Mathematics Department
KTH, Spring 2012
A. Björner

Algebraic Combinatorics: Problem set \#2

(1) Suppose that $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{C}$. Show that:

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i}^{k} & =\sum_{i=1}^{n} b_{i}^{k} \quad, \quad 1 \leq k \leq n \\
& \Rightarrow a_{i}=b_{\pi(i)} \quad, \quad 1 \leq i \leq n, \text { for some } \pi \in S_{n}
\end{aligned}
$$

(2) Show that: $\lambda \leq \mu \Longleftrightarrow \mu^{\prime} \leq \lambda^{\prime}$, for $\forall \lambda, \mu \vdash m$. (Here \leq denotes dominance order and λ^{\prime} conjugate partition.)
(3) Show that dominance order is a lattice. (That is, every pair of elements has a greatest lower bound and a least upper bound.)
(4) Prove that

$$
\prod_{1 \leq i, j \leq n}\left(1+x_{i} y_{j}\right)=\sum_{\lambda} e_{\lambda}(x) m_{\lambda}(y)
$$

with sum over all diagrams λ that fit into an $n \times n$ square.
(5) Show that

$$
\omega\left(p_{\lambda}\right)=(-1)^{m-\ell(\lambda)} \omega\left(p_{\lambda^{\prime}}\right)
$$

where ω is the fundamental involution and $\lambda \vdash m$.
(6) Let A_{n} denote the set of standard Young tableaux $T=\left(t_{i, j}\right)$, $i \in[2], j \in[n]$ of shape $\lambda=(n, n)$ and with the following symmetry property: $t_{1, j}=2 n+1-t_{2, n+1-j}$, for all $j \in[n]$. Show that A_{n} has $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ elements.
(7) Prove Newton's formulas:
(a)

$$
m h_{m}=\sum_{k=1}^{m} p_{k} h_{m-k} \quad, \quad m \geq 1
$$

(b)

$$
h_{m}=\frac{1}{m!} \operatorname{det}\left|\begin{array}{ccccc}
p_{1} & -1 & 0 & & 0 \\
p_{2} & p_{1} & -2 & & \vdots \\
p_{3} & p_{2} & p_{1} & & 0 \\
& & & \ddots & 1-m \\
p_{m} & p_{m-1} & p_{m-2} & \cdots & p_{1}
\end{array}\right|
$$

(c)

$$
p_{m}=(-1)^{m-1} \operatorname{det}\left|\begin{array}{ccccc}
h_{1} & 1 & 0 & & 0 \\
2 h_{2} & h_{1} & 1 & & \\
3 h_{3} & h_{2} & h_{1} & & \\
& & & \ddots & 1 \\
m h_{m} & h_{m-1} & h_{m-2} & & h_{1}
\end{array}\right|
$$

(d) Deduce the corresponding formulas for e_{m}.

