs have been highlighted. The (white) barracks and
the (green) tents constitute the obstacles that occlude the onboard cameras. Figure
presents a snapshot view from the onboard cameras.

4Developed within the Technologies for Autonomous and Intelligent Systems (TAIS) project, 297316-
LB704859.



MiINIMUM TIME UGV SURVEILLANCE 61

Figure A.10: The convex cover for this particular area contains 20 sets and takes on average
1.0 seconds to generate. The last two subproblems in Algorithm [A1] take on average only
92.5 milliseconds to perform. All computations have been performed on a laptop with Dual
Core™, Intel®), 2.0 GHz processors.

Figure A.11: The convex cover for this larger MTUSP instance contains 47 sets and takes
on average 14.2 seconds to generate. The two last subproblems take on average 1.5 seconds
to perform.

Figure [A-T3 and Table [AJ] show results from some comparative tests that have been
performed in order to validate the claim that finding globally optimal solutions to MTUSP
by using an exact Mixed Integer Linear Programming (MILP) formulation, is a viable
approach only for smaller problem instances (cf. the last paragraph of Section [AZ3)). In this
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Figure A.12: Snapshot from the onboard cameras of all four UGVs.
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Figure A.13: A comparison between the computational times of the MILP formulation
(solid line) and Algorithm [AJ] (dashed line). The MILP formulation has been implemented
in GAMS and solved by the XPRESS-MP solver via NEOS server. For this, each convex
set of the cover is assumed to have 5 nodes and the maximum allowable computation time
is set to 60 seconds.

setup, the comparison between the MILP formulation and Algorithm [A-1] only considers
the assignment/ordering of the convex sets and the path planning subproblem. Hence, the
generation of the convex cover is assumed to be done in a similar fashion in both cases.
Running times for generation of the convex covers are presented separately in Figure [AT4l
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# of sets in the cover 5 8 10 11 12 13 15 17
# of binary variables | 504 1407 2259 2760 3311 3912 5264 6816
Computation time
MILP/XPRESS 1.7s 53s 82s 60s 60s 60s 60s 60s
Relative
optimality gap 0 0 0 53% 15% 22% 35% 43%

Table A.1: In the exact MILP formulation, the optimal solution was only found for the three
smallest problem instances. Notice that the maximum allowable computation time was here
set to 60 seconds. For problem instances having more than 12 sets in the convex cover, the
relative gap from optimality varied between 15-42%. Hence, the MILP formulation fails to
meet our requirements on computational efficiency for this class of problems.
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Figure A.14: The running times (in seconds) for generation of the convex covers for areas
with different complexities. Notice that in most applications, the generation of the convex
cover can be performed off-line. Local modifications to this cover can then be incorporated
online as new information about the environment is gathered.

In the MATLAB simulations that follow, the initial position of the UGVs are marked with
a square (W), while the final positions are marked with a diamond (#). These two, together
with the filled larger circles represent the surveillance points for guarding A. The search
area, A, is chosen to be all of the obstacle free space, i.e., the white area in all figures. It
is assumed that the black obstacles have been enlarged with the diameter of the vehicle so
that waypoint-paths touching an obstacle do not imply collision.

The first two simulations, found in Figures and [ATH illustrate the cooperative
nature of the MTUSP. The final positions of the vehicles are here free variables to be chosen
by Algorithm [AJl As can be seen, this extra degree of freedom is used constructively so
that the vehicles survey the horizontally and vertically aligned "streets" in a cooperative
manner with the common objective of minimizing the search time, i.e., we have chosen
a =1in ([AJ). These simulations are also a testimony of the advantage of using a highly
overlapping cover.
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Figure A.15: The Manhattan grid is surveyed cooperatively in minimum time. The starting
points of the UGVs are marked with H.

Figure illustrates a possible drawback of choosing the objective function as pure
minimum time. Here, the route of the vehicle to the left, (dash-dotted), is unnecessarily
long since a complete coverage would also have been achieved if the vehicle did not move at
all. However, the minimum time objective has no way of distinguishing between these two
solutions and regards them as equally good since the time for executing them in parallel is
indeed equal.
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Figure A.16: Minimum time surveillance. Note how the UGVs collectively guard A.

Figures [A17 and further illuminate the interplay between the choice of the ob-
jective function and the obtained solutions. In Figures [A.17(a) and [A.18(a)} the solutions
are found by minimizing the total surveillance time. It can be noted that these solutions
distribute the work load quite evenly over the vehicle fleet. In Figures [A.17(b)| and [A-18(b)|
however, the objective has been set to minimize the total distance traveled by the vehicles,
i.e., « = 0 in ([AJ). Since this option does not take into consideration the division of the
work load between the different vehicles, the resulting solutions often do not utilize some
of the vehicles at all. This may be of tactical interest when, e.g., battery power must be
saved, or when unemployed vehicles can be used to perform other missions in parallel.
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(a) Minimum time objective. (b) Minimum distance objective.

Figure A.17:

(a) Minimum time objective. (b) Minimum distance objective.

Figure A.18:

A.6 Concluding Remarks

The Minimum Time UGV Surveillance Problem (MTUSP), where it is both occlusion and
maximum sensor range, that are the main limitation to the sensors’ field of view, is at the
focal point of this paper. We initially show that this problem is in fact NP-hard, hence
we cannot hope to solve all instances to optimality in reasonable time. We then proceed
by proposing a decomposed solution method that encompasses finding a maximal convex
cover, performing Tabu search on the assignment and ordering of the convex cover and
finally, solving shortest path problems in the so called Route Graphs. The simulations
demonstrate the advantage of using a highly overlapping convex cover, the cooperative
nature of the MTUSP, but also the interplay between minimum time- and minimum distance
solutions.
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Abstract

This paper addresses the problem of connectivity constrained surveillance of a
given area with obstacles using a group of Unmanned Ground Vehicles (UGVs). The
considered communication restrictions may involve both line-of-sight constraints and
limited sensor range constraints. In this paper, the focus is on dynamic information
graphs, G, which are required to be kept recurrently connected at the time instants
when the UGVs perform the surveillance mission, ¢.e., when they gather and transmit
sensor data. The main motivation for introducing this weaker notion of connectivity is
security and surveillance applications where the sentry vehicles may have to split tem-
porary in order to complete the given mission efficiently but are required to establish
contact recurrently in order to exchange information or to make sure that all units are
intact and well-functioning. From a theoretical standpoint, recurrent connectivity is
shown to be sufficient for exponential convergence of consensus filters for the collected
sensor data.

Keywords: Surveillance Mission, Unmanned Ground Vehicles, Connectivity Con-
straints, Combinatorial Optimization.

B.1 Introduction

HE main focus of this work lies on the so called Connectivity Constrained UGV Surveil-
lance Problem (CUSP), which informally can be stated as follows: Given a set of surveil-
lance UGVs and a user defined area to be covered, find waypoint-paths such that:

1. the area is completely surveyed,
2. the time for performing the search is minimized,
3. the induced information graph is kept recurrently connected at the time instants when
the UGVs perform the surveillance mission.
In this formulation, the field of view of the onboard sensors are assumed to be occluded
by the obstacles and limited by a maximal sensor range. Also, connectivity constraints of
both line-of-sight and limited sensor range types are considered. A more formal statement of
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Figure B.1: Four snapshots during an illustrative CUSP mission. The two UGVs start off
to the left, depicted in Figure [B.1(a)l and maintain connectivity recurrently at the three
surveillance instances, Figures [B.1(b)} [B.1(d)] The area already visited is shadowed and
the mission is completed once the entire area is surveyed. Notice how the two UGVs are
allowed to split temporarily in order to pass on different sides of the rightmost obstacle.

the CUSP is provided in Section [B:3 and a typical CUSP mission can be seen in Figure [Bl

The main contribution of this paper is to formulate the CUSP, show that this optimiza-
tion problem is N'P-hard and subsequently, present decomposition techniques that allow
efficient algorithmic solutions. One of the most distinguishing features of the CUSP formu-
lation is that it considers connectivity constraints of both line-of-sight and limited sensor
range types in the presence of obstacles. In this context, we also introduce and utilize the
notion of recurrent connectivity of a graph, which is a significantly more flexible connec-
tivity constraint than, e.g., the 1-hop connectivity constraints frequently considered in the
literature (cf. Figure [B). Finally, from a theoretical standpoint, we show that recurrent
connectivity of the information graph is sufficient for convergence of consensus filters for
the collected sensor data.

The remainder of this paper is organized as follows. Section [BI1] provides a concise
exposition of related work. Section presents some basic concepts that underlie the rest
of the paper. The considered problem is formally defined in Section and the proposed
algorithm for solving it efficiently can be found in Section [Bi4l Then, a set of theoretical
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results are found in Section Simulations illustrating the approach are presented in
Section [B.8l Finally, the paper is concluded in Section [B7

B.1.1 Related Work

A distinguishable number of publications have been devoted to consider different aspects
of the communication maintenance problem. However, a great amount of such research
consider static sensors and hence lies outside the sphere of interest of this work. In addition,
the great majority of the papers that deal with controlled/mobile platforms have solely
focused on the sensor range constraint and oftenly deal with obstacle-free environments,
see, e.g., [1-7]. To the best of our knowledge [8] and [9] are the only works that consider
communication restrictions involving both limited sensor range and line-of-sight constraints
in the presence of obstacles. In the following, both these papers will be discussed in detail.

The problem formulation in [8] is reminiscent of the one considered in [10], namely
optimal path planning for a number of relay vehicles that have the mission of maintaining
a chain of line-of-sight communication links that connect a given leader vehicle to the
ground station. In accordance with their previous work in multi-vehicle path planning,
Schouwenaars et al. use binary variables to capture connectivity between subsequent relay
vehicles and end up solving a mixed integer linear program (MILP).

The problem considered in [9] is the most closely related one to our work. However,
Esposito and Dunbar:

e aim at reaching a final configuration while our high-level objective is to complete the
surveillance mission.

¢ utilize a potential function to synthesize a feasible movement direction for the vehicles.

e consider the case when a fized information graph is given a priori and maintain these
given links intact throughout the entire duration of the motion?.

Dynamic or time-varying information graphs have also been studied in frameworks other
than the one considered in this paper. In particular, results in various applications of
information consensus, such as flocking ( [11]), rendezvous ( [12]) and formation stabilization
( [13]), heavily rely on some notion of (joint) connectivity of the underlying information
graph. Consequently, a fundamental research issue over the last few years has been the
search for a less restrictive notion of connectivity which still renders the consensus control
convergent (see [14-16]). Proposition relates these results to the notion of recurrent
connectivity introduced in Section [B.5.11

B.2 Preliminaries

This paper assumes a previous knowledge of some basic concepts in combinatorial geometry,
combinatorial optimization and graph theory. In particular the so called art gallery prob-
lems [17-19], multiple traveling salesman problems [20,21] and the information graph [13,21]
are at principal focus and will be discussed below.

Combinatorial Geometry: Art Gallery Problem

In this section we closely follow Urrutia [19], but add the sensor range R into some of the
definitions.

! This is equivalent with maintaining 1-hop connectivity of the information graph.
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The areas to be searched in this paper are all going to be so called orthogonal polygons
with holes (obstacles), thus we denote them A, for area. The orthogonality property is how-
ever only important for the maximal convex cover subproblem considered in Algorithm Bl
It should be noted that the rest of the proposed solution algorithm is not limited to the
orthogonal case, but can handle any general polygon-with-holes type of environment.

Definition B.1 (Orthogonal polygons with holes). A polygon Q in the plane is enclosed
by an ordered sequence of points q1,...,q, € R, n > 3, called vertices of Q) together with
the line segments q; to q;+1 and q, to q1, called edges. In the following we assume that none
of these edges intersect. A polygon is called orthogonal if adjacent edges are orthogonal.
Given an orthogonal polygon QQ and a set of h disjoint polygons Q1,. .., Qp, that are likewise
orthogonal and contained in Q, we call the set A = Q\{Q1U...UQ} an orthogonal polygon
with A holes.

Definition B.2 (Guardiance). Given two points p and q in A we say that p is visible from
q if the line segment joining p and q is contained in A

ap+(1—a)ge A, Vael0 1]
and the distance between them is not greater than the sensor range,
lp—all < R.

A set of points H = {hy,...,hy} C A guards A if for all p € A there exists h; € H such
that p is visible from h;.

Definition B.3 (Maximal convex cover). A convex cover C' of A is a set of conver sets

C = {¢;} such that |c;| < R and A C U;c;. Here, |c;| = sup dist(a,b) denotes the diameter
a,bec;

of the set ¢;. We define a maximal convez cover of A to be a convex cover C' = {c¢;} of A,
such that for all i, there is no convexr set s C A such that |s| < R and s D ¢;.

Definition B.4 (Visiting waypoint-path). A waypoint-path P is an ordered set of points
P = (p1,...,pn). Any conver cover C is said to be visited by the waypoint-path P if
VCZ‘ECH]DJ‘EPZPJ‘ECZ‘.

Combinatorial Optimization: Multiple Traveling Salesman Problem

Following [20], the Multiple Traveling Salesman Problem (MTSP) can be stated as follows:
Given a set of cities and inter-city distances, let there be /N salesmen located at given depot
nodes. Then the MTSP consists of finding at most N tours, who all start and finish at
given depots, such that each city is visited ezactly once and the total cost of visiting all
cities is minimized.

The MTSP can be considered as a relaxation of the closely related Vehicle Routing Prob-
lem (VRP), with the capacity restrictions removed. This means that all the formulations
and solution methods proposed for the VRP are also valid and applicable to the MTSP
by assigning sufficiently large capacities to the salesmen (vehicles). It is a well-known fact
that the MTSP and the closely related VRP are N"P-hard, and thus represent optimization
problems that are very hard to solve to optimality, see, e.g., [20,22].

Graph Theory: Information Graphs

A concept needed for making a formal statement of the CUSP is concerned with the infor-
mation graph.
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Definition B.5 (Information graph). Let V = {v1,...,un} denote the vertez set repre-
senting the N UGVs. The communication graph, G.(t) = (V,E.(t)), is induced by

eij € Ec(t) & |pi(t) —pi ()] < R,

where R denotes the limited sensor range? and p;(t) € R? is the position of UGV i at time
t. The sensing graph, Gs(t) = (V,&4(t)), is induced by free line-of-sight, more precisely,

eij € Es(t) & api(t) + (1 —a)p;(t) € A, Vae[01].

Finally, the information graph, G(t) = (V,£(t)), is defined as the union® of the sensing-
and communication graph, i.e., € =&, UE;.

In this setting, the sensing graph captures the passive information flow among the UGVs
gathered by the on-board sensors, while the communication graph represents active trans-
mission of inter-vehicle information (c¢f. [13]). This distinction is important to make in
various applications, e.g., military missions where passive sensing is encouraged while ac-
tive transmission, which might imply enemy exposure and thereby jeopardize the mission,
are to be avoided.

B.3 Problem Formulation

In this section we first informally state the Connectivity Constrained UGV Surveillance
Problem (CUSP). We then make a formal statement using concepts from Section

Informally, the problem we are studying is the following: Given a set of surveillance
UGVs and a user defined area to be covered, find waypoint-paths such that every point
of the area can be seen from a waypoint on a path, the induced information graph is kept
recurrently connected at the time instants when the UGVs perform the surveillance mission,
and the time for cooperatively executing the search in parallel is minimized.

This problem formulation is an extension of the one considered in Paper [A]l where con-
nectivity constraints where not taken into account.

Problem B.1 ( Connectivity Constrained UGV Surveillance Problem (CUSP)). Given N
UGYVs and an orthogonal polyhedral area A, find a set of N waypoint-paths P = (P!, ... PN)
that solve the following optimization problem

n—1
min Z max ||p% — pt.
X maxlly sl

such that U; P* guards A
gpyy €C, Vj

Here P(j) = (pjl-, . ,pé-v) denotes the UGV positions at time instance j and Gp(;) is the
induced information graph when the UGVs are at P(j). Further, C is the set of connected
graphs on N wvertices. In accordance with Problem [A1 (MTUSP), P = (p,...,pt),i €
Z§ ={1,...,N}, and || - | denotes the shortest obstacle free distance. Here, the start
depots, denoted by p', are given while the finish depots, pt,, may be either free or given.

2 Assuming a uniform bound on the range of all sensors, R, is merely a matter of notational convenience.
An extension to allow different sensor ranges is straightforward.
3 Intersection can also be used without any conceptual implications.
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Remark B.1 (Re-connection instances). It is important to note that in CUSP, the re-
connection of the information graph does not occur at arbitrary time instances. In fact, G
is required to re-connect at the surveillance critical time instances, i.e., exactly when the
overall mission is being collectively solved.

Remark B.2 (Interdependence). In CUSP, the inter-vehicle dependence stems both from
the imposed guarding and connectivity constraints, as well as the non-separable objective
function.

Remark B.3 (Way-point following). In this problem formulation, it is assumed that there
exists a low level controller for each UGV capable of following the generated waypoint-path
with bounded error.

Proposition B.1. Problem[Bdl (CUSP) is N'P-hard.

Proof. Follows directly from the proof of Proposition [Ad] since in the single UGV case, the
connectivity constraint is trivially fulfilled. O

B.4 Proposed Solution

This section will propose a solution to the CUSP described in Section[B.3l As a consequence
of Proposition [Bl, we can not hope to solve all CUSP instances to optimality in reasonable
time but must adopt heuristic solution methods. A natural way to address the CUSP is
to add the connectivity constraint to the third subproblem of the MTUSP solution (i.e.,
Algorithm [A)). Due to Proposition B4 however, this would turn the third, polynomial
time, subproblem of finding the paths into an NP-hard one, and having N'P-hard sub-
problems is in general not a good idea. In [23], we proposed and compared four different
algorithms for solving Problem [B] (CUSP). In this paper, we present an algorithm which
is tailored for handling the hard connectivity constraints explicitly, and turned out to give a
good trade-off between computational complexity and solution performance. The proposed

algorithm builds upon the notion of a connectivity-primitive, see Figure

Figure B.2: Two connectivity-primitives (in solid and dashed) composed of four UGV
positions each. The connectivity-primitives are created in step two of the algorithm. The
dotted waypoint-paths indicate the result of step three, i.e., how the UGVs should move
from one primitive to another. The maximum of these path-lengths is then used as distance
d;; between the two primitives when solving the TSP in step four to find the order in which
to visit the primitives.
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Definition B.6 (Connectivity-primitive). A connectivity-primitive s = {p1,...,pN} in
R2XN s a collection of N UGV positions p; € R?, that induce an information graph that
is connected.

As depicted in Figure B33 the suggested algorithm for solving CUSP consists of four
subproblems. We first state the algorithm and then discuss the four steps in detail.

Algorithm B.1 (Proposed solution for CUSP). The algorithm consists of the following
four steps:

1. Create a maximal convex cover C' = {cy,...,cp} of area A in accordance with Algo-
rithm

2. Create a set of connectivity-primitives, S = {s1, s2, ..., s}, that completely covers the
area, i.e., the convex cover C' is visited by the points in U;s;.

3. Solve an assignment problem for each pair (s;, s;) of connectivity-primitives in S, where
the cost of an assignment of p;, € s; to p; € s; is equal to the shortest obstacle free path
from py to p;. Let d;; be the maxima of these path-lengths in the optimal assignment.

4. Solve a Traveling Salesmen Problem (TSP) having the p connectivity-primitives in S as
cities and the total path lengths d;; as inter city distances. While the maximal number
of iterations have not been reached, goto 2.

Find a maximal convex cover

. J

I

e N

| Create connectivity—primitives

. J

* S ={s1,52,...,Sp}

- ~
Find distances and UGV movements
between the connectivity—primitives

. J

‘ dij i,j S {1,2,...,])}

e N

Solve the associated TSP

. J

‘ F(S),P

Figure B.3: Schematic overview of the suggested algorithm for solving CUSP.

The first subproblem is the same as in Algorithm [A-J] finding a maximal convex cover,
and is solved by Algorithm

In the second subproblem, a set of connectivity-primitives, S = {s1, s2, ..., sp}, is created
in such a way that the entire area is covered, i.e., there is at least one connectivity-primitive
node in every set of the cover, C. As will be explained in Proposition [B4], it is hard to
find a connectivity-primitive visiting a set of gives sets. Thus we propose to iteratively pick
connected positions in the yet uncovered part of A and then see what additional sets they
cover. Let V' C C be the set of convex sets that have been visited by a connectivity-primitive
already. In order to keep the number of connectivity-primitives low, it is preferable that the
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next connectivity-primitive has some nodes in the set C'\ V. Pick one that can be connected
and add it to the primitive. This procedure is repeated until C' \ V = & which means that
by visiting the connectivity-primitives, S = {s1, s2, ..., $p}, the entire area is surveyed.

In order to decide in which order to visit the primitives (subproblem four) we need
some notion of how far apart they are. In the third subproblem we find such distances
d;; by solving an assignment problem for each pair of connectivity-primitives. One such

assignment is depicted in Figure We let the distance be the maximal length any UGVs
p(p—1)
2

need to travel to get from primitive ¢ to primitive j. The assignment problems as well
as the underlying shortest path problem can be solved by polynomial time algorithms [21].

The distances between the connectivity-primitives, denoted d;; in Figure B3 are then
passed down to the fourth and last subproblem which is to determine the order in which
to visit the connectivity-primitives as well as the objective function, F'(S).This is in fact a
TSP where connectivity-primitives play the role of cities and d;; the corresponding distances.
This also explains our earlier concern to keep the number of connectivity-primitives low in
subproblem two. Various heuristic solution methods exist for solving TSPs [20]. In our
particular case, a Simulated Annealing algorithm has been adopted [24]. This algorithm
generates a feasible solution to the CUSP and the algorithm may stop. However, in order
to get closer to an optimal solution, it may be beneficial to re-do the process for a particular
number of iterations by repeating the last three subproblems.

Proposition B.2. Algorithm [Bl produces a feasible solution to Problem [B1 (CUSP).

Proof. This is true since all connectivity-primitives are visited and they are designed to
both respect the connectivity constraints and provide a complete coverage of area, A. O

B.5 Theoretical Analysis

The theoretical results presented in this section includes a theorem relating the re-occurring
connectivity of the CUSP to consensus filters, but also, N'P-completeness of the problem
of determining existence of a connectivity-primitive that visits a set of given sets.

B.5.1 Recurrent Connectivity and Consensus Filters

In this section, the precise definition of the notion of recurrent connectivity will be given.
Subsequently, a result concerning the relationship between this weaker form of connectiv-
ity and convergence of so called "Laplacian consensus filters" [14,25] is presented. But
before embarking, let us mention the motivation for introducing the notion of recurrent
connectivity, why it is important and how it can be used in practical surveillance missions.

Many applications do not require connectivity of the information graph at all time
instances. As a matter of fact, typical surveillance missions are solved more effectively if
the UGVs are allowed to split up temporary. Seeking through the area in Figure [B1l serves
as an illustrative example of such a scenario. This motivates the introduction of the notion
of recurrent connectivity.

The main focus of this paper is on planning waypoint-paths for UGVs. Let us now
assume that along these waypoint-paths, each UGV measures some quantity y; € R using
the on-board sensor. In accordance with Definition [B.A, the position of the UGVs, induce
an information graph, G(¢). The sensor measurements can therefore be propagated through
the links of G(¢) in order to share information among the UGVs. In other words, G(t)
provides the infrastructure for information sharing. For practical purposes, we would like
the robots to reach consensus regarding the measurements y;. It is therefore important to
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study the issue of convergence of information filters for the collected sensor data when the
underlying graph is recurrently connected. This is the essence of Proposition [B.3l

Definition B.7 (Recurrent connectivity). A graph, G, is said to be recurrently connected
with a dwell-time, A > 0, if for all t € RT there exists T(t) >t + A such that

G(ryecC, vVre[T—-A T
Here, C denotes the set of connected graphs.

This definition implies that one is always able to find a time-interval of length A, during
which the graph is connected.

Remark B.4. In a discrete time setting, the sampling time provides a natural selection
of dwell-time (cf. [14,15]).

As mentioned previously, along the waypoint-paths, each UGV measures some quantity
yi € R at time ¢( that is then communicated to the others through the links of the induced
information graph, G(¢), and used as input to a consensus filter

T; = Z aij[xj(t) - -/'Ei(t)L (Ei(to) = Yi, (Bl)
JEN;

where N; = {j € Z} : ;; € E(t)} are the neighbors of UGV i in G(t). Let z =
(r1,--- ,2n)7T, then using standard notations in graph theory, (B can be rewritten as

t=—Lx, z(ty) =y (B.2)

where L denotes the weighted Laplacian matrix.

It is well known (see, e.g., [14,25]) that if the graph is (jointly) connected, then a
consensus can be reached in (B2). The next proposition shows that a consensus can also
be reached for (B2) if the graph is recurrently connected.

Proposition B.3 (Consensus Reaching). Suppose the information graph is recurrently con-
nected with o dwell time A and that

T2 sup T(t) —t < oc.
teR+

Then the frequently adopted "Laplacian consensus filter" (B2) will exponentially converge
to a consensus in the agreement subspace.

Proof. Starting at the initial time instance, ty, a sequence of half-open time intervals, {7;},
with T; = [tF ) is constructed as follows:

1. Initially, set t& = t,.

2. The information graph G being recurrently connected, ensures the existence of T'(tl)
such that G(r) € C,¥r € [T — A T]. Set then ti* = T(tf). Thus, the first time
interval, T} = [t¥ tI?), is constructed.

3. Having the first k& terms of the sequence of time intervals at hand, Ti,...,T%, the
(k + 1)t" time interval is set to

Thyr = [ty tig) = [tF T(),

where again, T'(tf') exists due to the recurrent connectivity assumption.
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The terms of the sequence of time intervals {7;} constructed this way, fulfill the following

properties?:
o |T;| >0,Vi (non-empty)
o T,UT; =[tF &) (contiguous)
o TinT; =90 (non-overlapping)
o |T;|<TVi (bounded)

The first property follows since A > 0. The following two are consequences of having
try, =ty In addition to this,

Gi = Uer, G(t)

is jointly connected for all i. Thus, the sequence {T;} fulfills the hypothesis of Theorem
2 in [14] which implies exponential convergence of any consensus state to the agreement
subspace. O

Remark B.5. The assumption on boundedness of the time-intervals implied by,

T2 sup T(t) —t < oo,
teR+

is not required for asymptotic convergence to the agreement subspace, see [15].

B.5.2 Finding Connectivity-Primitives

Our next result gives more insight into the choice of solution for the CUSP. As will be shown,
given N sets for the UGVs to visit, determining whether these sets contain a connectivity-
primitive or not is an NP-complete problem. This explains why a straight forward extension
of the MTUSP algorithm does not perform well on the CUSP problem but also the proposed
heuristic algorithm for creating the connectivity-primitives covering A.

Assume that the N UGVs are to visit sets c1,--- ,cy. Let further V;, denote the nodes
in A associated with the set ¢, k € Z]J(,. For the generation of UGV positions that visits
all the N sets, we would like to solve the following problem:

Problem B.2. Find a connectivity-primitive, s = {p1,...,pn}, such that p; € V;, i € Z},,
i.e., each UGV is at a node inside the appropriate convex set.

Problem is hence concerned with selecting one of the nodes in each convex set
(hence-forth referred to as the representative of that set) that induce a connected graph.

Proposition B.4. Problem B4 is N'P-complete.

Proof. The proof will built upon polynomial reduction of the satisfiability problem (SAT) [21].
From an arbitrary SAT instance with N clauses, C1,...,Cy, involving boolean literals,
l1,...,l4, we construct a special instance of Problem as follows (cf., Figure [B4).

1. Let there be N sets containing only one node. These will represent the clauses,
C4,...,Cy and will be referred to as clausal sets.

2. Let there be ¢ additional literal sets having two nodes each. The first node in the ‘"

literal set, denoted !, corresponds to the literal ; having the true value, while the

second node, denoted l{ , corresponds to the literal /; having the false value.

4Here, |T;| denotes the interval length, i.e.,

|T;| = sup dist(a,b) =tF — &
a,beT;
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3. Connect every clausal set to the node in the literal set that is dictated by its expression
(¢f. Example [BT)).

4. Finally, introduce one last additional set that connects to all nodes in the literal sets.
Now, choosing a representative for the clausal sets and the additional set is trivial since they
only contain one node. Choosing representative for the literal sets however, corresponds
to determining the truth/false assignments of the ¢ literals. If we would have been able
to choose representatives among these N + g 4+ 1 sets that induce a connected graph in
polynomial time, we would have solved this arbitrary instance of the SAT problem. Since
SAT is a well-known NP-complete problem, we conclude that Problem [B:2is A'P-complete
as well. O

Example B.1. Solving the following SAT instance
SAT = CiACaA---ACn

Ci = (ll V lg)
Co = 2Vl
Cy = (LViaVliy)

is equivalent with finding representatives among the N +¢+1 sets in Figure[B4lthat induce
a connected graph. Here, [; denotes the negation of /;.

Figure B.4: Determining which of the two nodes to visit in each literal set corresponds to
determining the true/false value of the literals l4,...,1,.

Having discussed the algorithm and its properties in detail, it is now time to run some
simulation examples.

B.6 Simulations

In this section, a small selection of the simulations made is presented. The objective is to
highlight some of the key characteristics of the proposed solution methods. Throughout
this section, the search area, A, is chosen to be all of the obstacle free space, i.e., the white
area in all figures.

In Figure B3 the starting positions of the UGVs are chosen randomly while the final
positions are optimized by Algorithm [Bl The most important aspect to notice is that
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the three UGVs are not restricted to pass on the same "side" of the obstacles but are
nevertheless recurrently connected at the five surveillance instances, Figure
Also, notice that the randomly selected initial positions in Figure do not necessarily
induce a connected information graph and that the area is completely surveyed.

1 S
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Figure B.5: An example CUSP simulation. The most important aspect to notice is that
the UGVs are not restricted to pass on the same "side" of the obstacles but are nevertheless

recurrently connected at the five surveillance instances in Figure

Another CUSP simulation can be seen in Figure [B.f] where the area representation is
taken as a random matrix with obstacle density p = 0.3.

e ]
EEEPEEEY |

Figure B.6: Another CUSP simulation.
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Figure B illustrates connectivity constrained surveillance of the so called "Manhattan
grid". In this example, the cooperative nature of the solution becomes even more apparent.
The two UGVs are dropped off at the upper left corner in A and move downwards in order to
fulfill their common goal of complete coverage. In essence, the UGV whose waypoint-path
has been depicted in dashed/black surveys the vertically aligned streets while the other
one (solid/red) covers the others. Notice how the inter-vehicle connectivity is maintained
cooperatively as the UGVs timely pass the horizontally aligned streets. Also in this example,
the fact that the final solution is merely locally optimal is apparent from the dashed/red
waypoint-path, which could rather be a straight line segment.

Figure B.7: Complete surveillance of the so called "Manhattan grid". Notice how the inter-
vehicle connectivity is maintained cooperatively as they timely pass the horizontally aligned
streets.

B.7 Concluding Remarks

An important problem in cooperative UGV surveillance is to make sure that the sensor data
can reach all team members but also be transmitted back to the operator. In this paper, we
presented a cooperative path and task planning algorithm that made sure that the whole
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surveillance area was covered, and at the same time the entire UGV group was recurrently
connected in order to exchange information and upload it to the operator.

The main motivation for introducing this weaker notion of connectivity is security and
surveillance applications where the vehicles may have to split temporary in order to complete
the given mission efficiently but are required to establish contact recurrently in order to
exchange information and/or to make sure that all units are intact and well-functioning.
From a theoretical standpoint, recurrent connectivity of the information graph is shown to
be sufficient for convergence of Laplacian consensus filters for the collected sensor data. It
should be noted that this work considers connectivity constraints of both line-of-sight and
limited sensor range types in the presence of obstacles.
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Abstract

This work addresses the problem of designing a real time high performance tra-
jectory planner for aerial vehicles. The objective is to use information about terrain
and enemy threats to fly low and avoid radar exposure on the way to a given tar-
get. The proposed algorithm builds on the well known approach of Receding Horizon
Control (RHC) combined with a sporadically updated terminal cost that captures the
global characteristics of the environment and mission objectives. However, since the
terminal cost is most often calculated from a graph representation of the environment,
it might lead to trajectories that turn out to be dynamically infeasible in the future.
Thus, neither safety nor task completion can be guaranteed a priori. Using a novel
safety maneuver combined with a task completing trajectory, and under an assump-
tion on the maximal terrain inclination, the main contribution of this paper is to prove
safety as well as task completion for the proposed algorithm. The safety maneuver is
incorporated in the short term optimization, which is performed using Nonlinear Pro-
gramming (NLP). Some key characteristics of the trajectory planner are highlighted
through simulations.

Keywords: On-line trajectory optimization, Computational Optimal Control, Mis-
sion Uncertainty, Trajectory Re-planning, Safety, Task Completion.

C.1 Introduction

—LINE trajectory planning for an aerial vehicle subject to simultaneous kinematic
O N and dynamic constraints, is the main topic of this paper. Given current information
about the target, terrain and positions of enemy threats, the generated trajectory should use
the terrain to reduce exposure to enemy radar by flying low, while at the same time keeping
control efforts, as well as total time of flight, small. Furthermore, we would also like to be
able to formally verify that the vehicle will in fact reach the target without crashing into
the terrain. Often, the trajectory planning problem is formulated as an Optimal Control
Problem (OCP). In our case however, an underlying assumption is that due to imperfect
information, the terrain elevation, as well as the location of the target and possible threats
might change during the course of flight. Consequently, we can not use the family of tech-
niques that rely on off-line generation of a trajectory database for on-line interrogation [1-3].
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Also, assuming the problem originates from a complex real-world application, the existence
of analytical solutions is unlikely; thus we seek “good enough” solutions provided by fast
computational algorithms for iteratively solving the trajectory optimization problem.

In the field of trajectory planning and control, Receding Horizon Control (RHC) or
Model Predictive Control (MPC), is a well known tool to achieve computationally efficient,
“good enough” solutions to many unmanned vehicle control problems [4-11]. In RHC, the
doubtful viability of long term optimization under uncertain conditions is adhered, so that
instead of solving the OCP on the full time interval, one repeatedly solves it on the interval
[teste + Ty instead. Here ¢, denotes the current time instance and 7}, is the planning
horizon. Upon applying the first control element, measuring the obtained state and moving
t. forward in time, the optimization step is iteratively performed. This closes the loop
and obtains a certain robustness against modeling errors or disturbances. Unfortunately,
it is known that in the absence of particular precautions, closed-loop stability! cannot be
assured. Hence, an important issue with RHC is to make sure that the greedy, short term
optimization does not lead to long term problems. In the vehicle control domain, this
often boils down to two things: not getting into situations where a collision is unavoidable,
and making sure that the destination is actually reached. To this end, it must be noted
that although formulated as an OCP, finding a provably collision free trajectory that is
guaranteed to end in the target set must be given higher priority than the optimality
properties thereof. This diversification, or ranking, of our objectives is quite natural since
the optimal control formulation can be considered as a tool for choosing one single input in
the set of controls that fulfill our minimum requirements, which in our particular case will
be to generate collision free trajectories that lead us to the target. Hence-forth, a collision
free trajectory is called safe and a trajectory reaching the target set will be referred to
as a task completing trajectory. As will be shown in Section [C4l the proposed algorithm
has provable safety properties, as well as a guaranteed finite time task completion. This
is the main contribution of this paper which merges our earlier work on online trajectory
optimization for aerial vehicles [11,12].

Regarding safety concerns, collision avoidance for ground vehicles or helicopters can be
achieved by making sure that every planned trajectory ends in a standstill [4]. Similarly,
for fixed wing aerial vehicles, a guaranteed obstacle free circular loitering pattern ensures
safety [5,8]. This is achieved by constraining the computed path at each time-step to end on
either a right, or a left turning collision free circle, where the vehicle can safely remain for an
indefinite period of time. Kuwata and How [9,10] have considered safe RHC of autonomous
vehicles in a 2D setting which rely on visibility graphs for environmental representation.
They make use of three circles to smoothen out all the corners of the straight line segments
in the visibility graph, modify the cost map and thereby incorporate vehicle dynamics in
the terminal cost. However, task completion is not guaranteed in any of these papers.

Task completion has been previously considered by Richards and How [6,7]. By aug-
menting the system with a binary "target state", that indicates whether the target set is
reached or not, the authors end up with a hybrid system. Task completion is then guar-
anteed by imposing a hard terminal equality constraint on the target state which restricts
the solution candidates to those that end up in the target set at the end of the planning
horizon. This is a computationally demanding constraint that beside the introducement of
binary variables, requires needlessly long planning horizon. In addition, early termination
of the optimization routine may cause violation of the equality constraint and consequently

IStandard RHC is tailored for steady-state control or asymptotic stabilization to the origin in the
Lyapunov sense. The notion of task completion considered in this paper is a different problem, namely,
aiming at controlling the vehicle into a target set which not necessarily contains any equilibrium points or
is control invariant.
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jeopardize the task completion objective. The alternative solution proposed in this paper
utilizes monotonic decay of the terminal cost to establish task completion.This is due to
a conditional plan changing strategy, where, starting from a feasible solution, a new plan
for the remaining part of the mission is only accepted if it gives an incremental decrease to
the terminal cost. This decouples the length of the planning horizon from task completion
and thus allows us to choose the planning horizon only taking optimality requirements and
computational resources into account.

Most of the papers above consider planar problems, while our formulation is in 3D.
This setting makes the problem both more realistic and easier to address, since there is
always an obstacle free sky above the terrain. As a direct consequence of this, our work
differs from the mentioned papers by the fact that in our case, safety and task completion
are intimately connected. This is due to an elaborate choice of safety maneuver which is
augmented by a closed form task completing trajectory, that is collision free by design. By
iteratively replacing old safe plans with new safe plans, there is always a safe plan available
for execution if some step of the update procedure should fail.

The high-level framework utilized in this work for trajectory planning in the three di-
mensional space, is reminiscent of the one presented in [13]. In both papers, the global
characteristics of the environment and mission objectives are captured in a functional, cal-
culated off-line and passed to the on-line receding horizon controller as a terminal cost.
However, safety and task completion concerns are the pivotal differences between these two
papers. This is also a convenient point at which to mention that the possibility of updating
the "off-line" computed terminal cost should not be overlooked. As pointed out in [13],
the term "off-line" is rather to be interpreted as, at a much slower sampling rate than the
trajectory planning loop, i.e., in the order of tens of seconds. As new information about the
environment or mission objectives is gathered when the mission unfolds, it can be processed
and fed back regularly to the online planner through an updated terminal cost, as discussed
in [14].

In what follows, the considered trajectory optimization problem is presented in Sec-
tion Section then describes the proposed solution in detail. The properties of
safety and task completion are proved in Section [C4] followed by simulation examples in
Section Finally, this paper is concluded in Section

C.2 Problem Formulation

In this section we will state the problem in terms of vehicle model and control objectives.

C.2.1 Vehicle Model

Let the aerial vehicle model be given in discrete time by

piv1 = pithuy (C.1)
Vit1 = v+ ha;
HU’LHOO S Umax
||azHoo S Amax
dipi) < 0
0,0,1) v < |Jvi]|sin7,

that is, a discrete time, double integrator with time step h and upper bounds on magnitude
of speed, v; € R3, and acceleration a; € R3. There is also a terrain collision constraint on
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position, p; € R3, as well as an upper bound 5 € (0,7/2] on the flight path angle. The
collision constraint is
d(pi) £ H(zi,yi) + A — 2z <0,

where H(x;,y;) denotes the altitude of the terrain at the point p; = (z;,y;, 2;) and A > 0
denotes a minimum clearance distance, set by the operator. It should be noted, that the
theory below admits considerably more general dynamics and control constraints; as long
as the NLP below terminates fast enough, any model can be used.

In order to state safety properties of the proposed trajectory planner, we make the
following assumption about the terrain.

Assumption C.1. The maximal terrain inclination, «, is smaller than the maximum flight
path angle 7.

In instances where this assumption does not hold at isolated spots, a virtual “inclination-
smoothed” terrain above the real one can be calculated and used instead of the original,
thus fulfilling the assumption.

C.2.2 Control Objectives
Designing the trajectory planner, we would like to meet the following objectives.
e Operate the vehicle safely (i.e., within the state and control limits)
e Arrive at target position
e Compute trajectories in real time
e Allow for information updates

Use small control effort

Achieve low threat and radar exposure

Achieve a short time of flight

Ideally we would like to formally guarantee the first two items, satisfy the following
two and minimize an objective function composed of the last three. The objective function
might therefore be of the following form

> llasll + bop) + ). (C2)

where p;, a;, h are defined above, b, ¢ > 0 are scalar weights, g represents a measure of threat
and radar exposure and the summation stretches over the whole mission.

C.2.3 Problem Statement

We formulate, somewhat loosely, the overall trajectory planning problem in the following
way.

Problem C.1. [teratively and efficiently choose controls a; such that the model (C1)
starting from po safely reaches the target, py, while approximately minimizing the objective

function (CA).

The term approximately is added, since solving the problem to optimality turns out
to be computationally intractable for problems with longer horizons. However, if we are
willing to settle for a good, but not necessarily optimal solution in terms of the objective
function (C2), the problem becomes tractable.
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C.3 Proposed Solution

In this section we will propose a solution to Problem described above. The solution will
be a Receding Horizon Control (RHC) scheme using Nonlinear Programming (NLP) for the
short term planning. The central idea behind the proposed solution is to use a conditional
plan changing strategy, where, starting from a feasible solution, a new plan for the remaining
part of the mission is only accepted if it gives an incremental decrease to the terminal cost.
The key problem is then to retain safety and finite time task completion when the plan
is changed. This problem is solved by including a safety maneuver, which guarantees the
existence of a safe task completing trajectory. The safety maneuver is incorporated into
the short term planning NLP problem. We will furthermore discuss the choice of terminal
cost function for the long term planning, as well as how we can make sure that the vehicle
actually arrives at the target without crashing into the terrain.

C.3.1 Solution Outline and Receding Horizon Control

As discussed earlier, RHC has proved to be a powerful tool to achieve good performance in
a computationally tractable way. The main idea in RHC is to divide a planning problem
into a short horizon and a long horizon part. Over the short horizon a detailed plan is
calculated and over the long horizon only a coarse plan, or no plan at all is needed. The
short term plan is then iteratively updated as time evolves, making the horizon of the plan
recede, always extending a fixed amount of time into the future.

The way we apply RHC to this problem is illustrated in Figure The figure depicts
the aerial vehicle and corresponding plan at two different time instants. At the first instant
a short term plan (solid and dotted lines) is calculated using NLP. This trajectory includes
a safety maneuver (dotted) and is augmented with a task completing trajectory (dashed).
The existence of the safety maneuver at the end of the short term plan is a constraint of
the NLP. At the end of the safety maneuver the trajectory is directed towards the target
and has the climb angle «, which by definition is equal to the maximal terrain inclination.

Y

target

Figure C.1: Two consecutive plans. Note the short term plan (solid and dotted), safety
maneuver (dotted), and task completing trajectory (dashed), reaching the target, ps, on
the ground (thick solid).

This fact enables us to take the final part of the trajectory as a steady climb and a steady
descent towards the target at « degrees inclination, collision free by design. That a collision
free trajectory is obtained also after re-planning, i.e., that safety is retained, follows from
the observation that if the new planning for some reason fails, the old plan is still valid and
can be executed all the way to the target [4].

Having a plan, the vehicle now proceeds to execute the first part of the plan over an
execution horizon T, which must be smaller than the short term planning horizon, T, = Nh.
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Figure also depicts the situation after T,, when the NLP planning is performed once
more and a new plan is constructed.

Remark C.1. It is useful, but not necessary, that 7},,7,. are chosen so that the safety
maneuver is shorter in duration than T}, — T, since then the re-planning commences before
the vehicle has started the safety maneuver. In fact, from a performance perspective, it is
in general desirable that the vehicle actually never has to execute the safety maneuver.

In order to apply the above solution strategy one has to find a way to negotiate the
instant 2« turn at the top of the task completing trajectory in some way, so that the
constraints in model ([CJ)) are met. There are several ways of doing this, as discussed
below, but we shall make the standing assumption that the issue has been resolved for the
first planning instance.

Having outlined the principle behind our formulation of the trajectory planning problem
as an RHC problem, we now proceed to a somewhat more detailed look at its various
components.

C.3.2 Short term planning and Nonlinear Programming

The NLP alluded to above, for the solution of the short term planning subproblem, can
be described as follows. At the time of planning, let the vehicle be in state p.,v.. Let all
planning variables have two subscripts where the first represent the index of the plan, and
the second represents the time scale on which the vehicle dynamics in ([CJJ) are defined,
i.e., pi,; is the planned position of plan k at h - ¢ time units after the plan was initiated.

Definition C.1. By a short term plan, we mean the best known solution to the following
NLP.

N

minginize Z h(||al|\§ +bg(p;) + c) + U(pr.n) (C3)
=0
s.1. Pkyi+1 = Pk + h Uk i=0,---,N—1
Vk,it1 = Vs +h ag i=0,---,N—1
d(pr,i) <0 i=0,--- N
[Vk,illoo < Vmax i=0,---,N
llak,illoo < @max i=0,-- N

(0,0,1) vi; < ||lvk,|lsiny i=0,---,N

Pk,0 = Pcy  Vk,0 = Ve

U(pr,n) < V(pr_1,8) — €

Uk, N = Umax(COS ¢ cosa, sin¢cosa, sin )

¢ = arctan2((0,1,0) (ps — pr,n)", (1,0,0) (pf — pen)”)

where k is plan index, N = T,,/h, and the terminal cost, ¥ : R® — RT, and cost decrement
margin, € > 0, will be defined below. The final two constraints make the last part of the
trajectory climb in the direction of the target. All other variables are defined as their coun-
terparts, without index k, in (C1). If there is no feasible solution to ([C3)) then the short
term plan is undefined.
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Remark C.2. As part of the RHC scheme, we will always be on our way to execute an
old plan when a new plan is constructed. Thus the old plan can often serve as a feasible
starting solution in the optimization.

In the case when no new feasible plan is found, i.e., the NLP solver fails to provide a
solution to (C3), the execution continues along the old plan. The infeasibility may have
different sources, including;

e The set of controls that fulfill the terminal cost decrement constraint being empty.

e Since the terminal cost is most often calculated from a graph representation of the
environment, it might lead to trajectories that turn out to be dynamically infeasible in
the future.

e Various optimization routine failures including non—convergence and abnormal termi-
nation.

Remark C.3. Optimization routine failures may always occur regardless the choice of
terminal cost, and may therefore not be neglected in any case.

C.3.3 Task completing trajectory

In this section we will see how the short term plan produced by the NLP can be canonically
extended all the way to the target, in a way that is collision free by design, as suggested in
Figure This is explicitly done for every plan instance, k.

Definition C.2. A task completing trajectory is defined as a feasible terminal trajectory
which reaches the target, ps. By an extended plan, we mean a short term plan P over
time horizon T,, augmented with a task completing trajectory. If no such can be found,
the extended plan is undefined. Likewise, if no feasible short term plan is found in the
NLP ([C3), the extended plan is undefined.

A canonical way of defining an extended plan is to augment the safety maneuver at the
end of the short term plan with a straight line steady climb at « degrees towards the target,
followed by a maximum rate turn and a straight line descent ending at the target. The
dive is initiated at a point ps,, (see Figure [C2), defined as the top vertex of a triangle,
{Pk,N;Dtop, Pf}, in the vertical plane with edge inclinations «, for the two upper edges. In
instances when p;,, and py are so close that the dive towards ps violates the vehicles dive
constraints, or when py is inside the maximum turn circle from py,, and cannot be reached,
the extended plan is undefined.

When planning a trajectory on-line and either the NLP (C3), or the formation of an
extended plan according to Definition [C.2 fails, no new plan is selected and the aerial vehicle
keeps executing the old plan.

Note also that any choice of task completing trajectory above the triangle {pi v, Ptop, P}
is also collision free by design. By using information about the highest terrain altitude, one
can form more elaborate, and less conservative, extended plans. The important thing is
that the construction is of low computational complexity.

C.3.4 Long term planning and terminal cost

The purpose of the terminal cost, ¥ : R® — RT, in the NLP (C3)) is to guide the short
term plan in directions that make the flown overall trajectory good, in terms of the objective
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Figure C.2: Two alternatives for forming a task completing strategy. The dash-dotted
curve illustrates the alternative described in Definition Note that this is only one
of many ways to reach the target while flying above the safe dashed line and satisfying
the vehicle dynamics ([CIl). If there is a gap between ¥ and «, the thin solid curve is
a less conservative such option. The important thing is that the construction is of low
computational complexity.

function ([C2). It will also be used below to make sure there is not an infinite number of
plan changes.

As in, e.g., [4], [15], the terminal cost function, W, is derived from a shortest path
problem in a graph. This is done in a standard fashion and is therefore only described
briefly here.

The graph is created by taking a horizontally equidistant mesh and using the terrain
altitude z = H(x,y) as values for the nodes. Above this set of nodes, four additional node
layers are added at z = H(z,y) + jAy meters, j = 1,--- ,4, where Ay is the inter layer
distance. Each node is then connected by edges to its 8 neighbors in the same layer and
the 9 neighbors above, and below.

The edge cost is a weighted sum of Euclidean distance and threat exposure, in accordance
with the choices of g(-), b, c in the objective function (C2). In order to use ¥ to decide when
to change plans, we demand that ¥ is always positive, hence ¥ : R3 — R¥.

Again, as in [4], [15] we calculate the optimal cost to go from each node using a Dijkstra
type of algorithm and then interpolate the node values to find ¥. The interpolation routine
used, can be shown to be consistent and free from local minimums inside each cube in the
grid.

It is also worth noting here that the possibility of updating the “off-line” computed
terminal should not be overlooked. The term “off-line” is rather to be interpreted as, at
a much slower sampling rate than the trajectory planning loop, i.e., in the order of tens
of seconds (cf. [13]). As new information about the environment or mission objectives
is gathered, it can be processed and fed back regularly to the online planner through an
updated terminal cost.

Finally, if the planning and re-planning can be executed on a time scale which is faster
than the vehicle velocity one can, by joining segments of short term plans where the safety
maneuver has been omitted, plan an increasingly longer trajectory ahead with better opti-
mality properties. In the extreme case where all this planning is successful, this will produce
a chain of short term plans all the way to the target and neither the safety maneuver nor
the terminal part of the extended plan will ever have to be executed.
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C.3.5 The Algorithm
In this section we state the proposed algorithm, after making an initial assumption.
Assumption C.2. The first step in Algorithm returns a feasible solution.

In view of the discussion above, this assumption is very reasonable but excludes cases
when the target position is extremely close to the launch position, and can not be reached
even with a maximal turn.

Algorithm C.1.

1. The vehicle is launched at inclination o and velocity vy, in the direction of the target.
At launch, the vehicle follows a default extended plan constructed by augmenting the
initial state according to Definition

2. 'The vehicle executes the given plan for time 7.
While executing, a new plan is sought according to Definitions and

4. If new informations arrive and ¥ needs to be recalculated, this is performed in the
background. Once a new ¥ is calculated it is applied in Definition as well as in [{
below.

5. Let € > 0 be fixed throughout the mission.
If a new plan Py, according to Definitions and is found, then the new plan is
activated instead of the old one, P.

6. If the target is not reached, go to

Remark C.4. The choice of proceeding along the old plan or switching to a new one,
thereby incrementally improving the terminal cost, can be viewed as a conditional version
of the satisficing [16,17] control strategies used in some forms of RHC. In these RHC appli-
cations, the cost acts as a control Lyapunov function with which one can construct a control
with local optimality properties and guaranteed global stability. In the trajectory optimiza-
tion problem considered here, the counterpart of stability is safety and task completion,
which are both already guaranteed by any single plan. The terminal cost function here acts
by providing a means of improving the cost for completing the mission by changing to a
new plan (while retaining safety and task completion) which is executed on the condition
that the terminal cost is incrementally decreased.

C.4 Theoretical Properties

In this section we will prove that the proposed solution will indeed solve Problem

Proposition C.1. If the terrain altitude does not increase within the short term planning
horizon, and beyond that, does not change so that the mazimal terrain inclination, «, is
exceeded, then Algorithm solves Problem [C1l.

Proof. First note that each accepted plan is safe and reaches the goal by construction. So if
there is only a finite number of changes of plan the aerial vehicle will reach the target. Then
note that the W-value of each accepted plan must be at least ¢ better than the previous
one. Since ¥ > 0, there can at most be [¥(pg)/e| changes.

Furthermore, the algorithm is iterative by design, and the RHC scheme makes it compu-
tationally efficient. Finally, the objective function (C2) is approximately minimized. This
proves the proposition. O
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Remark C.5. If the vehicle starts out with a user defined upper bound on time to reach
target, and only new plans that satisfy the bound are accepted, task completion will be
guaranteed. The argument works equally well with a given fuel limit. In these instances
one can thus drop the requirement on decay on the terminal cost ¥ from NLP (C3).

Having discussed the proposed solution method and some of its properties, it is now
time to run some simulation examples.

C.5 Simulations

For environmental representation, real terrain elevation data over the Cascade mountains,
WA, have been used (see Figure [C3). The dataset used is a subset extracted from the
one appearing in [18]2. The full-resolution elevation image, is made up of 16,385 x 16, 385
nodes at 10 meters horizontal spacing. The vertical resolution is 0.1 meters. This dataset
occupies roughly 5 GB on disk and is therefore impractical to work with. However, as will
be seen from the simulation results, but also pointed out in [13], the environment should be
decomposed in a manner that is consistent with the maneuvering capabilities of the vehicle.
Therefore, this high level of accuracy is not needed to capture the global characteristics of
the environment by the terminal cost, ¥. The lower-resolution maps used in the simulations
have therefore been sub-sampled at every 16*" and 256" instance, resulting in a inter-
pixel spacing of 160 and 2560 meters respectively. In the vertical direction, there are five
horizontal layers with 600 meters in between. The vertical positions of each node depend
on the altitude of the terrain at that particular point of the map, as explained above. The
non-uniform grid built this way, can be seen as stretching out the layers of a uniform grid
on the terrain surface.

Figure C.3: The terrain elevation map used in the simulations represents an area of more
than 82km x82km taken from the Cascade range, WA. It contains the summit of Mt.
Rainier, Mt. Adams and Mt. St. Helen’s.

With the non-optimized MATLAB code used, it takes on average 15.8 seconds to both
built the graph representing the environment and calculate the terminal cost. Modifying
an existing graph (in order to incorporate mission objectives), takes only 1.5 seconds on
average. All computations have been performed on a shared Linux cluster, using one of its
four 2.80 GHz Intel Xeon processors.

2This freely available data can also be found at
http://duff.geology.washington.edu/data/raster/tenmeter/onebytwo10/
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Running the algorithm we get the trajectory shown in Figure [C4l The plot also shows
a subset of the safety maneuvers. Note that none of these were actually executed. New im-
proved plans were iteratively replacing the old ones, before the vehicle reached the climbing
part of the trajectories.

4500,

Figure C.4: At the end of the safety maneuver the trajectory is directed towards the target
and has the climb angle «, which by definition is equal to the maximal terrain inclination.
Here, to simplify exposition, the safety maneuver is shown at every tenth time step.

As discussed earlier, it is the terminal cost, ¥(p), that captures the global characteristics
of both the environment and the mission objectives. This is readily done by varying the costs
in the graph representation of the environment. Figure [C.H shows the effect of switching on
a radar having a detection radius of 10km. The position of the radar is marked with a black
triangle, while yellow circles are used to map out the volume where the vehicle is visible
to the radar. The path marked with circles, shows the outcome of the trajectory planner
when the radar is not accounted for. Unaware of its existence, the generated path passes
right through the detection area of the radar. The other path, namely the one marked with
squares, shows the outcome when the terminal cost incorporates the radar. The threat

Figure C.5: The effect of threat exposure on the generated path.
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exposure is now minimized by circumventing and flying at a much lower altitude, utilizing
the protection provided by the terrain and thereby avoiding detection.

One of the most prominent characteristics of adopting a RHC scheme is that, by reducing
the computational effort drastically, it gives us the possibility to repeatedly solve the NLP
on-line with the current state as a new initial value. This way, feedback is incorporated
and a certain degree of robustness is obtained. Next, to put the robustness properties of
the trajectory planner to test, the existence of parametric uncertainty, measurement noise
and other disturbances (such as wind gust or plant-model mismatch) is introduced. To this

end, the nominal update equation, px o = pr—1,1, is modified to
Pk,0 = Dk—1,1 T W,

where w is a uniformly distributed noise parameter, U(—w,w). This modification implies
that we, at the next time instance, will not move exactly to the nominal position we aimed
for but rather to a random point in its vicinity. In what follows, in order to isolate the
effect of the noise parameter, we set 1, = 10, N = 6, and study the generated paths and
objective function (control effort) as w varies in the interval [0, 0.5]. Figure shows
the generated paths corresponding to four increasing values on the noise parameter.

) )
x  (x10* meters) r  (x10* meters)
(a) @ = 0.01 (b) @ = 0.1
z . .
Yy Y
z  (x10* meters) r  (x10* meters)
(©) @ =03 (d) @ =05

Figure C.6: The effect of the noise parameter, w, on the generated paths. For the sake
of reference, the nominal path (w = 0), has been sketched with a white solid line. As
w increases, the offset from the nominal path becomes more evident, but is repeatedly

suppressed by the planner.
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As can be seen in the third column of Table [CJl the greatest disturbance corresponds to a
displacement of more than 40%.Table[C1l also offers additional insight into the simulations
made. In addition to the particular values of w that have been chosen, the actual effect of
it, expressed as maximum offset (in meters) from the nominal position can be read from
the second column. The relative disturbance, i.e., the ratio between the maximum offset
and the maximum inter-node spacing, serves as a comparative measure of the size of the
disturbance. Finally, as seen in the fourth column, the control effort increases as a function
of w.

w | Max. offset | Relative disturbance | [l

0.0 - - 4.88
0.01 + 3'm 2.5% 4.98
0.06| £ 184 m 10.8% 7.94
0.1 + 367 m 20.3% 15.12
0.2 + 734 m 29.6% 17.32
0.3 +1101 m 36.0% 30.48
0.5 +1835 m 42.4% 48.73

Table C.1: Impact of the added disturbance.

C.6 Concluding Remarks

In this paper, results regarding trajectory optimization for aerial vehicles in the three dimen-
sional space has been presented. In particular, properties such as safety and task completion
were in focus.

The alternative outlined in this work, extends previous results by possessing provable
safety properties in a 3D setting. In addition, in our case, safety also renders task completion
possible. This is due to a combination of ideas which include a novel safety maneuver
combined with a task completing trajectory and a conditional plan-changing strategy, where,
starting from a feasible solution, a new plan for the remaining part of the mission is only
accepted if it gives an incremental decrease to the terminal cost. The safety maneuver also
has the beneficial side effect that it makes it possible to cope with hard real-time constraints.

Because of the computational burden it introduces, task completion is here not achieved
by merely prolonging the length of the planning horizon. Instead, it is argued that requiring
monotonicity of the composite cost is sufficient for approaching the target set. Decoupling
the length of the planning horizon from our task completing objectives, enables us to de-
termine it solely on the basis of accuracy demands and computational resources.
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Abstract

Direct methods for trajectory optimization are traditionally based on a priori tem-
poral discretization and collocation methods. In this work, the problem of temporal
node distribution is formulated as a constrained optimization problem, which is to
be included in the underlying non-linear mathematical programming problem (NLP).
The benefits of utilizing the suggested method for on-line trajectory optimization are
illustrated by a missile guidance example.

Keywords: Computational Optimal Control, On-line Trajectory Planning, Adaptive
Grid Methods, Missile Guidance.

D.1 Introduction

THE paradigm of qualitative control design, that is associating a measure of the "utility"
with a certain control action, has been a foundation of control engineering thinking.
Consequently, optimal control is regarded as one of the more appealing possible method-
ologies for control design. However, as captivating and appealing as the underlying theory
might be, real-world applications have so far been scarce. Some of the reasons for this might
be the level of mathematical understanding needed, doubtful viability of optimization un-
der uncertain conditions, and high sensitivity against measurement and modeling errors.
Another particularly important factor originates from the high computational demand for
solving nonlinear Optimal Control Problems (OCP). As a matter of fact, by extending their
"free path encoding method" [1], Canny and Reid have demonstrated the NP - hardness
of finding a shortest kinodynamic path for a point moving amidst polyhedral obstacles in
a three dimensional environment [2]. Consequently, attention have been paid to approz-
imation methods and computationally efficient algorithms that compute kinodynamically
feasible trajectories that are "near-optimal" in some sense. Due to the rapid development
of both computer technology and computational methods however, the above picture has
begun to change. Besides avionics and chemical industry, increasingly many new industrial
applications of optimal control can now be observed. In this paper, the problem of missile
guidance will be in focus.
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It is a well-established fact in numerical analysis, that a proper distribution of grid
points is crucial for both the accuracy of the approximating solution, and the computational
effort (see, e.g., [3,4]). In general, grid adaption is carried out by some combination of
re-distribution (strategically moving the nodes), refinement (adding/deleting nodes), or
employing higher order numerical schemes in regions where the local accuracy needs to be
improved [5]. In most cases however, there exist a trade-off between accuracy and efficiency
in terms of computational effort. In this paper, the focus is on improving accuracy for a
given efficiency requirement. More precisely, once the number of nodes in the temporal
discretization has been decided (depending on, e.g., computational resources), the question
of optimal node distribution is raised. Although adaptive grid methods - which mainly
concern node distribution in the spatial domain - have been an active field for the last couple
of decades, to the best of our knowledge, utilizing them for adaptive node distribution (in the
temporal domain) and on-line trajectory optimization has not been considered elsewhere.

This paper is organized as follows. In Section some background material regarding
computational methods for solving optimal control problems is presented. Subsequently in
Section D3, we advocate that in any computationally efficient method, node distribution
should be a part of the optimization process and show that the receding horizon control
(RHC) method can be considered as an outcome of such a paradigm. In Section [D.4 the
benefits of utilizing the suggested method are confirmed by a missile guidance example.
Finally, this paper is concluded in Section with some expository remarks.

D.2 Computational Optimal Control

Consider the following trajectory optimization or Optimal Control Problem (OCP):

minimize J = fOT L(z,u)dt + ¥ (z(T))
s.t. T = f(JU, u)
g(x,u) < 0
z(0) € S;
z(T) € Sy,

where the state z € R"™, the control u € R™, and the constraints g : R x R™ — RP.
All mappings in this paper are assumed to be smooth and the dynamical system complete
so that every control input, u(-), results in a well-defined trajectory, (). An underlying
assumption however is that due to imperfect information, the kinematic constraints, as well
as the target set, Sy, might change drastically during the course of flight. Consequently, we
can not use the family of techniques that rely on off-line generation of a trajectory database
for on-line interrogation [6-9]. Also, assuming the problem originates from a complex,
real-world application, the existence of analytical solutions is disregarded, thus seeking fast
computational algorithms for solving the OCP.

Problem Transcription

For the actual design of the computational algorithm, the infinite dimensional problem of
choosing a control function in a given space, have to be turned into a finite dimensional
optimal parameter selection problem, i.e., a non-linear mathematical programming problem
(NLP). This process of representing the continuous time functions by a finite number of
parameters, is referred to as transcription and is typically achieved by either temporal
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discretization or finite sum of known basis functions® [12]. Since this latter transcription
method leads to implicit constraints and gradient expressions, which in turn may give
increased computational complexity, the focus in this paper will be on transcription methods
based on temporal discretization.

It is further conceptually important to differ between direct and indirect transcription
methods (see Figure [DL)). For a given OCP, indirect methods, which are based on the cal-

direct transcription

> N
OCP - OCP
consistency
Hamiltonian Lagrangian
Adjoints Lagrange multipliers
PMP KKT
indirect trancription
7\’ 1n - N}\.
OoCP” _ OCP
consistency

Figure D.1: Direct and indirect transcription methods.

culus of variations, start off by introducing the Hamiltonian and formulating the optimality
conditions according to the Pontryagin Maximum Principle (PMP). They then proceed by
transcribing the associated two point boundary value problem (TPBVP) (denoted OCP*
in Figure D). In contrast, direct methods transcribe the OCP directly, hence turning it
into a large NLP (denoted OCP” in Figure [D:1)). The dual to this NLP and the Lagrange
multipliers may be achieved by way of the Lagrangian and the Karush-Kuhn-Tucker (KKT)
conditions. The direct- and indirect methods have a particular simple relation for the so
called complete methods [13], for which transcription and dualization indeed commutes, so
that the Lagrange multipliers of the NLP are a multiple of the discretized values of the
adjoint variables associated with the PMP.

Although indirect methods are considered to produce more accurate results, they are
not typically used to solve problems having complex dynamics or constraint set. Neither
are they suitable for problems where the underlying OCP is considered to be changeable
in terms of the final manifold, S; and/or the constraint set, g(z,u). This is mainly due
to the possibly ill-conditioned properties of the TPBVP, but also the occasionally tedious
derivation of the necessary conditions via PMP. Bearing in mind the type of problems
considered in this paper, the focus will therefore be on direct transcription methods.

In most direct methods (see, e.g., [12] and the references therein), transcription is
achieved by a priori partition of the time interval into a prescribed number of subintervals
whose endpoints are called nodes. The NLP variables may then be taken as the value of
the states and/or controls at these nodes. The integral cost functional and the constraint
set are discretized similarly and approximated by any preferred quadrature rule (consult,
e.g., [3,14]). Finally, additional constraints are imposed on the NLP variables so that the
state equations are fulfilled at the so called collocation points.

LCertain choices for basis functions, blur the distinction between the two mentioned transcription meth-
ods (see, e.g., [10,11]).
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D.3 Adaptive Node Distribution

It is a well-established fact in numerical analysis, that a proper distribution of grid points is
crucial for both the accuracy of the approximating solution, and the computational effort [3,
4]. Consequently, the use of adaptive grid methods has for long been an essential element in
the sphere of numerical solution of partial differential equations (PDE) as well as ordinary
differential equations (ODE) [15]. Despite being an active field for the last couple of decades,
to the best of our knowledge, utilizing adaptive grid methods for finding on-line solutions
to the trajectory optimization problem has not been considered elsewhere. The basic idea
is that by concentrating the nodes and hence computational effort in those parts of the
grid that require most attention (e.g., areas with sharp non-linearities and large solution
variations), it becomes possible to gain accuracy whilst retaining computational efficiency.
This can be regarded as one of the explanations to the success of the receding horizon control
(RHC) or model predictive control (MPC) methods (see, e.g., [16,17]). Here, the doubtful
viability of long term optimization under uncertain conditions is adhered, so that instead
of solving the OCP on the full interval, one repeatedly solves it on the interval [t., t. + T}
instead. Here t. denotes the current time instance and 7, is the planning horizon. However,
even in the RHC case, the sub-horizon OCP on [t,t. + T,] is most often solved based on,
if not equidistant (uniform), but at least a priori temporal discretization techniques.
In general, there exist three types of grid adaption techniques [5]:

1. h-refinement: strategically adding extra nodes to the existing grid in order to improve
local grid resolution.

2. p-refinement: employing higher order numerical schemes in regions where the local accu-
racy needs to be improved.

3. r-refinement: maintaining a fixed number of nodes, but relocating them strategically over
the interval.

Generally, trajectory optimization run-times are critically depending on the number of
variables in the NLP. These in turn, are proportional to the number of nodes in the temporal
discretization, hence-forth denoted N. How the solution time varies as a function of N is
depending on the structure of the considered problem, adopted solution method and not
the least; the particular NLP solver used. Figure D2 illustrates the average, and maximum
run-times of NPOPT which is the solver used for all simulations in this paper. NPOPT is
an updated version of NPSOL; a Sequential Quadratic Programming (SQP) based method
for solving NLPs [18]. It is worth mentioning, that the average and maximum have been
taken both over a number of planning horizons (typically 10 different values) and iterations
(typically 100 — 150 iterations per planning horizon). This in order to isolate the relation
between the number of nodes and the solution run-times.

The essence of Figure is that the choice of N is to a large extent restricted by
real-time computational requirements. Hence, it is extremely important to keep N as low
as possible when aiming at constructing computationally efficient methods for trajectory
optimization. Therefore, it is the idea of r-refinement that suits our purposes best. To this
end, let p = [t1, - ,tx] € RY denote a partition of [0, T},

O=ti1 <ta<---<ty_1 <ty <T.

Adaptive grid methods are then based on either equidistribution of a monitor function, or
functional minimization (FM) [4,5,19].
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Figure D.2: The increasing average and maximum run-times of NPOPT as a function of
N. Computations are performed on a shared Linux cluster, using one of its four 2.80 GHz
Intel Xeon processors.

The equidistribution principle (EP) requires a chosen positive definite monitor function
(or weight), w, to be equidistributed over all subintervals. Mathematically, the EP can be
expressed in various equivalent forms, e.g.:

tit1 fdet
mi(p):/ wdt—2%—— =0,i=1,---,N—1,
N N1

iti tit1
mi(p):/wdt—/ wdt=0,i=2,--- ,N—1.
ti—1 t;

i

As an example, w = 1 gives rise to the frequently used uniform (equidistant) discretiza-
tion method. Other commonly employed monitor functions include the "arclength monitor
function", w = Ve + 42 (claimed to be the most efficient among all choices), and "curvature
monitor function", w = (¢ + jé2)%. Here the design-parameter, ¢ > 0, decides how dense
the nodes are lumped in the circumvent of areas with large solution variations.

The functional framework to grid generation (FM), is based on the principle of specifying
a measure of the grid quality. Traditionally, principles as smoothness, orthogonality and
clustering properties of the grid are included in the functional, I(p), [4,19]. Minimizing I(p)
will produce an optimal partition with respect to the chosen grid quality measure.

Based on the two existing frameworks for adaptive grid generation (EP and FM), we
now outline a generalized approach. Regardless the choice of w, we remark that node
allocation by the EP, can be determined by imposing a number of grid constraints, m(p) < 0.
These constraints are to be augmented with the original constraints, g(z,u). Note that this
approach introduces additional constraints and state variables (namely p) in the augmented
NLP. However, it also enable us to use a partition with smaller number of nodes compared
with an a priori and fixed discretization method, so that the total number of variables
and constraints might still be reduced. The idea is then to formulate the problem of node
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distribution as a constrained optimization problem:

minimize I(p) (D.1)
P

s.t. m(p) <0,

which is to be augmented with the underlying NLP. From (D)) it is seen that EP and
FM are merely special cases of the suggested approach. We conclude this section by giving
examples of the usage of this approach.

Example D.1. Setting d; = t;41 — t;,4 = 1,--- , N — 1, the solution to the following
optimization problem:

minimize [(J) = SNl —clng;
st. m(d) = X0, di—T <0 (di>0),

is the equidistant RHC discretization scheme with ¢ deciding the step length (and hence
planning horizon). This follows since if (N — 1)e < T, then

mu@:1—§:0=¢¢=a

1
Example D.2. The linear constraint

(N—1

€1 )
m(d) = d1 — SQT S O,

i=1

reflects the objective of distributing €; parts of the nodes in the first €5 parts of the time
interval.

The main reason for being interested in this types of constraints lies along the line of
thought of RHC/MPC approaches; that is considering current information as perishable so
that it is favorable to concentrate the nodes in the near future.

D.4 Design Study: Missile Guidance

Traditionally, the problem of steering a missile to its target is broken down into (at least)
two subproblems: the problem of trajectory optimization and the problem of auto-pilot de-
sign. This can be viewed as a control system having two degree of freedom; an inner loop
(the auto-pilot) and an outer loop (the trajectory optimizer) (see Figure [D.3)).

Objectives Tra_]:cctf)ry ref Y
Constraints Optimizer
Tref

Figure D.3: Two level separation of the missile guidance problem.

The trajectory optimizer provides a feasible feed-forward control and reference trajectory
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that is optimal in some specified sense with respect to, e.g., time to intercept or intercept ve-
locity, and subject to constraints on, e.g., terminal aspect angle (given by warhead efficiency
and target vulnerability) or path segment location (dictated by tactical considerations). It
is then the task of the auto-pilot to perform the trajectory following.

By virtue of this separation, only suboptimal solutions can in general be found, but the
advantage is that the details of the dynamics of the missile only enters into the trajectory
optimization part of the problem as (relatively simple) conditions on the reference trajectory.
In this work, the existence of an auto-pilot is assumed, so that the focus will solely be on
the trajectory optimization part.

By means of standard approximation procedures in flight-community (see, e.g., [20,21]),
the six-degree-of-freedom (6DoF) equations of motion of the missile in R3, can be reduced
to 3DoF planar movement in two orthogonal subspaces, namely the pitch-, and yaw-plane.
Since the 3DoF equations of motions in these planes are similar and decoupled, in what
follows, just the pitch-plane dynamics will be considered.

The 3DoF equations of motion in the pitch plane consider the rotation of a body-
fixed coordinate frame, (X, Z;) about an Earth-fixed inertial frame, (X, Z.), as seen in

Figure D4

\
\\ Zb

Figure D.4: Missile system variables.

The governing dynamic equations are

. F, .
W = — —qw — gsinf
m

. F,
w = — +qu+gcosb

m
) M
-7,
0 = q
Lo = wucost +wsinf
2, = —usinf + wcosb,

where v and w are the X}, and Z, components of the velocity vector, z. and z. denote the
position of the missile in the inertial frame (X., Z), ¢ is the pitch angular rate, 6 denotes
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the pitch angle, m is the missile mass, g is the gravitational force, while I, denotes the
pitching moment of inertia. The system inputs are the applied pitch moment, M, together
with the aerodynamic forces, F, F., acting along the X} and Z; axis respectively. During
the simulations we adopt the constants given in Reference [22] and set m = 204.02 kg,
g =19.8m/s* and I, = 247.437 kg m?.

Referring to Figure [DLAl the first simulation shows the terminal guidance part of a
missile trajectory optimization problem. The missile starts off horizontally from (0, 10)
aiming at a target in (700,0) with terminal aspect angle —%. Figure [D.3 depicts the
reference trajectories with the missile velocities (in the inertial frame) indicated by small
line segments. In the adaptive case, an EP based on the arclength monitor function is used.
Seeing beyond the unequal axis scales, the nodes have been distributed more evenly over
different path segments. In fact, there are 7 nodes/100 m path segment in the adaptive
case, while the same figure varies between 5 — 13 in the static case.
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Figure D.5: Reference trajectories: static (o) and adaptive (o).

Figure shows the optimal control approximation error as a function of N. It can
be noted that, for a given N, the extra degree of freedom provided by distributing the
nodes is used constructively to improve accuracy. This illustrates the soundness of the
proposed approach. Moreover, Figure reveals the nonuniform convergence rate of the
approximation error which - in our particular case - is seen to be minimized for N = 25.
The reason for this is the pronounced nonlinearity of the considered NLP together with
the fact that the used optimization routine (NPOPT) is a local optimizer, i.e., does not
guarantee convergence to a global minimum. It is therefore not possible to expect that a
higher value on N should always yield a better trajectory approximation.

As previously mentioned, in general, there is a trade-off between accuracy and efficiency
in terms of computational effort. Once we have observed that re-distributing the nodes
improves the accuracy of the approximation, one might wonder how this effects the compu-
tation time. Figure D7 shows the average CPU-time used in the simulations for different
values on N. It can be noted that adopting the proposed adaptive node distribution scheme,
does not bring any increase in the average computational time. We believe that the non-
linearity of the original set of equations describing the motion of the missile, is one of the
main reasons for this.
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Control error

Figure D.6: The accuracy of the approximating control.
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Figure D.7: The average CPU-time for the uniform- and adaptive grid generation scheme

as a function of N.

D.5 Concluding Remarks

The main purpose of this paper has been to advocate the use of adaptive grid generation
techniques for on-line trajectory planning. In this work, we have chosen to concentrate on
the use of the so called r-refinement technique; that is strategically re-distributing a given
number of nodes over the time domain. The main reason for this has been the pronounced
inter-relation between the number of nodes in the temporal discretization and trajectory
optimization run-times.

It is argued that in any computationally efficient method, node distribution should be a
part of the optimization process. This, in order to minimize the discretization error and gain
accuracy, without bringing any drastic increase in the computational effort. Here-within,
re-distributing the nodes have been formulated as a constrained optimization problem; to
be augmented with the underlying NLP.
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The missile guidance problem considered, showed that the extra degree of freedom pro-
vided by distributing the nodes may be used constructively to improve accuracy. These
advantages accrue particularly in the case when having a nonlinear dynamic system at
hand. The reason for this being that having the node positions as variables in the un-
derlying NLP, turns a linear system into a bilinear one, which may then give rise to an
undesirable increase in computational complexity.
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Abstract

An important class of non-uniformly observable systems comes from applications
in mobile robotics. In this paper, the problem of active observer design for such
systems is considered. The set of feasible configurations and the set of output flow
equivalent states are defined. It is shown that the inter-relation between these two sets
may serve as the basis for design of active observers. The proposed observer design
methodology is illustrated by considering a unicycle robot model, equipped with a set
of range-measuring sensors.

Keywords: Nonlinear Observer Design, Active Observers, Non—uniformly Observable
Systems, Mobile Robotic Systems.

E.1 Introduction

SINCE 1970’s there has been an extensive study on the design of observers for nonlinear
control systems, [1-7]. It is well known that for such systems, observability does not only
depend on the initial conditions, but also on the exciting control. Most current methods,
such as observers with linearizable error dynamics [3] and high gain observers [6, 7], lead
to the design of an exponential observer. As a necessary condition for the existence of a
smooth exponential observer, the linearized pair must be detectable [5]. In fact, most of
the existing nonlinear observer design methods are only applicable to uniformly observable
nonlinear systems. In [8] it is pointed out that one of the key questions in nonlinear control
is "how to design a nonlinear observer for nonlinear systems whose linearization is neither
observable nor detectable".

An important class of non-uniformly observable systems comes from applications in
mobile robotics. For such systems, due to environmental restrictions and the way the
sensors function, constraints have to be put on the control. This thus presents an interesting
issue: how to design an exciting control to maximize the rate of convergence for an observer,
namely how to design an active observer. Maximizing "observability" has been an important
issue in the field of active perception in robotics and computer vision. However, study from
the systems and control point of view in terms of observer design still lacks, [9].

113
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This paper considers the problem of active observer design for a class of mobile robotic
systems and an alternative design method is presented. It extends previous work in [10] by
providing more formal and generalized definitions of the two sets utilized in the proposed
design method, namely the set of feasible configurations and the set of output flow equivalent
states. Also in this paper, the notion of small-time observability for mobile robotic systems
is introduced. It is shown that the inter-relation between these two sets implies small-time
observability and hence may serve as the basis for design of active observers. Furthermore,
for the specific design study on the unicycle robot model, we consider the case of having
more than 2 range-sensors but also demonstrate the robustness properties of the suggested
observer in the face of noisy measurements.

The disposition of the paper is as follows; In Section [E2] a brief review on nonlinear
observability and observers is given. This would set stage for our study on observability
and active observer design for mobile robotic systems in Section [EZ3 To illustrate the
concepts introduced in Section [E31] a case study is given in Section [E4l The simulation
results thereof are presented in Section and finally, some concluding remarks are made

in Section [Efl

E.2 Preliminaries

Consider the nonlinear control system

z = F(x,u) (system dynamics)
DI
Yy h(x) (system output)
with state x € X, control u(-) € U and output y € Y. Here X,U and ) are smooth
manifolds of dimension n,p and m respectively. All mappings in this paper, are assumed

to be smooth. If ¥ is complete, the composed mapping from u(-) to y(-) is referred to as
the input-output map of X at xq [11]:

105, : ul(-) = y().

The most common definitions of the observability properties of ¥ then boil down to the
injectivity properties of Z(’)fo with respect to the initial condition, xg. Consider two states,
x1 and x2, being equivalent (denoted x1 ~ x2) if and only if they have the same input-output
map for all admissible inputs, i.e.,

T ~ 1 = IO (u(-)) = ZO, (u(+)), Vu(-) €U.

Further, let I(xo) denote the equivalence class of xg, i.e., let I(xg) = {z € X: x ~ zo}.
Based on this, we arrive at the following two definitions [12,13].

Definition E.1 (Indistinguishability). Two states, x1 and xo are said to be indistinguish-
able if and only if they are equivalent.

Definition E.2 (Observability). 3 is said to be observable at zg if I(xg) = {xo}. It is
further said to be observable if I(x) = {x} for all x € X.

It is notable that the equivalence relation on X, and hence observability, is a global
concept in two senses:

Property E.1. All states in X are to be distinguished from each other.

Property E.2. The generated trajectories are unrestricted.
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Also, observability is an infinite-horizon concept, since:

Property E.3. There is no upper bound on the time-interval that has to be considered in
order to distinguish points.

Consequently it is possible to introduce various restrictions, or relaxations on Defini-
tion Some of these modifications are considered below?.

Definition E.3 (Weak observability). The system % is called weakly observable at xq if
there ezist a neighborhood of xo, N(xo), such that I(zo) N N(zo) = {xo}. X is weakly
observable if it is weakly observable at every r € X.

Remark E.1. The notion of weak observability (Definition [EJ)) is a relaxation of Prop-
erty [EXT1

Given a system Y and an open set 2 C X, the restriction Y, refers to a control system
with state space 2, defined by the restriction of 7 and h to Q x U’ and € respectively.
Here U{," denotes the subset of all admissible inputs that generates trajectories that start
in zg and lie in Q.

Definition E.4 (Q-indistinguishability). Two initial states, x1,z2 € Q are said to be Q-
indistinguishable if

TO72 (u() = TO52 (u(), V() € UG NUG?.
This relation will be denoted x1¢ z2 and I (x).

Definition E.5 (Strong observability). The system X is said to be strongly observable at
xo if for every open neighborhood Q2 of xo, Ia(xo) = {xo}. X is called strongly observable
if it is strongly observable for all x € X.

Remark E.2. The notion of strong observability (Definition [EH) restricts Property
Hence, strong observability implies observability since Ig(z) = {z} for all Q@ C X gives
I(z) = {«} for the special choice of Q = X.

Definition E.6 (Instant observability). The system X is said to be instantaneously observ-
able at xq if there exist a neighborhood N(xq), such that for every open neighborhood Q) of
xo contained in N, Ig(xo) = {zo}. X is called instantaneously observable if it is so at every
Tg € X.

Remark E.3. The notion of instant observability (Definition [E.fi) relaxes Property [E1]
while restricting Property

For the dynamical system, X, an observer may be defined as follows (cf. [1,4,14]).

Definition E.7 (Observer). A dynamical system with state manifold Z, input manifold
U x Y, together with a mapping F (Z xU xY)— TZ is an observer for the system X,
if there exists a smooth mapping ¥ : X — Z, such that the diagram shown in Figure [E1],
commutes and the error trajectory z(t) — V(x(t)) converges to zero as t — co.

In diagram [EJl, ¥, denotes the tangent mapping, 7 is projection upon a Cartesian
factor, while 7 denotes the projection of the tangent bundle. Commutivity of the diagram

I The observability nomenclature is not standardized. In this article, the terms used by Hermann and
Krener in [12] and Respondek in [13] are merged.
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:X\ (Womx, my, homx) /7:2

Figure E.1: Commutative diagram defining an observer.

means that all the maps indicated by arrows should be consistent regardless of point of
arrival

According to Definition [E7, the objective when designing a general observer, is to track
U(x), rather than z itself. Note that the same observer dynamics, F , may allow several
different full observer mappings, ®, and that in general, a full state observer

S . = -7:—(27u7y)
E'{fc = P(z,u,y)

w
|

may not be put in the form & = E(z,u,y).

E.3 Mobile Robotic Systems

One distinguishing feature of mobile robots is the use of exteroceptive sensors for sensing
the environment and aid localization. The output of ¥ is next extended to more explicitly
incorporate exteroceptive sensor readings. Bearing in mind the particular applications
encountered in the robotics community, it seems convenient to split the state vector, x € X,
into two parts; one defining the state of the platform in its work-space, W, and the other only
in its configuration-space, C, so that x = (z,,,z.) € WxC = X. The work-space of the robot,
W, is assumed to be a smooth and connected manifold of dimension n,, € {1,2,3}. However,
the configuration-space, C, might have arbitrary dimension, n., and includes typically the
description of the internal states of the platform.
Consider control-affine dynamic systems of form:

Ty = ful®)+ guw(T)u
D I e ey
el . y — he(x)

0 # elzy),

where z,, € W, 2. € C, u(-) € 4 and y € Y. The map e(q) = 0 defines obstacles (walls) in
the environment. We use the notation A, to indicate the interaction of the sensors with the
environment but also to emphasize the dependence of the output on the environmental map.
In this paper, the case where the components of the environment (e.g., surrounding terrain,
obstacles or walls) can be modeled as a single, connected, (n,, — 1)-dimensional smooth
manifold (hyper-surface) in W will be in focus. It is further assumed that the hyper-surface
defined by e(q) = 0 can be parameterized as

g=10(sg), sps€SC R(”“’*l),
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where 6 is assumed to be known. This last assumption relates to one of the fundamen-
tal problems in robotics, namely the simultaneous localization and map building problem
(SLAM), where one tries to reconstruct the environmental map, 6, and the full state vector,
x, at the same time. By assuming that the map is given, we focus on a subproblem in
SLAM, namely the re-localization problem where the state vector, x, is to be reconstructed
based on a combination of exteroceptive and introceptive sensor-readings.

Example E.1. Consider the unicycle vehicle model equipped with a range sensor mounted
along its direction of orientation, ¢. It moves inside an elliptic field, with half-axes ¢; and
c2, centered at the origin of W (c¢f. Figure [E2)).

A

C2

Figure E.2: The unicycle robot equipped with one range-measuring sensors moving inside
an elliptic field.

Then the hyper-surface
2 2
(&) (2 -1
C1 Co

models the surrounding in R2. It can be parameterized by the angle 7 € S', so that

o= @] =] ot | <o

q2 co sin(T)

with sy = 7. The control system can be modeled as

1 = wuycos(o)

x..g = Uz sin((b)

¢ = ug

y = (crcos(T)—x1)cos(¢) + (cosin(r) — x2) sin(e),

where (z1,72) € R? is the position of the reference point on the robot, ¢ € S! denotes
its orientation and the two control inputs, u; and us are the robot’s linear- and lateral
velocities respectively. In addition, 7 as a function of the state is implicitly defined by

cosin(T) — g _ tan(e).

c1c08(T) — 21
Example E.2. Consider a nonholonomic mobile robot equipped with a centrally mounted
video camera. The environment consists of the goal flag and the start flag. The task for the

robot is to map the environment while localizing itself in the map. Naturally, one of the
easiest ways to construct a coordinate system is to set the goal flag as the origin and set
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the start flag on the x;-axis, i.e., with coordinates (dp, 0). If we assume that on the image
plane what we can identify is the distance of the vertical line feature to the center and the
focal length of the camera is one, then the output of the system can be expressed as

y1 = tan(¢ — atan(—z2,dy — 1))
yo = tan(¢ — atan(—z2, —x1)).

E.3.1 Observabiity and Active Observers

As pointed out in Section [E22], observability is an infinite-horizon concept (Property [E3).
Notice that the observability notions listed in Section relax/restrict Properties [E]]
and [E2 but there is no natural setting for solely modifying Property [E3l To adapt this for
the area in mind, the following is suggested.

Definition E.8 (Small-time observability). A nonlinear system, X,op, is said to be small-
time observable at x1, if for any xo € X and any T > 0, there exists a control, u(-) € U
and t € [0 T, such that

he(x(t, @1, u(-))) # he(z(t, 22, u(-))).
It is further said to be small-time observable if it is so at every x; € X.

Remark E.4. The notion of small-time observability (Definition [ER) restricts Prop-
erty [E3

Remark E.5. Although not made explicit, modified versions of Definition (i.e.,
weakly /strongly small time observability) can be obtained in apparent manners.

To stress the distinction between the newly introduced concept of small-time observ-
ability (Definition [E.§) and those of Section [E2] recall that Q-distinguishability, the un-
derlying concept of Definition [EXH only involves separation of points in the restricting 2.
In extension, the term "instantaneously" in Definition implies that a point must be
distinguishable from its instant neighbors through trajectories that stay in the same instant
neighborhood. Therefore, there is no natural setting for solely modifying Property [E3
without necessarily modifying Property [EJl and/or (cf. Remarks [ET] and E3). In
contrast, the notion of small-time observability does not put any constraints on the gener-
ated trajectories nor the part of state-space that has to be distinguished, but solely restricts
the time-interval that has to be considered in order to find deviating output.

Given the environmental map, 0(sg), the sensor measurements are considered as a map-
ping, h. : X — Y. For a given measurement, y € ), the inverse image of y under h. is the
set of all z € X such that h.(x) = y. In general, X and ) do not have the same cardinal
number so that a measurement might correspond to more that one state in X. To cope
with this, the following definitions are made.

Definition E.9 (Set of feasible states). The set of feasible states with respect to y, denoted
FSy, is defined as the inverse image of y under h. in the state-space, i.e.,

FSy={z € X : he(x) =y}

To introduce a measure of how well a certain point in the state-space matches a given
measurement, a functional or value-function is needed:
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Definition E.10 (Value-function). A continuously differentiable, non-negative functional,
Vy: & — R,

such that,
reFS, = V,(z)=0,

is called a value-function.

It is notable that Definition is well-suited for scenarios where one might have noisy
measurements. In such cases, the feasible states may consist of all z, such that V,(z) <e,
for some € € RT.

By utilizing the value-function, it is possible to drive the state estimation within the
set of feasible states, S,. This will be shown in greater detail in Section [E4l Next, we
focus on the problem of localizing the actual state within this set. In order to distinguish
the states in S, it is necessary that the system output do not remain constant, i.e., the
exciting control has to be designed such that y # 0. For each point xg € X, it is possible
to associate another set to it consisting of all points that have the same output flow.

Definition E.11 (Set of output flow equivalent states). Given any admissible control,
u(-) € U, for each state xo € X, the set of states that are output flow equivalent to xg
under u(-), denoted OF, , is defined as all states x1 € X, such that there exists T > 0 such

zo?

that for allt € [0 T,
he(z(t,z1,u(+))) — he(x1) = he(z(t, o, u(:))) — he(z0)-

By means of the two sets defined in this section, it is possible to put constraints on the
exciting control.

Theorem E.1. Given xg € X, if there exists an exciting control, u,,(-) € U, and a
neighborhood, N (zo) such that

FSy NOF4:° N N(xo) = {20}, (E.1)
then the system is weakly small-time observable at x.

Proof. We prove by contradiction. Suppose the system is not weakly small-time observable
at xo, 1. e.,

Ja1 € N(zg)\zoand T >0:Vt € [0 T]and Vu(-) € U,

he(z(t, z1,u("))) = he(x(t, To, u(-))). (E.2)
For the special choice of ¢ = 0, Equation (E2) gives
he(w1) = he(0) =, (E.3)

meaning that z; € FS,. Consider then the special choice of u(-) = w4, (-), which together
with Equation (EZ3)) and Definition [ELTT implies that 2, € OF,.°. Hence we have shown
that assuming (E2)) implies the existence of z; such that

(21 € N(z0)\20) A (z1 € FSy) A (x1 € OF52°), &
FSy NOFz° N N(xo) # {20}
0

Constraint ([E) serves as the basis for design of active observers.

Theorem [E] also provides an intuitive interpretation of the concept of small-time ob-
servability. Namely, if from the knowledge of the measurement, y(¢) (which defines FS,)
and its derivative flow at time ¢ (which defines OF?) one can uniquely determine the state,
z(t), then a dynamical system is said to be small-time observability.
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E.4 Observer Design Study

In this section, we revisit the robot model from Example [EIl The sensor readings however
will differ. Tt is now assumed that the robot is equipped with [ range-measuring sensors,
oriented at angles a;,i = 1,---,l with respect to ¢. Referring to Figure [EZ3 sensor i
measures distance p; against some smooth closed curve, § : S! — R?  that models the
terrain. Each sensor is directed along a ray making an angle of ¢ + a; with the z;-axis.
Thus the outputs for the system are

Yi = Pi, Z:]_,7l

Q(Sl) 9(52)

Figure E.3: The unicycle robot equipped with [ range-measuring sensors.

The goal is to reconstruct the full state, x = [x1, z2, ¢], based on sensor readings
p = (p1,-+,p). As remarked in conjunction with Definition [EX] the objective when
designing a general observer is to track z = W(x), rather than x itself. To this end, it is
noted that the problem of reconstructing = in this particular problem, is equivalent to the
reconstruction of vehicle orientation, ¢, and the parameter values, s; € S', i =1,---,1,
corresponding to the points on the curve measured against. It is so since the relative
orientation angle of each sensor, a;, is known. Setting the observer state

2=U(z) = [s1,---,5,9]" € Z,
the following geometrical relationship between x and z holds:
0(51) = [331, mQ]T + piR(¢+OLi)el) 1= 1a o 7l7 (E4)

where e; = [1  0]7 and R, denotes the rotation matrix,

cos(a) sin(a)

Fa = —sin(a) cos(a)

Aiming at constructing an appropriate value-function that can aid the observer design, for
each sensor i, define a mapping v; : Z — R? according to

vi(2) = 0(5i) — piR(p4a,)€1-



AcTIvE OBSERVERS FOR MOBILE ROBOTIC SYSTEMS 121

Intuitively, v;(z) points out where measurement ¢ indicates that the vehicle is located in
R?. Next, define v;; : Z—R? as

vij(2) = vi(2) — v;(2),

which indicates the difference between the vehicle location estimated by measurements p;
and p;. Finally, the value-function is defined as

-1
V(e = 5 3 S vig(2) s (2).

i=1 j>i

The non-negative value-function, V,(z), serves as a measure of how well z, matches a set of
measurements, p. To see this, it is noticed that V,(z) = 0 implies that in the observer state,
z (which naturally corresponds to a state, z € X, by relation (E4)), the vehicle precisely
measures the distances p; against the points 0(s;),i = 1,--- ,[. In the other direction, clearly
if p are the measured distances and z is the actual observer state, then v;(2) = [x1,22]T, Vi,
and hence V,(z) = 0. This allows us to specify the set of feasible states by means of the
value-function, as discussed earlier.
As for the set of output flow equivalent states, from (E4) we obtain

0=0'(s;)" Ry(urea + piRa,e2 — piuzRase1) = Qi

by first differentiating with respect to time and then multiplying by ¢'(s;)” Rz from the
left. Definition [ET1l implies that on the set of output flow equivalent states, the geometric
relation (E-4) must be preserved on a non-empty time interval, which implies that Q; = 0
for all i. Hence, the mapping defined by

Q=1Q1,, Q" =0,

contains the set of output flow equivalent states for this system.

Under suitable assumptions on the exciting control, the sensor orientations and the
environmental map (see [10] for details), it can be shown that this set and the set of feasible
states together fulfill the condition of Theorem [EX1] which implies that we are bound to have
weakly small-time observability. The way the two sets fulfill the condition of Theorem [ET]
is that the differential of @, denoted 9.Q, should not be perpendicular/orthogonal to the
kernel of the map 0.V,,. We can then conclude that the two sets are not locally parallel and
hence will cross each other in one single point. This is the requirement of Theorem [E1l

From the results of [10], it is concluded that the exciting control must be chosen to
satisfy

sina;  —p1

Ui

YT ] &3
Sin ¢y — Pl

Next, we show two special families of exciting control that fulfill (EH), are bounded, have

bounded derivative, and generate periodic trajectories that will remain inside the elliptic

environment, denoted 2. The first one uses trigonometric functions to generate motion that

moves back and forth while the other one follows the curvature of an elliptic reference path

back to the initial position.

Exciting Control 1 (Trigonometric Functions). We first elaborate with exciting controls
of the following form

wo= [ |- [
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Below, it is shown that for particular choices of the parameters, k1, p1, k2, p2, the exciting
control, ug, (t), generates periodic trajectories. Hence for a given initial position, zg, in the
interior of €2, by adjusting the remaining free gain parameters, ai,as, we are able to keep
the generated trajectory inside 2 for all time.

Starting with the vehicle orientation, ¢, by integrating its dynamics, we obtain

o(t) = ¢o — 22 cos(kg + pot).
D2

Inserting this into the position dynamic yields

i1 = w(t)cos (¢0—%cos(k2+ pgt)) 2wy (Her(t),
b2
&2 = wui(t)sin (¢0— Z—zcos(kg—i— pgt)) 2 1 (Dea(t).
Hence,
to+t
z1(t) = I1(t0)+/ up (7)eq (7)dr,
(:50+t
wa(t) = walto) + / wr (F)ea(T)dr.

To obtain periodicity of motion, we want to put constraints on the function u; such that

to+T
/ ul(t)ci(t)dt = 07 1= ]., 2,

to

for some T € RY, i.e., we return to the initial position at time ¢y + 7.
To this end, notice that ¢;(t), i = 1,2, are periodic functions with period f}—’; and that

the choice ko = 0 gives
2
clt) = (= —1), i=1,2.
D2

Then if we choose u; as a periodic function with period ‘;—’; which further satisfies

ul(t) = —ul(i—: — t),

we get

toJr;%r
/ w (et =0, i=1,2,

to

which implies that the vehicle will return to it’s starting position at ¢t =ty + i—’;.
The family of functions, u4(t), fulfill the above mentioned requirements if we set

_

D1 2 )
21w

kl + —p1 = TN,
P2

for some n € Z. In the simulations presented in Section [EX5, we have set a1 = 0.5,k =
—m,p1 = W,ag = 1.5, ks = 0 and ps = 27, which fulfill the requirements with n = 0.
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Exciting Control 2 (Curvature Following). Another family of controls that meet our
objectives can be extracted by applying standard curvature following techniques.
From the system dynamics we obtain that

T2
¢ = arctan —,
Z1
Uy = 4/ 33% + 33%,
§_ B2~
U2 = = 5 . .9
2 + @3
Let
xf = apcos(wt)
xh = agsin(wt)

denote the periodic reference trajectory, in this case, an ellipse. We have

& = —ajwsin(wt)
i = —ajw? cos(wt)
¥ = agwcos(wt)
i = —ayw?sin(wt),
and hence we take

ur(t) = w\/a% sin?(wt) + a3 cos?(wt)
a1a2w3 ai1asw

U/Q (t) = 2 = 2 : 2 2 2 .

uy a3 sin”(wt) + a3 cos?(wt)

Remark E.6. In principle, the choice of the gain parameters, a; and a2, should depend
on the initial state, xo, or more precisely, the distance to the closest obstacle which can be
estimated by the range sensors.

Putting it all together, the following observer dynamics is proposed for this particular

problem: R ST
: Vo
= k"[az} kQ[az} @, (E.6)
where kv, kg > 0 are suitably chosen observer gains.

The first term in (EZ6) serves to drive the state to the set of feasible states, FS,, while the
objective of including the second term is to strive towards the set of output flow equivalent
states, OF%. Since these two sets fulfill the condition of Theorem [EJ] which implies that
the system is weakly small-time observable, any two states can be locally distinguished.

To obtain a full state observer, the full observer mapping, ®, is to be decided (cf.
Figure [E]). By relation ([E4), any parameter value, s;, together with ¢, suffice for recon-
structing z. Thus there are several choices for . However, in the case of faulty measure-
ments, different parameter values might give inconsistent state estimation, why for instance
a simple vector average can be chosen.

The following proposition addresses the convergence properties of the proposed observer.

Proposition E.1. Assume the control and it’s first derivative are both bounded and generate
periodic motions. Then the estimation error of the proposed observer (E8) is locally bounded
and can be made arbitrarily small by tuning the observer parameters, ky and kq.
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Proof. Let z(t) and 2(t) denote the true and estimated states respectively and set z = Z2—z.
Defining a candidate Lyapunov function

1 1
V(6z) = §5ZT5Z = §||5z||2,
the total derivate of V along the observer dynamics (E.f) becomes

T/a .
V= _5.7 [kv 8Vp (2) ok aQ(Z)T

Q(é)} — 62Tz,

9z @ oz
If 4z is sufficiently small, then we have
o o 9vis(2) . o 9Q(2)

v (2) = P 02,Q(%) =~ o 0z.

Now,
2 ZZ”H Tavlj )v
=1 j>1

thus, .

V = —62TA(t)dz — 6272+ O(||6z||?)
where,

T

i=1 j>1

Since the condition of Theorem [E1l is fulfilled,

v12(2)7 v—11(2)T AT
a(t):[mu,...,m%,%m() }

0z 0z

is of full rank, therefore
A(t) = a(t)Ta(t)

is always of full rank, and thus, positive definite for any fixed ¢. Due to the periodicity
and differentiability assumptions (on v and the smoothness of the other mappings), A(t) is
periodic and %(t) is bounded. Thus if we let ky > k, kg > k, we have

V < —kylloz]* + Plloz]|,

where ~, P > 0. This shows that the size of the design parameter k, bounds and tunes the
estimation error. O

E.5 Simulations

In this section we consider the case when the robot is equipped with two range-measuring
sensors (I = 2) and moves inside the same elliptic field as considered in Example [ET] and
depicted in Figure [E2 (with ¢; = 3 and ¢; = 2). In what follows, 2 and z will denote the
true states while £ and 2 will denote the estimations of them. All true states will be plotted
with blue/dashed lines, while estimations will be graphed in red/solid. The robot starts off
from z(0) = [1, —1, Z]7, which corresponds to z(0) = [2Z, 2227 21T jp the Z—space.
The observer is initialized at 2(0), a randomly generated point in the vicinity of z(0). The
observer gains are set to ky = 5,kg = 1.
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Erros in z—space; estimations in red/solid

25 T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Figure E.4: Observation error in Z-space.

Figure [E4l shows the trajectory of the components of z(¢) (in dashed/blue) and 2(t) (in
solid/red). This figure shows the convergence of the observer in the Z-space.

Of more practical importance however, is the convergence of &(¢) to x(¢) in the state-
space, X. Figure shows the observation errors as measured after mapping 2 into & by
means of the full observer mapping, ®.

Erros in x—space; estimations in red/solid
2 T T T T T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

Figure E.5: Observation error in X-space.
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Noisy Measurements

Next, attention is paid to the case when the presence of measurement noise is recognized.
The noise parameter has been chosen such that the relative measurement errors amount to
approximately 5%. Referring to Figure [E.f] it can be noted how the observer rejects the
disturbance and tracks the true observer state quite well even in the presence of measurement
errors. This statement is verified when considering the time history of x(t) and #(t) in the
state-space (Figure [E7). In cases when (E4) is inconsistent for + = 1 and 2, a simple
vector average has served as the estimated position. One desirable property of this choice is
that a true measurement from one sensor can be used constructively to compensate for the
faulty measurement of the other one. Thus we notice in Figure [EX that, in the presence
of measurement noise, the position estimation is much better than the estimation of the
orientation angle, ¢.

Erros in z—space; estimations in red/solid
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Figure E.6: Observation error in Z-space with noise.

E.6 Concluding Remarks

In this paper, the extension of the concepts of observability and observer design to the field
of mobile robotics is considered. Such systems have several distinguishing features. Firstly,
mobile robots are typically non-uniformly observable systems so that the observer gains
and its convergence properties will depend on the system input. In addition, because of
the interaction of the exteroceptive sensors with the environment, the convergence of the
observer typically will also depend on the environment. Therefore, in order to succeed in
reconstructing the state, the exciting control has to be chosen in a deliberate manner, i.e., an
active observer has to be designed. Finally, since most existing observer design techniques
are only applicable to uniformly observable nonlinear systems, alternative approaches that
aid the observer design are needed. The set of feasible configurations, its relation with the
value-function, the set of output flow equivalent states, and the inter-relation between these
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Erros in x-space; estimations in red/solid
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Figure E.7: Observation error in X-space with noise.

two sets, provide such a setting. The design study presented here-within, serves to illustrate
the use of these concepts in the observer design process.
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Riemannian Observers for
Euler-Lagrange Systems

David A. Anisi and Johan Hamberg

Abstract

In this paper, a geometrically intrinsic observer for Euler-Lagrange systems is de-
fined and analyzed. This observer is an generalization of the observer recently proposed
by Aghannan and Rouchon. Their contractivity result is reproduced and comple-
mented by a proof that the region of contraction is infinitely thin. However, assuming
a priori bounds on the velocities, convergence of the observer is shown by means of
Lyapunov’s direct method in the case of configuration manifolds with constant curva-
ture. The convergence properties of the observer are illustrated by an example where
the configuration manifold is the three-dimensional sphere, S°.

Keywords: Nonlinear Observers, Intrinsic Observers, Differential Geometric Meth-
ods, Euler-Lagrange Systems, Contraction Analysis, Nonlinear Systems Theory.

F.1 Introduction

FEEDBACK control design techniques require knowledge about at least some parts of
the state vector. If all the state variables necessary for the control system can not
be directly measured, which is a typical situation in complex systems, we must aim at
obtaining an estimate of the unknown state variables. For a dynamical system, an observer
is another dynamical system whose task is to reconstruct missing state information, while
only using available measurements. The input to the observer is the output of the original
system (which may include its input), and the observer is expected to produce as output
an estimate of some state function of the original system.
Consider the nonlinear dynamical system

TR I

with state z € Z | control u € U and output y € ). Here, Z,U/ and ) are smooth manifolds.
All mappings in this paper, are assumed to be smooth.
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Definition F.1 (Observer). A dynamical system with state manifold W, input manifold
Y, together with a mapping F : (W x Y) — TW is an observer for the system X, if there
exists a smooth mapping ¥ : Z — W, such that the diagram shown in Figure [El (the
dashed arrow excluded), commutes. The observer gives a full state reconstruction if there
is a mapping Z : (W x V) — Z such that the full diagram in Figure [El is commutative

(ct. [1] and [2]).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure F.1: Commutative diagram defining an observer.

In the diagram of Figure L1l ¥, denotes the tangent mapping, 7 is projection upon a
Cartesian factor, while 7 denotes the projection of the tangent bundle.

According to Definition [l the objective when designing a general observer, is to track
U(z), rather than z itself. The special case when ¥ equals the identity mapping and W = Z,
is often referred to as an identity observer. Also, note that the same observer dynamics,
F , may allow several different full observer mappings, Z, and that in general, a full state

observer A
3. { w o= F(wy)

may not be put in the form 2z = E(Z,y)-
As a consequence of this definition, an observer has the following property:

Property F.1. w(ty) = ¥(z(to)) at some time instance to, yields w(t) = V(z(t)) for all
t > to.

It is also reasonable to require the additional property:

Property F.2. As time proceeds, the trajectories w(t) and V(z(t)) converges' for every
input.

This second property, i.e., the convergence properties of the observer, may be demon-
strated in different ways. If G is a Riemannian metric on W, whose Lie derivative along
the vector field F , is negative for every input, y, (LG < 0), then the Riemannian distance
between any two trajectories tends to zero (¢f. [3]). This is a property of the control system
W alone. In conjunction with Property [E] this implies Property More precisely, we

have that
d 1 dr dr

— ds=/ —(L:G)(=—, —)ds,
dt T;_».PO T;pg2( F )(dS dS)

L Convergence" in some metric sense, or — for relatively compact trajectories — in a purely topological
sense.




RIEMANNIAN OBSERVERS FOR EULER-LAGRANGE SYSTEMS 131

so if £L;G <0, then

wz(O)

Figure F.2: The length of the geodesic curve p;, between two trajectories decreases if
L:G <0.
f

However, the assumption that the observer dynamics is contractive, is very restrictive and
in most cases, Property has to be shown by means of direct Lyapunov methods.

In this paper, we study the observer design problem for a class of nonlinear systems,
viz. Euler-Lagrange systems, where the output of the system is assumed to be the gener-
alized position and force, and the goal is to reconstruct the generalized velocities. An often
practiced solution to the problem of reconstructing the velocity variables is to numerically
differentiate the known position measurements. This approach however, fails to perform
for high and fast varying velocities, but naturally also when the position measurements are
corrupted by noise.

The Euler-Lagrange equations are intrinsic and may be written in a coordinate-free
way [4]. It is natural to keep this coordinate independence in the observer design as well.
The Riemannian geometric point of view has influenced part of control theory, e.g., optimal
control and control design. However, the impact on observer design, has been modest.

In [5], the authors successfully adopt the formerly mentioned contraction analysis ap-
proach to address convergence of an intrinsic observer for Euler-Lagrange systems with
position measurements. These results have been specialized to the case of left invariant
systems on Lie groups in [6]. In the present paper, we extend the results of [5] by using
Lyapunov theory to show convergence in the constant curvature case, whenever we have
a priori given bounds on the velocity variables. In the case of physical (mechanical or
electrical) Euler-Lagrange systems, this assumption is a realistic one.

The organization of this paper is as follows. Section is devoted to introducing
some preliminary concepts of tangent bundle geometry (Section [L2)) and Euler-Lagrange
systems (Section [E22). The design of the observer is the subject of Section [F3] while
Section [[24] is devoted to the convergence properties of it. Finally, these properties are
illustrated in Section [[C5], where we present some simulation results.
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F.2 Preliminaries

F.2.1 Tangent Bundle Geometry

This paper assumes a previous knowledge of classical tensor analysis as well as familiarity
with coordinate-free concepts like tangent bundle, Lie derivatives and affine connections
(consult, e.g., [7] or [8] ). Throughout the paper, Einstein summation convention is used
(i.e., we sum over all indices appearing repeatedly), partial derivatives are indicated with
a comma, U; = %, while covariant derivatives of contravariant tensors are indicated with
a bar, Fl|j =F';+ FZij- If ¢;; are the components of a Riemannian metric, g*/ denotes
the components of the dual ("inverse") metric, and the components of the Levi-Civita
connections (the Christoffel symbols) are given by T, (z) = 29 (gujk + grrj — gjka). By

8 -
ox®”

grad U, we mean the vector field ¢”U ; The curvature tensor, R, is defined by
R(X,Y)Z = (VxVy = VyVx —Vixy])Z.

With the index ordering conventions from [7], the type (1,3) tensor R has components

;0 o o [0
i = Mot 9k g
so that
mijk = Finggk - anlw‘ + Fizkl—‘:bnj - fzj k>
and the the Ricci identity,
Yk =Yy = B Y™, (F.1)

holds?.

We now review some less well-known constructions, namely lifting geometrical struc-
tures on a manifold X to geometrical structures on its tangent bundle, TX (cf. [9]). These
operations will be helpful while studying the convergence properties of the observer through
contraction analysis (Section [[£4.33). Let  be local coordinates on X and (z,v) the corre-
sponding induced coordinates on T'X.

e The wertical lift of a vector field Y = Y72~ on X, is the vector field on TX given by

oxt
j/V j/i 9
- vt

e The horizontal lift of Y depends on the choice of a connection and is the vector field on

TX given by YH = Yi(gzi — It aaum) .

v
o The geodesic spray is a vector field Z on T'X, uniquely constructed from a connection V

9
vt "

Y i d i ik
on X as Z=v'55 — I vlv

If ¢ is a differential form on X, 7*¢ denotes its pullback to TX. A differential 1-form ¢
on X, also defines a scalar function I(¢) on TX given by I(dz?) = v’ (This notation is not
standard. The letter I stands for identification, since a covector ¢, in a sense, already is a
function on the tangent vectors). The I construction extends to higher order tensors.

Expressions for the bracket between these lifted vector fields are listed in Table [E11
These expressions will be used for the component—wise contraction analysis in Section [F.4.3

21t holds whenever the connection is torsion-free, which the Levi-Civita connections is.
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[.7 ] YH YV %

XU XY | —(vxY)Y | (R, X) - VX))
XV | —[YH xV] 0 XHE _pvx)V

Z | -5z | -,z 0

Table F.1: Brackets of the lifted vector fields.

Given a Riemannian metric, g, on X, there is a family of natural metrics on T'X given
by

X"+ Y, XH 4+ YY) = 7" (ag(X, X) + bg(Y,Y) + 2¢9(X, Y)),

where a,b and c are constants, or in general, functions of g;;v'v’. The case a = b= 1 and
¢ = 0, was studied in [10]. The generalized Sasaki metric reads

- .
dx* c da?
o= o[ ¢ 5wl o]

. S S H , V
where Dv* = dv* + I}, dz*. Here, [dz?, Dv'] is the coframe dual to the frame [ , 2 |.

At the origin of a geodesic normal coordinate system, the Lie derivatives of the coframe,
equal

S

[ dz? ]| 0 o dz?
Ly | Dot | Y10 [ Do’ } (F-2)
c [ da? ] [ Ylij | 0 [ dz? ]
H i = - .
Lo | T Ty | Low
c I da:i_ | _ [ 0 | ; [ da:j_ }
z | Dv* | Rk’jl vF v ‘ 0 Duv?
C [ dzt ] [ 0 | 0 [dxj ]
I(R(-,Y))¥ i = i ™ i i .
(RCYD) | Dv* | _(Rm wY vt ‘ (R + Ry jl)YlUk Dv/

F.2.2 Euler-Lagrange Systems

Consider a system with generalized position coordinates, x, and generalized velocities, v, for
which we are able to define kinetic- and potential energy. For such systems, the following
scalar function,

L(z,v) 2 T(z,v) — U(x),

where T'(z,v) and U(z) denote the kinetic- and potential energy respectively, defines the
Lagrangian of the system. In this work, we focus our attention on systems whose kinetic
energy function is of the form

1 o
T(z,v) = §gij(x)uiv],

where g¢;; is a Riemannian metric on the configuration manifold, X'. The Euler-Lagrange
differential equations, which we assume govern the motion of the considered system, define
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a dynamical system on the state space, Z = T'X, the tangent bundle of the configuration
manifold, X, and are given by

d oL, oL _ .
TRV N R L

it = FI, i=1,...,n,

where F7 are the external forces acting on the system, which may be interpreted as the
input. We further assume that we have direct measurements on the position variables and
forces. Combining this with the expression for the Lagrangian, the system can be written,

in local coordinates, as

%

o= v i=1,...,n
Yo:g O = —F;k(x)vjvk — g0, + F*
y = h(z,v,F)=(z,F).

In terms of the absolute time-derivative, D;v? = gT”i +T7%07 gtik, system Yy can equivalently
be written as

o= 0l
»:{ D' = —¢"U;+ F'
y = (&F)

Using the introduced lifting operations, the dynamics of system ¥, is given by the vector
field

‘ F-z —(gradU)YV + FV ‘

F.3 Observer Design

For the class of systems, ¥, described in Section [E2.2, we now introduce a full state identity
observer, X..

Referring to Figure[EZ3, we let (€, n) denote the state of the observer, S(z,§) = 3dist(z, £)?,
Sg = % and R® = I(R(-,grad S))* = Rﬁo‘wnﬁS'YnL, where R;%_ is the curvature tensor.
In addition, ®* denotes the parallel transport of F’ along the geodesic curve, p, from z to &.

Figure F.3: The system- and observer variables, are denoted by Latin and Greek letters
respectively.

The parallel transport operator, K’ , has the following properties, which are easily verified
in Fermi coordinates:

Kl zS7 = 0. (F.3)
Kige = —g (F.4)
K EKg* = g9 (F.5)
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Upon introducing this notation, the following observer dynamics is suggested for >:

I no‘—Ago‘ﬂSﬂ, a=1,...,n
D = —Bg*PSz—g*PUgs+ ®* + CR?, (F.6)

where A, B and C are observer gains, possibly depending on S and |n|,. Note that when
&=, then Sz =0 and K} =" (the Kronecker delta), hence (E£f]) satisfies the diagram
property of Definition [E1l As observer output mapping, Z, we may for instance use Z; =
(€%, n™), or Zy= (2%, Kin®). Choosing the latter approach?, the velocities, v?, are estimated
as

o' = K!n®. (F.7)
Thus, putting (EB) and (E73) together, the following observer, ¥, is suggested for &
) £ = 9" — Ag*iSy
$:d D = —Bg*8S,— g*fU 5+ * + CR®
o= Kin®

Using the introduced lifting operators, the dynamics of the observer is governed by the
vector field

F = - AlgradS)¥ — B(gradS)" — (grad U)" + 8" 1+ CR |

where R = Ro‘aav—a. It is notable that in the case of flat metric, 3 reduces to the well-known
Luenberger observer.

The observer 3, is essentially the same as the one introduced in [5], see also [6]. We
here allow the observer gains to vary and have a choice of moving force terms between U
and F, which are treated differently in our observer. This latter freedom will however not
be exploited in the present paper. In Section [E43, we follow [5], by choosing C' =1 and

the output mapping 71, while in Section [E.44] we use a general C' and Z>.

F.4 Convergence Analysis

In this section, convergence issues are treated by means of contraction analysis (Section [F.4.3)
and, in the case of constant curvature, by means of a conventional Lyapunov method (Sec-
tion [£44)). To this end however, we devote Sections [L4Tland [E£ 2 to deriving expressions
for the variation of some quantities along a geodesic.

F.4.1 Transport Equations

Letting S = g*?S3, the Hamilton-Jacobi equation 0),0)39%° = 1, for ¢ = /25, implies
S5 — 28 =0, (F.8)

Taking the covariant derivative of (EE8), utilizing the fact that the Levi-Civita connection
is torsion-free (S, |3 = Sp|) and raising the first index, we have

§7,5% =% =0. (F.9)

3In the face of noisy measurements, it might be advantageous to consider Z; instead.
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Then, combining (E£3), (E4), (EX) and (E3J), it follows that
S8 =St =0. (F.10)

The covariant derivative of ([EE9)) gives

B a B qa B _ (aB B a B a B8 qa 8 _
5 a5 50055 =5, = (5 gy = 1)+ 5708 £ 57105, - 57, =0,
Utilizing Ricci’s identity, Sﬁlah — Sﬁma = RLﬁMSL, we get
ﬁ o ﬁ ﬁ L « B (0%
S Iv\aS =9 Iy -R", 58-S ‘QS Iy (F.11)
In a similar fashion, we obtain
Kh1aS® = Ry KIS® + Kj 5%, (F.12)

It should be possible to derive Gronwall-like estimates of S” , and Kélv from (ETT) and ([ET2).
In the present paper, however, we focus on spaces of constant curvature.

F.4.2 Constant Curvature

In the case when X has constant curvature, i.e., when
RLBa'y = H(éggba - 55%7); (F13)
equation (EII) may be explicitly solved for S” , by means of the Ansatz

S = T1(8)d + T2(5)S” S, (F.14)

Multiplying with S7 from the right and using (EE9) immediately yields that T; +25T5 = 1.
Substituting this back into (1)), it reads

(28T + 28k + Y7 — T1)(6F — %Sﬂsy) =0,

from which we obtain

V2kS cot v2kS ifk >0
T1(S) = 1 ifk=0

V/2|k|S coth 1/2|k|S if kK <0,
and as stated earlier,
_1-=74(5)
28

Remark F.1. The formulas when x < 0, are the analytical continuation of the formula
when x > 0. In the sequel, only the k > 0 form is given.

T2(5)

Considering the parallel transport operator, we make the Ansatz

K} =T5(9)8", + Ta(5)5"Sa. (F.15)
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Multiplying (EI3) with S* from the right and using ([£4), and (E£I0), we obtain Y5 +
2874 = —1. Substituting this back in the Ansatz ([EEI8) and utilizing Property ([£3), we
get

Ka|ﬂsﬁ(2ST§ + T3 — Tng)(S la — %S Sa) =0.

Solving for T3(S), we arrive at

sin vV2kS
T3(s) = ——F——=—,
3(s) V2kS
and consequently,
1 V2krS —sin V2kS
Ta(s) =—=—=(1+7T3(9)) =—k

28 (V2kS)3

which yields the final expression for the parallel transport

K _ sin \/2/{S’Si _ H\/2/€S —sinvV2kS
“ N (V2kS)3

Noticing Remark [l we differentiate (EIH) with respect to &° and obtain

S'S,,.

Ky 5 = T5(8)858% + T3(5)S" 0 5 + Th(S)S5 S0 + Ta(8)S 550 + Ta(S)S S0 5.

Regarding the first and fourth term, from ([E1H), we have

S (K. + Y4(5)s"Sa].

o Ty(S)

The third term is satisfactory, while S, in the fifth term can be calculated via ([EET4) and
equals
Sals = T1(S)gap + Y2(5)SaSs. (F.16)

Paying attention to the second term, since we have
Sila‘ﬁ = 9" S50/ (F.17)
we differentiate (18] with respect to 27, yielding
Sl = Y1(9)Si9ap + T5(5)S;5aSp + T2(5)Sa ;58 + T2(5)SaSs);-
Substituting this back into (EE11), we get
Saip = Y1(9)S gap + T5(5)S"SaSp + T2(9)S" 495 + T2(5)SaS" 5.

Combining the obtained expressions here-above, with those of Y1, Yo, T3 and T4 presented
earlier, gives us the final expression

Ki . = Y(S)(Sigas + K5Sa)

a|B B ’

| tan %\/ 2kS (F18)
T(S) = v

By manipulating ([EE18), with the roles of z and £ reversed, we also obtain

K KOKP=K7 K& ="(S)(Sgim — 67,5%). (F.19)

al™tm alk™ m
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F.4.3 Contraction Theory

Let A, B and C be constants. Then the computations, when examining whether £ G is
negative definite or not, can be done component-wise, that is

ﬁj:-G = E%G — A‘C(grad S)H—IG — Bﬁ(grad S)VG — ‘C(grad U)VG + LovG + CLRG.

Using the formulas (EE2)), we arrive at

« T el
o] 16 Tom] 1] -

where the matrix

_ a ¢ Maﬂ Naﬂ Mﬁa Pﬂa a ¢
M_<C b)( P.s  Qap >+< Ngo Qsa c b )

has components given by

Mas = —ASyp

Nop = gap

Qo = C(Rpay + Ryap)Sn"

Pog = Yopyun'n' + ARyapn’S" — BSy 3 — Uyip + gmnFmK;‘IB,

with Yagrﬂ = (R,Yagb — C(RVQELSE)W).
In the case when we set C' =1 and S = 0, we have, S,|3 = gas, S* = 0 and K;‘IB =0,
and M becomes

—2(aA+cB)gap —2cUqy3  Dap

M= [ Dag QCgag ’

where Do = (a — bB — cA)gap — bUq, 3. From this it is possible to derive conditions for
contractivity. When U = 0%, the observer dynamics is contractive for suitable a,b and c.
This is in accordance with the results in [5]. However, whenever S > 0 and Y,3,,n7"n" # 0

for some 7, then

2% b )
M= |50 Yo+ 0, (F.21)

Based on these calculations, the following result can be formulated.

Theorem F.1. The contracting neighborhood of the set S = 0 shown in [5], is infinitely
thin as |n], — oo.

Proof. We outset from (E2I) and show that for 7 large enough, the matrix preceding
Yapy.m'n" and hence £ 2G is indefinite. To this end, note that

[a C]>O:>b>0.
c b

Consider the determinant of the matrix of interest:

‘201)

_ 32
b oo l|= b= < 0.

41t is always possible to move terms between U and F.
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It then follows that

b b 0

Therefore, as 1|, — 0o, LG becomes indefinite. O

{i C]>O=> [ 2c b}isindeﬁnite.

F.4.4 Lyapunov Approach

We now investigate the convergence of 3, in the case of constant curvature. We also put
U =0 and let B be a constant. For the Lyapunov function candidate

1 o
V(z,v,€,0) = §gijAlev3 + BS(z,¢),

with Av® = (v? — 9%), the total derivative becomes
V = gi;Av' (D! — Dyt?) + BSit + BSaEY, (F.22)
along the system dynamics of 3 and . Now,
D/ = Dy(Kin®) = K2,@"n" + K2 ;6" + K{Dn"
= K"+ K2 800" + KJ [ - Bg*’Ss + &% + CR"]
where we have used the system dynamics of ¥ and 3. From [E4) we obtain
~BKI g*PS5 = BS7.
——
ga
Also, noting that K7 ®~ = FJ, we can continue the calculations as
D/ = K7, oFn+ K2 0™ + BST + F) + CK] R, (F.23)
Concentrating on the last term in (E£23)), from ([E13) and ([E19) it follows that
KR = kY ™N(S) KD K" o™,

Next, we pay attention to the second term in [EE23)) and notice that

K2 .80 = K2 4 [n° — Ag™ S, 0 = K2 ynn® = K K0P Ko™ = K2 Kb o,

alk™™m

where the equalities origin from the dynamics of 3, (F3), n* = K29™ and (FI9) respec-
tively. Then by substituting n* = K% 9™ in the first term as well, (E23) can be seen to
equal

D/ = K?, K2om[v*+ 0" + CrY ™ (S)o%] + BS + F.

alk™tm
With C' = —2k~17(S9), we arrive at the final expression

D, = K’

LK™ Aok + BST 4 FY. (F.24)

Consider next the last terms in the total derivative (E22). From (E£4), in conjunction
with dynamics of 3 and the Hamilton-Jacobi equation ([EE8), it follows that

S, €% = — K. Si(n® — Ag*®Sp) = —8i0' — Ag*’8,85 = —Sit" — ASPS5 = —S;0° — 2AS.
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Substituting these modified terms back into ([E£22) yields
Vo= guyAv' [P — K] KoM Aok — BS) — B + BSiv' + B[ — Sii* — 249]
= —gi AV'K] Ko™ At — Bgi; Av'ST + BS;Av' — 2ABS
= =gy AV'KD Ko™ Avh — BSTAT + BS7AT — 2ABS
= —gi;AVK? K29mAv* — 2ABS.

alk™ m
By using (E£E19), we arrive at
Vo= —gi; AY(S)[S grm — 62,8k |0 AvF — 2ABS
= =Y(S)[gkmSi — gimSr] 0" Av' Av* — 24BS. (F.25)
Theorem F.2. If it is known that sup, |v(t)|g < Vmax , the injectivity radius of the manifold
is greater than p everywhere, A > V2B~'S72|T(S)|(vmax + |1l)?|0ly, B > (”“‘%)2 and
C = —2k717(S), then the observer 3 initiated at £(0) = z(0), 7(0) = 0 converges.

Proof. Let the design parameter B be fixed and determined with some objective in mind?®.
As will be illustrated, it is sufficient to choose A properly in order to turn V negative
definite. To this end, consider

—Y(S) [GhmSi — Gim Sk] 0™ AV AVF < [T (S)]| g Si8™ Avi AvF| + |g¢mSk@mAviAvk|}.
From (E8) and the assumption sup, |v(t)|g < Umax, it follows that
|G Si™ Av' Av*| < V2804 (vmax + 1]9)%,
where the conservative worst case scenario is assumed. The same bound is obtained for
|gim5’k@mAviAvk|.
Therefore, the following inequality holds
V < 27(8)|V2S /], (vmax + Inly)? — 2ABS.
Then straightforward calculations show that choosing
A > V2B (S) | (tmax + [1lg) [l

yields V < 0. Hence, asymptotic convergence of the estimation error to zero, follows from
Lyapunov’s direct method.

Let us then consider the choice of B. The chosen initialization point, yields V(0) =
29:;0°(0)v7(0) < 102 .. At any arbitrary time instance ¢, it then follows that

max-*

1 . 1
V(t) = §gijAlevﬂ +BS < 51}2

max?

which implies BS < 1v2.. Since S = 1d(z, £)?, by requiring B > (Pu2x)? we obtain

max*

Umax
d(z,&) < < p,

VB

which guarantees that d(x, ) stays smaller than the injectivity radius at all time instances.
O

5In our case, the objective will be to ensure that d(z, &) is strictly less than the injectivity radius at all
times. This is important in order to keep the derivatives of S = %d(r, )2 well-defined.
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F.5 Example

Let X be the unit 3-sphere parameterized by 1, x2 € [0, 7] and z3 € [0, 27]. This is a space
of constant curvature x = 1. The metric is given by

1 0 0
g,.=10 sin? T 0
0 0 sin? 21 sin® 2o

which implicitly gives the distance function, S, as

cosV2S = cosxycoséy +

sinzy sin & [cos T2 cos &3 + cos(xg — €3) sin xa sin &o].

The exterior forces, F', are given by —grad W, where W = sinx; cosxy coszs and U = 0.

We define an observer Y by the choices A = 3S1++\/71_%777 B =3 and C = —1. Figure[E4]
show the convergence of the observer when the initial data are

X1 (0) = §1(0) =1 1}1(0) =2.25 171 (0) =0

xQ(O) = §2(0) =0.7 1}2(0) =1.25 172(0) =0

xg(O) = §3(0) =2 1}3(0) =4 173(0) =0
’1)1,’{)1 1}2,@2

[

VM . 24\%\ Mmmt

—]
—
]

—

N

2 4 6 8 10t

Figure F.4: The solid line refers to the original system, while the dashed line represents the
observer.

Similar simulation results have also been obtained in the cases of the hyperbolic plane
(constant negative curvature) and the inverted pendulum on a cart (zero curvature).
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F.6 Concluding Remarks

The observer presented in this paper, requires the explicit computation of the distance
function, S, as well as the parallel transport operator, K, which is prohibitive unless the
configuration manifold is extremely simple, e.g., manifolds of constant curvature, Lie groups
(cf. [6]) ete. For more general spaces, schemes of approximation are called for (¢f. [5]).
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