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Motivation

Motivation

Let B denote the set of analytic functions from the unit disc D to D.

Question

Given {z1, ..., zN} ⊂ D, for which {w1, ...,wN} the interpolation

f (zn) = wn, n = 1, 2, ..., n, (1)

has a solution f ∈ B?

Theorem Pick’17

There exists f ∈ B satisfying (1) if and only if the quadratic form

Qn(t1, ..., tn) =
n∑

j ,k=1

1− wjwk

1− zjzk
tj tk

is nonnegative, Qn ≥ 0. When Qn ≥ 0 there is a Blaschke product of
degree at most n which solves (1).
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Motivation

H∞ ≡ bounded analytic functions in D

Definition

{zn} is an interpolating sequence for H∞ if for any sequence {wn} ∈ `∞,
the interpolation problem

f (zn) = wn, n = 1, 2, ...

has a solution f ∈ H∞.

Theorem [Carleson’58]

The following conditions are equivalent

(a) {zn} is an interpolating sequence for H∞

(b) inf
n 6=m

β(zn, zm) > 0 and µ =
∑

(1− |zn|)δzn is a Carleson measure.
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Motivation

Let H be a Hilbert space of functions, and let

< f , g > be the associated inner product, for f , g ∈ H.

Claim

If the point evaluation functional

Tz : H −→ C
f −→ f (z)

is bounded, then there exists a unique function kz ∈ H with

< f , kz >= f (z) ∀f ∈ H

called reproducing kernel, and it satisfies ‖Tz‖ = ‖kz‖H .
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Motivation

Interpolating Sequence

A sequence of unimodular functions {un} ⊂ H is an Interpolating
Sequence (IS) if the operator

H −→ l2

f −→ {< f , un >} is onto.

Interpolating Sequence

A sequence of points {zn} is an Interpolating Sequence for H if
{

kzn
‖kzn‖

}
is

an Interpolating Sequence. Ie,

H −→ l2

f −→
{

f (zn)
‖kzn‖

} is onto.

∀ {wn} ⊂ l2, there exists f ∈ H such that f (zn)
‖kzn‖

= wn, n = 1, 2, ...
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Motivation

Let D be the Dirichlet space of analytic functions f with∫
D
|f ′(z)|2dA(z) < ∞.

Interpolating Sequence for D

A sequence {zn} ⊂ D is an Interpolating Sequence for D if for any

{wn} ⊂ l2 there exists f ∈ D with f (zn)

β(0,zn)1/2 = wn, for n = 1, 2, ...

Theorem (Marshall-Sundberg’90s)

{zn} ⊂ D is an interpolating sequence for D if and only if

inf
n 6=m

β(zn, zm) ≥ Cβ(0, zn), for n,m = 1, 2, ...∑ 1
β(0,zn)

δzn is a Carleson Measure for D.
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The spaces Bp(s)

The spaces Bp(s)

Bp(s) ≡ Analytic functions on D with

‖f ‖pBp(s)
= |f (0)|p +

∫
D
|f ′(z)|p(1− |z |2)p−2+sdA(z) < ∞

for 1 < p < ∞ and 0 ≤ s < 1.

Special cases

p = 2, s = 0 corresponds to the Dirichlet space D.
p 6= 2, s = 0 corresponds to the Besov space Bp.

Questions

1- What is an interpolating sequence for Bp(s)?

2- How we can characterize these sequences?
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The spaces Bp(s)

Carleson measure

A positive measure µ on D is a Carleson measure for Bp(s) if∫
D
|f (z)|p dµ(z) ≤ C ‖f ‖pBp(s)

whenever f is in Bp(s).

A Geometric Description of Carleson measures for Bp(s) was given by
[Arcozzi, Rochberg and Sawyer,02] and [Stegenga, 80].

Multiplier Space

M(Bp(s)) = {f such that fg ∈ Bp(s) whenever g ∈ Bp(s)}

f ∈M(Bp(s)) if and only if

{
f ∈ H∞

|f ′(z)|p(1− |z |2)p−2+sdA(z) is a CM for Bp(s)
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The spaces Bp(s)

The point evaluation functional Tz : Bp(s) −→ C yields a bounded
f 7−→ f (z)

linear functional at each point z ∈ D with norm

‖Tz‖ ≈
1

(1− |z |2)s/p
for s > 0

‖Tz‖ ≈ β(0, z)(p−1)/p for s = 0
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Main result

Main result

Interpolating sequences for Bp(s)

{zn} is an interpolating sequence for Bp(s) if the map

f 7→
{

f (zn)

‖Tzn‖

}
maps Bp(s) onto `p

Interpolating Sequences for M(Bp(s))

{zn} is an interpolating sequence for M(Bp(s)) if the map

f 7→ {f (zn)} transforms the multipliers of Bp(s) onto `∞
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Main result

The interpolating sequences for D were simultaneously characterized by
Marshall-Sundberg and Bishop.

Theorem [Böe, ’02]

Let 1 < p < ∞. The following conditions are equivalent

(i) {zn} is an interpolating sequence for Bp.

(ii) inf
n 6=m

β(zn, zm) ≥ Cβ(zn, 0) and
∑

1
β(0,zn)p−1 δzn is a Carleson measure for Bp.

(iii) {zn} is an interpolating sequence for M(Bp).

Theorem [Cohn, ’93]

Let 1 < p < ∞, 0 < s. The following conditions are equivalent

(i) {zn} is an interpolating sequence for Bp(s).

(ii) inf
n 6=m

β(zn, zm) ≥ C and
∑

(1− |zn|2)sδzn is a Carleson measure for Bp(s).
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Main result

Theorem [Arcozzi, B, Pau ’07]

Let 1 < p < ∞, 0 < s < 1. The following conditions are equivalent

(i) {zn} is an interpolating sequence for Bp(s).

(ii) inf
n 6=m

β(zn, zm) ≥ C and
∑

(1− |zn|2)sδzn is a Carleson measure for Bp(s).

(iii) {zn} is an interpolating sequence for M(Bp(s)).

Remark

If s > 1 then M(Bp(s)) = H∞

If s = 1 ?
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Proof of the main result

Proof of the main result

Interp. for M(Bp(s)) ⇒ Separation + Carleson Measure

Separation is trivial
M(Bp(s)) ⊂ H∞

To show the Carleson Measure Condition∑
|g(zn)|p(1− |zn|2)s ≤ C‖g‖pBp(s)

for all g ∈ Bp(s),

we use Khinchine’s inequality and a Reproducing formula for Bp(s).
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Proof of the main result

Separation + Carleson Measure ⇒ Interp. for M(Bp(s))

Non analytic solution
Given {wn} ∈ l∞, we can find ϕ such that

i) ϕ(z) = wn for z ∈ Dh(zn, ε)

ii) ϕ(z) ≡ 0 for z ∈ D \
⋃

Dh(zn, 2ε)

iii) dµϕ = |∇ϕ(z)|p(1− |z |2)p−2+sdA(z) is a Carleson measure for Bp(s)

Observe that ϕ(zn) = wn but is not analytic.
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Proof of the main result

Analytic solution

Consider f = ϕ− Bu where

i) B(z) is the Blaschke product with zeros {zn}
ii) u(z) is a solution of the ∂−problem

∂u =
1

B
∂ϕ

We want a solution u such that f ∈M(Bp(s))

Now, f (zn) = wn and f ∈ Hol(D).
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Proof of the main result

How to check that f ∈M(Bp(s))?

Let Lp
s be the space of functions f ∈ Lp(T) such that∫ 2π

0

∫ 2π

0

|f (e it)− f (e iξ)|p

|e it − e iξ|2−s
dξdt < ∞

Theorem

Let 1 < p < ∞, 0 < s < 1, and let f ∈ H∞(D), then

f ∈M(Bp(s)) if and only if f|T ∈M(Lp
s ).

So, it is enough to show that f = ϕ− Bu ∈M(Lp
s )
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Proof of the main result

Lemma

Let {zn} be a separated sequence in D such that
∑

(1− |zn|2)sδzn is a
Carleson measure for Bp(s), then B ∈M(Lp

s ), where B is the Blaschke
product with zeros {zn}.

Solution of the ∂−problem

Theorem

Suppose that |g(z)|p(1− |z |2)p−2+sdA(z) is a Carleson measure for Bp(s)
(and |g(z)|(1− |z |) ≤ C for 1 < p < 2). Then there is u defined on D
such that

∂u

∂z
= g(z) for all z ∈ D,

and such that the boundary value function u belongs to M(Lp
s )
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Open Problems

Open Problems

Problem 1

It is well known that the Dirichlet space D is conformally invariant. Ie, if
ϕ ∈Möbius map on D, then∫

D
|(f ◦ ϕ)′(z)|2dA(z) =

∫
D
|f ′(z)|2dA(z).

If {zn} is an IS for D then {τ(zn)} is an IS for D?

NO.

K. Seip’04

Perhaps there is a conformally invariant interpolation problem for the
Dirichlet space yet to be studied.
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Open Problems

Idea
Observe that if f ∈ D, then there exists a constant C > 0 such that

|f (z)− f (w)| ≤ Cβ(z ,w)1/2 for all z ,w ∈ D.

Interpolating Sequence for D

A sequence of points {zn} ⊂ D is an interpolating sequence for D if there
exists a constant C > 0 such that for any {wn} ⊂ C with

|wn − wm| ≤ Cβ(zn, zm)1/2 n,m = 1, 2, ...

then there exists a function f ∈ D with f (zn) = wn for n = 1, 2, ....

In this case the conformally invariance is for free.
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Open Problems

Problem 2

Consider the space Dρ of analytic functions f such that

‖f ‖2Dρ
= |f (0)|2 +

∫
D
|f ′(z)|2ρ(z)dA(z) < ∞,

where ρ is a regular weight satisfying the Bekollé-Bonami condition∫
S(a)

ρ(z)dA(z)

∫
S(a)

ρ−1(z)dA(z) ≤ C m(S(a))2.

Carleson measures for Dρ

Geometric description due to Arcozzi, Rochberg and Sawyer’02.

Question

Characterize the interpolating sequences for the Dirichlet type spaces Dρ.
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Open Problems

Problem 3

A Hilbert space H has the Nevanlinna-Pick property when the matrix

(1− wnwm) < kzi , kzj >

being positive semi-definite is necessary and sufficient for the existence of
ϕ ∈ MH satisfying ϕ(zn) = wn, ‖ϕ‖MH

≤ 1.

Conjecture (Seip)

Let H be a Hilbert space of analytic functions with the Pick property, then
a sequence of points {zn} is an IS if and only if {zn} is H−separated and∑

n ‖kzn‖−2
H δzn is a Carleson measure for H.

Theorem (Böe’05)

Under some assumptions on H, the conjecture is true.
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