Interpolating sequences on analytic Besov type spaces

Daniel Blasi Babot

Universitat Autònoma de Barcelona

Stockholm, October 1, 2008

(Joint work with Nicola Arcozzi and Jordi Pau)

Outline

Motivation

- 2 The spaces $B_p(s)$
- 3 Main result
- Proof of the main result
- **5** Open Problems
- 6 Bibliography

Motivation

Motivation

Let \mathcal{B} denote the set of analytic functions from the unit disc \mathbb{D} to $\overline{\mathbb{D}}$.

Question

Given $\{z_1, ..., z_N\} \subset \mathbb{D}$, for which $\{w_1, ..., w_N\}$ the interpolation

$$f(z_n) = w_n, \quad n = 1, 2, ..., n,$$
 (1)

has a solution $f \in \mathcal{B}$?

Theorem Pick'17

There exists $f \in \mathcal{B}$ satisfying (1) if and only if the quadratic form

$$Q_n(t_1,...,t_n) = \sum_{j,k=1}^n \frac{1 - w_j \overline{w}_k}{1 - z_j \overline{z}_k} t_j \overline{t}_k$$

is nonnegative, $Q_n \ge 0$. When $Q_n \ge 0$ there is a Blaschke product of degree at most *n* which solves (1).

 $H^\infty \equiv$ bounded analytic functions in $\mathbb D$

Definition

 $\{z_n\}$ is an interpolating sequence for H^∞ if for any sequence $\{w_n\} \in \ell^\infty$, the interpolation problem

$$f(z_n) = w_n, \quad n = 1, 2, \dots$$

has a solution $f \in H^{\infty}$.

Theorem [Carleson'58]

The following conditions are equivalent

(a) $\{z_n\}$ is an interpolating sequence for H^{∞}

(b)
$$\inf_{n \neq m} \beta(z_n, z_m) > 0$$
 and $\mu = \sum (1 - |z_n|) \delta_{z_n}$ is a Carleson measure.

Let H be a Hilbert space of functions, and let

< f, g > be the associated inner product, for $f, g \in H$.

Claim

If the point evaluation functional

$$\begin{array}{rcccc} T_z : & H & \longrightarrow & \mathbb{C} \\ & f & \longrightarrow & f(z) \end{array}$$

is bounded, then there exists a unique function $k_z \in H$ with

$$\langle f, k_z \rangle = f(z) \quad \forall f \in H$$

called reproducing kernel, and it satisfies $||T_z|| = ||k_z||_H$.

Motivation

Interpolating Sequence

A sequence of unimodular functions $\{u_n\} \subset H$ is an Interpolating Sequence (IS) if the operator

$$\begin{array}{ccc} H & \longrightarrow & l^2 \\ f & \longrightarrow & \{ < f, u_n > \} \end{array} \quad \text{ is onto.}$$

Interpolating Sequence

A sequence of points $\{z_n\}$ is an Interpolating Sequence for H if $\{\frac{k_{z_n}}{\|k_{z_n}\|}\}$ is an Interpolating Sequence. Ie,

$$\begin{array}{ccc} H & \longrightarrow & l^2 \\ f & \longrightarrow & \left\{ \frac{f(z_n)}{\|k_{z_n}\|} \right\} & \text{ is onto.} \end{array}$$

 $\forall \{w_n\} \subset l^2$, there exists $f \in H$ such that $\frac{f(z_n)}{\|k_{z_n}\|} = w_n, \ n = 1, 2, ...$

Motivation

Let D be the Dirichlet space of analytic functions f with

÷

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) < \infty.$$

Interpolating Sequence for D

A sequence $\{z_n\} \subset \mathbb{D}$ is an Interpolating Sequence for D if for any $\{w_n\} \subset l^2$ there exists $f \in D$ with $\frac{f(z_n)}{\beta(0,z_n)^{1/2}} = w_n$, for n = 1, 2, ...

Theorem (Marshall-Sundberg'90s)

- $\{z_n\} \subset \mathbb{D}$ is an interpolating sequence for D if and only if
 - $\inf_{n\neq m} \beta(z_n, z_m) \geq C\beta(0, z_n)$, for n, m = 1, 2, ...
 - $\sum \frac{1}{\beta(0,z_n)} \delta_{z_n}$ is a Carleson Measure for D.

The spaces $B_p(s)$

 $B_p(s) \equiv$ Analytic functions on $\mathbb D$ with

$$\|f\|_{B_p(s)}^p = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2+s} dA(z) < \infty$$

for $1 and <math>0 \le s < 1$.

Special cases

$$p = 2, s = 0$$
 corresponds to the Dirichlet space D
 $p \neq 2, s = 0$ corresponds to the Besov space B_p .

Questions

- 1- What is an interpolating sequence for $B_p(s)$?
- 2- How we can characterize these sequences?

Carleson measure

A positive measure μ on \mathbb{D} is a Carleson measure for $B_p(s)$ if

$$\int_{\mathbb{D}} |f(z)|^p \, d\mu(z) \leq C \, \|f\|^p_{B_p(s)}$$

whenever f is in $B_p(s)$.

A Geometric Description of Carleson measures for $B_p(s)$ was given by [Arcozzi, Rochberg and Sawyer,02] and [Stegenga, 80].

Multiplier Space

$$\mathcal{M}(B_p(s)) = \{f \text{ such that } fg \in B_p(s) \text{ whenever } g \in B_p(s)\}$$
$$f \in \mathcal{M}(B_p(s)) \text{ if and only if } \begin{cases} f \in H^{\infty} \\ |f'(z)|^p (1-|z|^2)^{p-2+s} dA(z) \text{ is a CM for } B_p(s) \end{cases}$$

The point evaluation functional $T_z : B_p(s) \longrightarrow \mathbb{C}$ yields a bounded $f \longmapsto f(z)$

linear functional at each point $z \in \mathbb{D}$ with norm

$$\|T_z\| \approx \frac{1}{(1-|z|^2)^{s/p}} \quad \text{for } s > 0$$
$$\|T_z\| \approx \beta(0,z)^{(p-1)/p} \quad \text{for } s = 0$$

Main result

Interpolating sequences for $B_p(s)$

 $\{z_n\}$ is an interpolating sequence for $B_p(s)$ if the map

$$f \mapsto \left\{ rac{f(z_n)}{\|T_{z_n}\|}
ight\}$$
 maps $B_p(s)$ onto ℓ^p

Interpolating Sequences for $\mathcal{M}(B_p(s))$

 $\{z_n\}$ is an interpolating sequence for $\mathcal{M}(B_p(s))$ if the map

 $f \mapsto \{f(z_n)\}$ transforms the multipliers of $B_p(s)$ onto ℓ^{∞}

The interpolating sequences for \mathcal{D} were simultaneously characterized by Marshall-Sundberg and Bishop.

Theorem [Böe, '02]

Let 1 . The following conditions are equivalent

- (i) $\{z_n\}$ is an interpolating sequence for B_p .
- (ii) $\inf_{n \neq m} \beta(z_n, z_m) \ge C\beta(z_n, 0)$ and $\sum \frac{1}{\beta(0, z_n)^{p-1}} \delta_{z_n}$ is a Carleson measure for B_p .
- (iii) $\{z_n\}$ is an interpolating sequence for $\mathcal{M}(B_p)$.

Theorem [Cohn, '93]

Let 1 . The following conditions are equivalent

- (i) $\{z_n\}$ is an interpolating sequence for $B_p(s)$.
- (ii) $\inf_{n \neq m} \beta(z_n, z_m) \ge C$ and $\sum (1 |z_n|^2)^s \delta_{z_n}$ is a Carleson measure for $B_p(s)$.

Theorem [Arcozzi, B, Pau '07]

Let 1 , <math>0 < s < 1. The following conditions are equivalent

- (i) $\{z_n\}$ is an interpolating sequence for $B_p(s)$.
- (ii) $\inf_{n \neq m} \beta(z_n, z_m) \ge C$ and $\sum (1 |z_n|^2)^s \delta_{z_n}$ is a Carleson measure for $B_p(s)$.
- (iii) $\{z_n\}$ is an interpolating sequence for $\mathcal{M}(B_p(s))$.

Remark

• If
$$s > 1$$
 then $\mathcal{M}(B_p(s)) = H^{\infty}$
• If $s = 1$?

Proof of the main result

Interp. for $\mathcal{M}(B_p(s)) \Rightarrow$ Separation + Carleson Measure

Separation is trivial

 $\mathcal{M}(B_p(s)) \subset H^\infty$

To show the Carleson Measure Condition

$$\sum |g(z_n)|^p (1-|z_n|^2)^s \leq C \|g\|_{B_p(s)}^p \quad \text{ for all } g \in B_p(s),$$

we use Khinchine's inequality and a Reproducing formula for $B_p(s)$.

Separation + Carleson Measure \Rightarrow **Interp. for** $\mathcal{M}(B_p(s))$

Non analytic solution

Given $\{w_n\} \in I^{\infty}$, we can find φ such that

i)
$$\varphi(z) = w_n$$
 for $z \in D_h(z_n, \varepsilon)$
ii) $\varphi(z) \equiv 0$ for $z \in \mathbb{D} \setminus \bigcup D_h(z_n, 2\varepsilon)$
iii) $d\mu_{\varphi} = |\nabla \varphi(z)|^p (1 - |z|^2)^{p-2+s} dA(z)$ is a Carleson measure for $B_p(s)$

Observe that $\varphi(z_n) = w_n$ but is not analytic.

Analytic solution

Consider $f = \varphi - Bu$ where

i) B(z) is the Blaschke product with zeros $\{z_n\}$ ii) u(z) is a solution of the $\overline{\partial}$ -problem

$$\overline{\partial} u = \frac{1}{B} \overline{\partial} \varphi$$

We want a solution u such that $f \in \mathcal{M}(B_p(s))$

Now,
$$f(z_n) = w_n$$
 and $f \in Hol(\mathbb{D})$.

How to check that $f \in \mathcal{M}(B_p(s))$?

Let L_s^p be the space of functions $f \in L^p(\mathbb{T})$ such that

$$\int_{0}^{2\pi} \int_{0}^{2\pi} rac{|f(e^{it}) - f(e^{i\xi})|^{p}}{|e^{it} - e^{i\xi}|^{2-s}} d\xi dt < \infty$$

Theorem

Let 1 , <math>0 < s < 1, and let $f \in H^{\infty}(\mathbb{D})$, then

 $f \in \mathcal{M}(B_p(s))$ if and only if $f_{|\mathbb{T}} \in \mathcal{M}(L_s^p)$.

So, it is enough to show that $f = \varphi - Bu \in \mathcal{M}(L^p_s)$

Lemma

Let $\{z_n\}$ be a separated sequence in \mathbb{D} such that $\sum (1 - |z_n|^2)^s \delta_{z_n}$ is a Carleson measure for $B_p(s)$, then $B \in \mathcal{M}(L_s^p)$, where B is the Blaschke product with zeros $\{z_n\}$.

Solution of the $\overline{\partial}$ -problem

Theorem

Suppose that $|g(z)|^{p}(1-|z|^{2})^{p-2+s}dA(z)$ is a Carleson measure for $B_{p}(s)$ (and $|g(z)|(1-|z|) \leq C$ for 1). Then there is <math>u defined on $\overline{\mathbb{D}}$ such that

$$rac{\partial u}{\partial \overline{z}} = g(z) \quad ext{for all } z \in \mathbb{D},$$

and such that the boundary value function u belongs to $\mathcal{M}(L_s^p)$

Open Problems

Problem 1

It is well known that the Dirichlet space D is conformally invariant. Ie, if $\varphi\in\!\mathsf{M\"obius}$ map on $\mathbb{D},$ then

$$\int_{\mathbb{D}} |(f \circ \varphi)'(z)|^2 dA(z) = \int_{\mathbb{D}} |f'(z)|^2 dA(z).$$

If $\{z_n\}$ is an IS for D then $\{\tau(z_n)\}$ is an IS for D?

٠

NO.

K. Seip'04

Perhaps there is a conformally invariant interpolation problem for the Dirichlet space yet to be studied.

<u>Idea</u>

Observe that if $f \in D$, then there exists a constant C > 0 such that

$$|f(z) - f(w)| \leq C eta(z,w)^{1/2}$$
 for all $z,w \in \mathbb{D}.$

Interpolating Sequence for D

A sequence of points $\{z_n\} \subset \mathbb{D}$ is an interpolating sequence for D if there exists a constant C > 0 such that for any $\{w_n\} \subset \mathbb{C}$ with

$$|w_n - w_m| \le C\beta(z_n, z_m)^{1/2}$$
 $n, m = 1, 2, ...$

then there exists a function $f \in D$ with $f(z_n) = w_n$ for n = 1, 2, ...

In this case the conformally invariance is for free.

Problem 2

Consider the space D_{ρ} of analytic functions f such that

$$\|f\|_{D_{
ho}}^2 = |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2
ho(z) dA(z) < \infty,$$

where ρ is a regular weight satisfying the Bekollé-Bonami condition

$$\int_{\mathcal{S}(a)} \rho(z) dA(z) \int_{\mathcal{S}(a)} \rho^{-1}(z) dA(z) \leq C m(\mathcal{S}(a))^2.$$

Carleson measures for D_{ρ}

Geometric description due to Arcozzi, Rochberg and Sawyer'02.

Question

Characterize the interpolating sequences for the Dirichlet type spaces D_{ρ} .

Daniel Blasi Babot (UAB)

Problem 3

A Hilbert space H has the Nevanlinna-Pick property when the matrix

$$(1 - w_n \overline{w}_m) < k_{z_i}, k_{z_j} >$$

being positive semi-definite is necessary and sufficient for the existence of $\varphi \in M_H$ satisfying $\varphi(z_n) = w_n$, $\|\varphi\|_{M_H} \le 1$.

Conjecture (Seip)

Let *H* be a Hilbert space of analytic functions with the Pick property, then a sequence of points $\{z_n\}$ is an IS if and only if $\{z_n\}$ is *H*-separated and $\sum_n ||k_{z_n}||_H^{-2} \delta_{z_n}$ is a Carleson measure for *H*.

Theorem (Böe'05)

Under some assumptions on H, the conjecture is true.

Bibliography

Bibliography

- ARS1 N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana 18 (2002), no. 2, 443–510.
- ARS2 N. Arcozzi, R. Rochberg, E. Sawyer, The characterization of the Carleson measures for analytic Besov spaces: a simple proof. Complex and harmonic analysis, 167–177, DEStech Publ., Inc., Lancaster, PA, (2007).
 - ABP N. Arcozzi, D. Blasi & J. Pau, Interpolating sequences on Besov type spaces, to appear in Indiana Univ. Math. J.
 - BP D. Blasi & J. Pau, A characterization of Besov type spaces and applications to Hankel type operators, to appear in Michigan Math. J. 56 (2008).
 - Bi C. Bishop, Interpolating sequences for the Dirichlet space and its multipliers, Preprint, (1994), SUNY at Stony Brook.
 - Bo1 B. Boe, Interpolating sequences for Besov spaces, J. Funct. Anal. **192** (2002), 319-341.

- Bo2 B. Boe, An interpolation theorem for Hilbert spaces with Nevanlinna-Pick kernel, Proc. Amer. Math. Soc. 133 (2005), no. 7, 2077–2081.
- BN B. Boe & A. Nicolau, Interpolation by functions in the Bloch space, J. Anal. Math., **94** (2004), 171–194.
- Ca L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., **80** (1958), 921–930.
- Co W. S. Cohn, Interpolation and multipliers on Besov and Sobolev spaces, Complex Variables Theory Appl., **22** (1993), no. 1-2, 33–45.
- MS D. E. Marshall & C. Sundberg, Interpolating sequences for the multipliers of the Dirichlet space, Preprint, (1994). Available at http://www.math.washington.edu/marshall/preprints/preprints.html
- Se K. Seip, Interpolating and sampling in spaces of analytic functions, University Lectures Series, 33 American Mathematical Society, Providence, RI, (2004).
- Steg D. A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139.