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1. Introduction

In this chapter we discuss some of the ways in which topology has been used
in combinatorics. The emphasis is on methods for solving genuine combinatorial
problems that initially do not involve any topology — rather than on more the-
oretical aspects of the combinatorics~topology connection — and the selection of
material reflects this aim.

The chapter is divided into two parts. In part I several examples are presented
which illustrate different uses of topology in combinatorics. In part II we have
gathered a number of tools which have proven useful for dealing with the topo-
logical structure found in combinatorial situations. Also, a brief review of relevant
parts of combinatorial topology is given. Part II, which begins with section 9, is
intended mainly for reference purposes.

Among the examples in part I one can discern at least four ways in which
topology enters the combinatorial sphere. Of course, it is in the nature of such
comments that no rigid demarcation lines could or should be drawn. Also other
connections exist between topology and combinatorics that follow different paths.

(1) In the first three examples (sections 2-4) topology enters in the following
way. First a relevant simplicial complex is identified in the combinatorial context.
Then it is shown that this complex has sufficiently favorable properties to allow
application of some theorem of algebraic topology, which implies the combinatorial
conclusion.

(ii) A different approach is seen in section 5 and in Bardny’s proof in section 4.
There a combinatorial configuration is represented in concrete fashion in R? or on
the d-sphere, and a topological result (Borsuk’s Theorem) has the desired effect
on the configuration. ’

(iii) The case of oriented matroids (section 7) is unique. For these combina-
torial objects there is a topological representation theorem, saying that oriented
matroids are the same thing as arrangements of certain codimension one sub-
spheres in a sphere. Of course, in this situation the topological perspective is
always at hand as an alternative way of looking at these objects. Some non-
trivial properties of oriented matroids find particularly simple proofs in this
way.

(iv) The need for homotopy results in combinatorics sometimes arises as fol-
lows. Say we want to define some property & at all vertices of a connected graph
G = (V,E). We start by defining # at some root node r, and then give a rule
for how to define & at v’s neighbors, having already defined it at v € V. The
problem of consistency arises: Can different paths from r to v lead to different
definitions of % at v? One strategy for dealing with this is to define “elemen-
tary homotopies”, meaning certain pairs of paths which can be exchanged without
affecting the result (usually such pairs form small circuits such as triangles and
squares). Then we need a “homotopy theorem” saying that any path from r to v
can be deformed into any other such path using elementary homotopies. Tutte’s
and Maurer’s homotopy theorems (section 6) are of this kind. From a topological
point of view, the “elementary homotopies” mean that certain 2-cells are attached
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to the graph, and the homotopy theorem then says that the resulting 2-complex is
simply connected.

Being topologically k-connected has a direct combinatorial meaning for k =0
(connected), and, as we have seen, also for k =1 (simply connected). The way
that higher connectivity influences combinatorics is more subtle; see the examples
in sections 4 and 6.

In section 8 a-glimpse is given of the Hard Lefschetz Theorem and its appli-
cations to combinatorics found by R. Stanley. The question here is of finding a
complex projective variety whose topology (in the form of its cohomology ring)
is relevant to the combinatorics at hand. This rarefied method has found a few
striking applications. Since it deals more with algebraic-geometric matters (the
topology is somewhat subordinate), section 8 is rather loosely connected with the
rest of the chapter.

Topologlcal reasoning plays an 1mportant role in connection with several other
topics in discrete mathematics not treated here. Among these, let us mention:
embeddings of graphs in surfaces (see chapter 5 by Thomassen), convex poly—
topes (see chapter 18 by Klee and Kleinschmidt and also Bayer and Lee 1993),
arrangements of subspaces (see Orlik and Terao 1992 and Bjorner 1994a), group-
related incidence geometries (diagram geometries, chamber systems, posets of sub-
groups) (see Buekenhout 1995, Ronan 1989 and Webb 1987), computational ge-
ometry and realization spaces (see Bokowski and Sturmfels 1989), lower bounds
for decision and computation trees (see chapter 32 by Alon and also Bjorner
1994a).

Notation and terminology is explained in part II. We treat simplicial complexes
and posets almost interchangeably. The order complex of a poset and the poset
of faces of a complex ~ these two constructions take posets to complexes and vice
versa, and no ambiguity can arise from the topological point of view.

This chapter was written in 1988, and was revised and updated in 1989 and 1993.

PART L. EXAMPLES
2. Evasive graph properties

By a graph property we shall understand a property of graphs which is
isomorphism-invariant: if Gy & G, then G; has the property if and only if G,
does. The following discussion will concern simple graphs having some fixed ver-
tex set V. These graphs can be identified with the various subsets of (‘2/). Also,
it is convenient to identify a graph property with the subset of the power set 2()
which consists of all graphs having the property. A graph property ? C 23) is
called monotone if it is preserved under deletion of edges. It is called trivial if
either @ = or P =20),

In section 4.5 of chapter 23 by Bollobas the concept of complexity (sometimes
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called “argument complexity”) of graph properties is discussed. Also, evasive graph
properties are defined as those of maximal complexity. The following result (stated
as Theorem 4.5.5 in chapter 23) confirms for prime-power number of vertices # a
well-known conjecture.

Theorem 2.1 (Kahn, Saks and Sturtevant 1984). Let n = p* where p is a prime.
Then every non-trivial monotone property of graphs with n vertices is evasive.

We will sketch the proof of Kahn et al. to show the way in which topology is
used.

Suppose that card V = p*, p prime, and that % # { is a monotone nonevasive
graph property. ? is a family of subsets of (‘2/) closed under the formation of
subsets — i.e., a simplicial complex. The conclusion we want to draw is that & is
trivial, which, since % # 0, must mean that (‘2/) € P - ie., topologically ? is the
full simplex.

These two facts are crucial: *

2.2. The geometric realization ||| is contractible.

2.3. There exists a group I” of simplicial automorphisms of % which acts transitively
on (‘2/) and which has a normal p-subgroup I3, such that I'/I7 is cyclic.

For (2.2) one argues that the monotone property & is not evasive in the algorith-
mic sense defined above if and only if as a simplicial complex ? is nonevasive in
the recursive sense of (11.1). By (11.1) all nonevasive complexes are contractible.

The group I needed in (2.3) is constructed as follows. Identify V' with the
finite field GF(p*). Let I'= {x — ax +b |a,b € GF(p*),a #0} and I} = {x —
x+b|b € GF(p*)}. The assumption that P is an isomorphism-invariant property
of graphs on V means that if y is any permutation of V - in particular, if y € I
—then A € 2 if and only if y(A) € ?. Hence, I' is a group of simplicial automor-
phisms of ?. One checks that I is doubly transitive on V = GF(p*) and that the
subgroup I has the required properties.

By a theorem of Oliver (1975), any action of a finite group I', having a subgroup
Il with the stated properties, on a finite Z,-acyclic simplicial complex must have
stationary points. Since our complex % is Z,-acyclic (being contractible), this means
that there exists some point x € |?|| such that y(x) = x for all y € I". The point x
is carried by the relative interior of a unique face G € ? (the lowest-dimensional
face containing it), and the fact that x is stationary implies that y(G) = G for all
v € I'. But since I' is transitive on (‘2/) this is impossible unless G = (‘2/). Hence,

(‘2/) € ?, and we are done.

It has been conjectured that all non-trivial monotone graph properties are eva-
sive. This conjecture remains open for all non-prime-power n > 10; the n = 6 case
was verified by Kahn et al. (1984). The evasiveness conjecture has been proven
also for the case of bipartite graphs by Yao (1988), using the topological method.
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3. Fixed points in posets

A poset P is said to have the fixed-point property if every order-preserving self-map
f:P — P has a fixed point x = f(x). It was shown by A. C. Davis and A. Tarski
that a lattice has the fixed-point property if and only if it is complete (meaning
that meets and joins exist for subsets of arbitrary cardinality). It has long been
an open problem to find some characterization of the finite posets which have
the fixed-point property. See Rival (1985) for references to work in this area. In
the absence of such a characterization efforts have been directed toward finding
nontrivial classes of finite posets which have the fixed point property. For this the
Lefschetz fixed-point theorem has proved to be useful.

Let L be a finite lattice and z € L. Then y is said to be a complement of z,
written y 1z, if yAz =0 and y vz =1. Let €o(z) = {y € L|y 1 z}. The lattice
L is called complemented if €0(z) # 0 for all z € L.

A finite lattice L has the fixed point property, as is easy to see. It is more
interesting to look at the proper part L =L —~ {0 1} of the lattice, which may or
may not have the fixed point property. This is also natural from the point of view
of lattice automorphisms, for which every nontrivial fixed point must lie in L.

Theorem 3.1 (Bactawski and Bjorner 1979, 1981). Let L be a finite lattice and z €
L. Then the poset L — €0(z) has the fixed point property. In particular, if L is
noncomplemented then L has the fixed point property.

By Theorem 10.15 the order complex A(L — €o(z)) is contractible, and therefore
by Lefschetz’s Theorem 13.4 it has the fopological fixed point property. From this
the result easily follows.

For example, let L be a finite Boolean lattice of order n. Then L has (n— 1)!
fixed-point-free automorphisms, but the removal of any one element from L leads
to a poset with the fixed point property.

The preceding argument is, of course, applicable to any Q-acyclic finite poset
[see (11.1) for some other combinatorially defined classes of such]. Also, with this
method one can prove more about the combinatorial structure of the fixed-point
sets P/ = {x € P | x = f(x)} than merely that they are nonempty.

Let f: P — P be an order-preserving mapping of a finite Q-acyclic poset. Then
the Mdobius function p computed over P/ augmented by new bottom and top
elements must equal zero: u(Pf) = 0. This follows from the Hopf trace formula,
see (13.5) and the comments following it. A consequence is that for instance two
or more incomparable points cannot alone form a fixed-point set in an acyclic
poset. For other finite posets with the fixed point property such fixed-point sets
are, however, possible.

Similarly, let g: P — P be an order-reversing mapping of a finite Q-acyclic poset.
Then the Hopf trace formula (13.2) specializes to u(Pg) =0, where Py = {x €
P | x = g*(x) < g(x)}. In particular, if no x € P satifies x = 2(x) < g(x) then g has
a unique fixed point. See Baclawski and Bjorner (1979) for further details and
examples.
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4. Kneser’s Conjecture

Consider the collection of all n-element subsets of a (2n + k)-element set, n >
1,k > 0. It is easy to partition this collection into k +2 classes so that every pair
of n-sets within the same class has nonempty intersection. Can the same be done
with only &k + 1 classes? M. Kneser conjectured in 1955 that the answer is negative,
and this was later confirmed by L. Lovaész.

Theorem 4.1 (Lovasz 1978). If the n-subsets of a (2n+ k)-element set are parti-
tioned into k + 1 classes, then some class will contain a pair of disjoint n-sets.

Lovész’s proof relies on Borsuk’s Theorem 13.6 and homotopical connectivity
arguments. Soon after Lovdsz’s breakthrough a simpler way of deducing Kneser’s
Conjecture from Borsuk’s Theorem was discovered by Bdarany (1978). However,

-Lovész’s proof method is applicable also to other situations and hence perhaps
of greater general interest. See also chapter 24 by Frankl for a discussion of this
result.

Let us first sketch Bardny’s proof. By a theorem of Gale (1956) (see also Schrijver
- 1978), for n,k > 1 there exist 2n + k points on the sphere S* such that any open
hemisphere contains at least n of them. Partition the n-subsets of these points
into classes €y, 6y,...,%;. For 0 <i <k, let O; be the set of all points x e sk
such that the open hemisphere around x contains an n-subset from the class ;.
Then (0;)o<i<k gives a covering of S¥ by open sets. Part (i) of Borsuk’s Theorem
13.6 implies that one of the sets, say 0y, contains antipodal points. But the open
hemispheres around these points are disjoint and both contain n-subsets from the
class €,. Hence, €, contains a pair of disjoint n-sets.

For Lovdasz’s proof it is best to think of the problem in graph- theoretic terms.
Define a graph KG, ; as follows: The vertices are the n-subsets of some fixed
(2n + k)-element set X and the edges are formed by the pairs of disjoint n-sets.
Then Theorem 4.1 can be reformulated: The Kneser graph XG, is not (k +1)-
colorable.

For any graph G = (V,E) let N(G) denote the simplicial complex, called the
neighborhood complex, whose vertex set is V and whose simplices are those sets
of vertices which have a common neighbor (i.e., A € N(G) iff there exists v € V
such that {v,a} € E for all a € A). The topology of this complex has surprising
combinatorial content.

Theorem 4.2 (Lovész 1978). For any finite graph G, if N (G) is (k — 1)-connected,
then G is not (k +1)-colorable.

To prove Theorem 4.1 it will then suffice to show that N/ (KG, ) is (k —1)-
.connected. This can be done as follows. Let P = {A C X |n < card A <n+k}.
Ordered by containment P is a subposet of the Boolean lattice B(X) of all subsets
of X. B(X) is shellable (11.10) (iv), hence by (11.2) and Theorem 11.14 P is (k — 1)-
connected. Let C be the crosscut of n-element sets. By Theorem 10.8, P and the
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Figure 1.

crosscut complex I'(P, C) are homotopy equivalent. It follows that I'(P, C), which
is the same thing as &' (KG,), is also (k — 1)-connected.

The known proofs for Theorem 4.2 are more involved. A very elegant functorial
argument was given by Walker (1983a), which we will sketch here in briefest pos-
sible fashion. The same general argument was also found by Lovdsz (unpublished
lecture notes) as a variation of his original proof.

Let G=(V,E) be a finite graph. The mapping v : N'(G) — N (G) defined by
v(A)={v eV |{v,a} € E for all a € A} has the properties

(i) A CB implies v(A) D v(B), and (i) v*(4) D A.

Let N'(G) denote the order complex of the poset of fixed points of v? ordered by
containment. Thus, & (G) is a subcomplex of the barycentric subdivision of ¥(G).
In fact, the subspace ||/ (G)|| is by Corollary 10.12 a strong deformation retract of
|/ (G)||, so ¥(G) and N'(G) are of the same homotopy type. This construction is
illustrated in fig. 1, where part (a) shows a graph G, (b) the neighborhood complex
N(G), (c) its barycentric subdivision, and (d) the retract complex ' (G).

Property (i) of the mapping v : ¥(G) — N(G) shows that v restricts to a simpli-
cial mapping v : N (G) — N(G), and from property (11) it follows that »? = identity.
Hence, (N (G), ) (or, to be precise, (|[4(G)|],|[»|]) is an antipodality space. Fur-
thermore, it can be shown that every graph map (mapping of the nodes which takes
edges to edges) g: G; — G, induces an equivariant map g: N (Gy) — N(G,). As
these facts suggest, the construction 4'(-) sets up a functor from the category of
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finite graphs and graph maps to the category of antipodality spaces and homotopy
classes of equivariant maps, see Walker (1983a). For the example illustrated in
fig. 1(d), the induced antipodal mapping of .¥'(G) coincides with its antipodal map
x — —Xx as a circle.

For Ky, , the complete graph on k + 1 vertices, one sees that & (K1) = N (Ki.)
is combinatorially the barycentric subdivision of the boundary of a k-simplex. It
is also easy to verify that, as an antipodality space, (N (K1), ») is isomorphic to
the sphere (§*~!, @) with its standard antipodality map a(x) = —x.

We now have all the ingredients for a proof of Theorem 4.2. Suppose that
a graph G is (k+1)-colorable. This is clearly equivalent to the existence of a
graph map G — K;,,;. Hence, we deduce the existence of an equivariant map
N(G) — N (Ky,1) = 81, So by part (v) of Borsuk’s Theorem 13.6, we conclude
that ¥ (G), and hence N (G), is not (k — 1)-connected.

Schrijver (1978) has shown, using Béardny’s method, that the conclusion of Theo-
rem 4.1 remains true for the class of n-subsets that contain no consecutive elemerits
i,i+1 in circular order (mod 2n + k), and that this class is minimal with this prop-
erty. A different application of Theorem 4.2 is given in Lovdsz (1983).

The following generalized “Kneser” conjecture was made by P. Erdés in 1973
and has recently been proved.

Theorem 4.3 (Alon, Frankl and Lovasz 1986). Let n,t > 1 and k > 0. If the n-
subsets of a (tn+ (t — 1)k)-element set are partitioned into k +1 classes, then some
class will contain t pairwise disjoint n-sets.

The proof is analogous to Lovasz’s proof of Theorem 4.1. For general ¢-uniform
hypergraphs H a suitable neighborhood complex €(H) is defined. It is shown that
if ¢ is a prime and 6(H) is (k(t — 1) — 1)-connected then H is not (k + 1)-colorable.
To prove this for odd primes ¢ the Barany-Shlosman-Sz{ics Theorem 13.8 is used
rather than Borsuk’s Theorem. It can be shown by an elementary argument that
if Theorem 4.3 is valid for two values of ¢ then it is also valid for their product.
Hence one may assume that ¢ is prime. See Alon et al. (1986) for the details.

Theorem 4.3 has been further generalized by Sarkaria (1990) to involve “j-
wise disjoint” instead of “pairwise disjoint” families of n-sets. The proof uses a
generalized Borsuk-Ulam theorem and the deleted join construction for simplicial
complexes (defined in section 9).

5. Discrete applications of Borsuk’s Theorem

One of the most famous consequences of Borsuk’s Theorem 13.6 is undoubtedly
the Ham Sandwich Theorem 13.7. This result, or some version of the “ham sand-
wich” argument which leads to it (outlined in connection with Theorem 13.7), can
be used in certain combinatorial situations to prove that composite configurations
can be split in a balanced way. Two examples of this, due to N. Alon and coau-
thors, will be given in this section. Also, we discuss how Borsuk’s Theorem and its
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generalizations have been used in connection with results of “Tverberg” type. For
other applications of Borsuk’s Theorem to combinatorics, see Bardny and Lovdsz
(1982), Yao and Yao (1985), and section 4. Surveys of this topic are given by Alon
(1988), Barany (1993) and Bogatyi (1986).

Suppose that 2n points are given in general position in the plane R?, half colored
red and the other half blue. It is an elementary problem to show that the red points
can be connected to the blue points by n nonintersecting straight-line segments.
A quick argument goes like this. Of the n! ways to match the blue and red points
using straight-line segments, choose one which minimizes the sum of the lengths.
If two of its lines intersect, they could be replaced by the sides of the quadrilateral
that they span, and a new matching of even shorter length would result. No such
elementary proof is known for the following generalization to higher dimensions.

Theorem 5.1 (Akiyama and Alon 1989). Let A be a set of d-n points in general
position (no more than d points on any hyperplane) in R%. Let A=A UA,U---U
Ay be a partition of A into d pairwise disjoint sets of size n. Then there exist n
pairwise disjoint (d — 1)-dimensional simplices, such that each simplex intersects
each set A; in one of its vertices, 1 <i < d.

The idea of Akiyama and Alon is to surround each point p € A by a small ball of
radius &, where ¢ is small enough that no hyperplane intersects more than d such
balls. Give each ball a uniform mass distribution of measure 1/zn. Then each color
class A;,1 < i < d, is naturally associated with its n balls, forming a measurable set
of measure 1. By the Ham Sandwich Theorem 13.7 there exists a hyperplane H
which simultaneously bisects each color class. If n is odd, then H must intersect
at least one ball from each A;. General position immediately implies that H must
intersect precisely one ball from each A;, and in fact bisect this ball. By induction
on n, the points on each side of H can now be assembled into disjoint simplices,
and finally the points in H form one more such simplex. The argument if 7 is even
is similar, but in that case H might have to be slightly moved to divide the points
correctly for the induction step.

The next example has a more “applied” flavor. Suppose that k thieves steal a
necklace with k - n jewels. There are ¢ kinds of jewels on it, with k - a; jewels of type
i,1 <i<t. The thieves want to divide the necklace fairly between them, wasting
as little as possible of the precious metal in the links between jewels. They need
to know in how many places they must cut the necklace? If the jewels of each
kind appear contiguously on the opened necklace, then at least ¢(k — 1) cuts must
be made. This number of cuts in fact always suffices. (Of course, what the thieves
really need is a fast algorithm for where to place these cuts.)

Theorem 5.2 (Alon and West 1986, Alon 1987). Every open necklace with k - a;
beads of color i,1<i<t, can be cut in at most t(k — 1) places so that the re-
sulting segments can be arranged into k piles with exactly a; beads of color i in each
pile, 1 <it.

The idea for the proof is to turn the situation into a continuous problem by
placing the open necklace (scaled to length 1) on the unit interval, and then to
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use a “ham-sandwich”-type argument there. For k& =72 this was done in Alon and
West (1986) using Borsuk’s Theorem. The extension to general k was achieved in
Alon (1987) using the Bardany-Shlosman—Sziics Theorem 13.8.

Radon’s Theorem, a well-known result in convexity theory, says that any collec-
tion of d + 2 points in R? can be split into two nonempty blocks whose convex hulls
have nonempty intersection. This was generalized by Tverberg (1966) as follows:
Forall p > 2 and d > 1, any set of (p — 1)(d + 1) + 1 points in R? can be partitioned
into p blocks By,...,Bp so that conv(B;)N---Nconv(B,) # 0. For a quite short
proof of Tverberg’s Theorem, see Sarkaria (1992). Results of the Radon-Tverberg
type have generated a lot of interest, and recent work shows that in many cases
such results rely on topological foundations that lead to formulations more general
than the original ones in terms of convexity. See Eckhoff (1979) and Barany (1993)
for surveys of results of this kind.

Radon’s theorem can be obtained as a consequence of Borsuk’s Theorem, as was
shown by Bajméczy and Bardny (1979). Here is the connection. Let A? denote the
d-dimensional simplex. Bajmd6czy and Bardny prove that there exists a continuous
map g:8% — A% such that the supports of g(x) and g(—x) are disjoint for every
x € $%. Suppose now that Radon’s Theorem is false; say it fails for the points
Vi,---,Yas in R4, Define f: A% — R? by sending the ith vertex of A% to y; and
extending linearly. Then the map fog:8% — R¢ would violate the Borsuk-Ulam
Theorem 13.6 (ii).

In the preceding argument the map- f could as well be an arbitrary continuous
map (i.e., not necessarily linear). In a similar way, using Theorem 13.8 instead
of Borsuk’s Theorem, Bardny, Shlosman and Szfics (1981) proved the following
“topological Tverberg theorem”: Suppose that f: AN — R? is a continuous map-
ping, where N = (p —1)(d + 1) and p is prime. Then there exist p pairwise disjoint
faces o1, ...,0, of AN such that f(o1) N ---N f(ap) # 0. It is still unknown whether
the restriction to prime p is needed here in the non-linear case. See Sarkaria
(1991b) for even more general results of this kind.

The following result has the general flavor of Tverberg’s Theorem, and goes in
an opposite direction from Theorem 5.1.

Theorem 5.3 (Zivaljevi¢ and Vreéica 1992). Let A=A; UAyU---UAy,; be a set
of points in R? partitioned into d +1 pairwise disjoint sets (color classes) of size
|A;| > 4n — 1. Then there exist n pairwise disjoint (d + 1)-subsets By,...,B, of A
such that |A; N\ Bj| =1 for all i, j and conv(By) N--- N conv(B,) # 0.

The proof for this “colored Tverberg theorem” uses a Borsuk-Ulam-type result
for free Z,-actions, p prime, which establishes the non-existence of an equivariant
map from a certain “configuration space” of sufficiently high connectivity to a
sphere of appropriate dimension.

It has been conjectured by Barany and Larman that |A;| > n suffices in Theorem
5.3. This has been proven for d =2 by Bardny and Larman and for n =2 by
Lovész, whose proof uses Borsuk’s theorem. See Zivaljevié and Vreéica (1992) for
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these references and for a fuller discussion of the status of this “colored Tverberg
problem”™.

6. Matroids and greedoids

This section and the next are devoted to certain topological aspects of matroids
and of two related structures — oriented matroids and greedoids. For the basic
definitions see chapter 9 by Welsh. Additional topological facts about matroid
complexes and geometric lattices are mentioned in (11.10); see also Bjorner (1992).

Basis complexes and partitions of graphs

The following result was proven by E. Gy&ry and L. Lové4sz in response to a
conjecture by A. Frank and S. Maurer.

- Theorem 6.1 (Lovész 1977, Gy6ry 1978). Let G = (V, E) be a k-connected graph,
{v1,v2,...,0x} a set of k vertices, and ny,ny, ..., n, positive integers with ny + n, +
--~+ny = |V|. Then there exists a partition {V1,V,,...,Vi} of V such that v; €
Vi, |Vil = n; and V; spans a connected subgraph of G,i =1,2,...,k.

The proof of Lovdsz uses topological methods, that of Gy6ry does not. At the
end of this section Lovasz’s proof will be outlined for the case k =3 in order to
illustrate its use of topological reasoning. It relies on the connectivity of a certain
polyhedral complex associated with certain forests in G. Similar complexes can
be defined over the bases of a matroid, and more generally over the bases of a
greedoid. The greedoid formulation contains the others as special cases, and we
shall use it to develop the general result.We begin by recalling the definition.

A set system (E, %), % C 2E, is called a greedoid if the following axioms are
satisfied:

(G 0e &,

(G2) for all nonempty A € F there exists an x € A such that A —x € Z,

(G3)if A,B € & and |A| > |B|, then there existsanx € A — B such that BUx €
F.

If also the extra condition (G4) is satisfied, then (E, %) is called an interval
greedoid:

(G4)if ACBc Cwhere A,B,Ce Fand AUx,CUx e Fforsomex € E - C,
then also Bux € %.

The sets in & are called feasible and the maximal feasible sets bases. All bases
have the same cardinality r, which is the rank of the greedoid.

The only examples which will be of concern here are matroids (feasible sets =
independent sets) and branching greedoids of rooted graphs (feasible sets = edge
sets which form a tree containing the root node). Both are interval greedoids. For
other examples and further information about greedoids, see chapter 9 by Welsh
and the expository accounts Korte, Lovasz and Schrader (1991) and Bjorner and
Ziegler (1992).
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The feasible sets of a greedoid do not form a simplicial complex other than in the
matroid case. However, a useful topology is given by (the order complex of) the
poset ¥ = F — {0}, ordered by inclusion. A greedoid (E, %) is called k-connected
if for each A € # there exists B € ¥ with A C B,|B — A| = min(k,r — |A|) and
such that C € & forevery A C C C B. Matroids are r-connected, and the branching
greedoid of a k- connected rooted graph is k-connected.

Proposition 6.2 (Bjorner, Korte and Lovész 1985). Let (E, %) be a k-connected
interval greedoid (k >?2). Then the poset of feasible sets (¥,C) is (topologically)
(k —2)-connected.

This result follows from (11.10) (iii) via Theorem 10.8, since for the crosscut C
of minimal elements in % the crosscut complex I'(%,C) is a matroid complex of
rank > k.

Let 2 be the collection of all bases in a greedoid (E, %) of rank r. Two bases B,
and B, are adjacent if B; N B, € ¥ and |B; N B,| = r — 1. Attaching edges between
all adjacent pairs we get a graph with vertex set 9B, the basis graph.

The shortest circuits in the basis graph can be explicitly described. There are
two kinds of triangles and one kind of square (quadrilateral):

6.3. Three bases AUx,AUy, AUz, where A € ¥, |A|=r 1, span a triangle of
the first kind.

6.4. Three bases AUxUy, AUxUz,AUyUz, where A € ¥ |A|=r—2, span a
triangle of the second kind.

6.5. Four bases AUxUu,AUxUv,AUyUu, AUy Uv, where A € F,|A|=r —2,
span a square.

For branching greedoids triangles of the second kind cannot occur.

Now, attach a 2-cell (a “membrane”) into each triangle and square. This gives
a 2-dimensional regular cell complex J, which we call the basis complex.

It is a straightforward combinatorial exercise to check that the basis complex of
any 2-connected greedoid of rank < 2 is 1-connected (i.e., connected and simply
connected). For rank 2 (the only non-trivial case) this follows directly from the
exchange axiom (G3). In higher ranks the following is true.

Theorem 6.6 (Bjorner, Korte and Lovasz 1985). The basis complex ¥ of any 3-
connected interval greedoid is 1-connected.

In order to illustrate some of the tools given in part II, we give a short proof
of this. Let P be the poset of closed cells of # ordered by inclusion, and let Q be
the top three levels of (%, C), i.e., the feasible sets of ranks r —2, r — 1 and r. Let
f:P — Q be the order-reversing map which sends each cell T to the intersection
of the bases which span 7. By Proposition 6.2 and Lemma 11.12 the poset Q is
1-connected, so by Theorem 10.5 we only have to check that the fibers f~1(0>4)
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are 1-connected for all A € Q. But if r(A) =r —i,i =0,1,2, then f~1(Q,) is the
basis complex of the rank i greedoid obtained by contracting A, and we have
already checked that basis complexes of rank < 2 greedoids are 1-connected.

Let P =B1B;---B; and Q = B;By,, - -- B, be paths in the basis graph of a ma-
troid, and let PQ = B1B;,---B;B,,; - -- By be their concatenation. Say that paths
PQ and PRQ differ by an elementary homotopy if R is of the form BCB,BCDB
or BCDEB with B = B,.

Theorem 6.7 (Maurer 1973). Let P and P’ be any two paths with the same end-
points in the basis graph of a matroid. Then P can be transformed into P’ via a
sequence of elementary homotopies.

Maurer’s “Homotopy Theorem” 6.7 is clearly a combinatorial reformulation of
Theorem 6.6 in the matroid case. An application to oriented matroids will be given
in the next section. .

The time has come to return to Theorem 6.1. The following outline of the $pr00f
for the k£ = 3 case is quoted from Lovasz (1979) (with some adjustments in square
brackets to better suit the present discussion):

“So let G be a 3-connected graph, vy,v,,v3 € V(G) and n; +n, +n3 = |V(G)|.
Take a new point a and connect it to vq,v;, and v;. Consider the topological space
H constructed for this new graph G’. [In our language, ¥ is the basis complex
of the branching greedoid determined by the rooted graph (G’,a). This greedoid,
whose bases are the spanning trees of GG, is 3-connected.] For each spanning tree
T of G/, let f;(T) denote the number of points in 7 accessible from a along the
edge (a,v;)(i = 1,2). Then the mapping

[:T — (A(T), f2(T))

maps the vertices of ¥ onto lattice points of the plane. Let us subdivide each
quadrilateral 2-cell in # by a diagonal into two triangles; in this way we obtain
a triangulation % of 9. Extend f affinely to each such triangle so as to obtain a
continuous mapping of ¥ into the plane. Obviously, the image of J is contained in
the triangle A = {x > 0,y > 0,x+y < n}. We are going to show that the mapping
is onto A.

“Let us pick three spanning trees, Ty, T, T5 first such that f(7}) = (n,0), f(T3) =
(0,n), f(T3) = (0,0). Obviously, such trees exist. Next, by applying [the fact that
the basis graph of a 2-connected greedoid is connected] to the graph G’ — (a,v3),
we select a polygon Py, in ¥ connecting T; to T, and having f3(x) =0 at all
points. Thus f(Py;) connects (n,0) to (0,n) along the side of the triangle A with
these endpoints. Let P,3 and Ps; be defined analogously.

“By Theorem 6.6, Py, + Py3 + P3; can be contracted in J to a single point. There-
fore, f(P12) + f(P23) + f(P31) can be contracted in f(J) to a single point. But ‘ob- -
viously’ (or, rather, by applying the well-known fact [Brouwer’s Theorem 13.1] that
the boundary of a triangle cannot be contracted to a single point in the triangle
with one interior point taken out), f(%) must cover the whole triangle A. So in
particular the point (n1,n;) belongs to the image of ¥, and therefore it belongs to
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the image of a triangle of %. But it is easy to see that this implies that (n;,n,) is
the image of one of the vertices of J; i.e., there exists a spanning tree T with

A(T) =n1, f(T)=ny.

The three components of T — a now yield the desired partition of V (G).”

Theorem 6.6 is a special case of a more general result saying that for any k-
connected interval greedoid a certain higher-dimensional basis complex is (k —
2)-connected. This more general result implies Theorem 6.1 for arbitrary k by
extension of the ideas we have just seen in the £ = 3 case. See Lovdasz (1977) and
Bjorner, Korte and Lovasz (1985) for complete details.

Tutte’s Homotopy Theorem

A matroid is called regular if it can be coordinatized over every field. In Tutte
(1958) a characterization is given of regular matroids in terms of forbidden mi-
nors. The proof relies in an essential way on a “Homotopy Theorem”, expressing
the 1-connectivity of certain 2-dimensional complexes. Tutte’s Homotopy Theorem
was also used by R. Reid and R. Bixby to prove the forbidden minor characteriza-
tion for representability over GF(3). More recently other proofs of these results,
avoiding use of the Homotopy Theorem, have been found by P. Seymour and
others. See chapter 10 by Seymour for an up-to-date account.

Tutte’s Homotopy Theorem seems to be the oldest topological result of its kind
in combinatorics. Unfortunately it is quite technical both to state in full and to
prove. Here we shall state the Homotopy Theorem in sufficient detail that the
nature of the result can be understood. Complete details can be found in Tutte
(1958) and Tutte (1965).

Let L be a finite geometric lattice of rank r, and write L' for the set of flats of
rank i; so L1 is the set of copoints, L™ the colines and L™ the coplanes. Flats
X € L will be thought of as subsets of the point set L! via X = {p € L' | p < X}.

Given any point a € L! we define a graph TG(L,a) on the vertex set L ! =

{X € L' | X #a} as follows: two copoints X and Y “off a” (i.e., in the set L;‘al
span an edge if X A'Y is a coline and X UY # L! — a. On this graph we construct a

2-dimensional regular cell complex TC(L, a) by attaching 2-cells into the triangles
and squares of the following kinds:

6.8. Triangles XY Z X for which tk(X AY AZ) >r —3.

6.9. Squares XYZTX for which rk(P)=r—3, where P=XAYAZAT, and

either the coline P V a is covered by exactly two copoints or else the interval [P, 1]
is isomorphic to the lattice of flats of the Fano matroid F; minus one of its points.

If L has no minor isomorphic to F>, the dual of the Fano matroid, then (6.8)
and (6.9) describe all the 2-cells of the Tutte complex TC(L,a). [This means that
for use in representation theory the definition (6.8)-(6.9) of TC(L, a) is sufficient.]
In general it is necessary to attach 2-cells also into certain squares XY ZTX for
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which tk(X AY A Z A T) =r — 4. The definition of these squares (of the “corank
4 kind”) is fairly complicated, so we refrain from describing them here.

Theorem 6.10 (Homotopy Theorem, Tutte 1958). The complex TC(L,a) is 1-
connected.

The combinatorial meaning of Theorem 6.10 is that any two copoints X and
Y “off a” can be connected “off a” by a path in the Tutte graph TG(L,a), and
that any two such paths differ by a sequence of elementary homotopies of type
XYX,XYZX asin (6.8),or XYZTX asin (6.9) or of the corank 4 kind. (Compare
the discussion preceding Theorem 6.7.)

The given formulation of the Homotopy Theorem differs in form but not in
. content from the statement in Tutte (1958). Tutte has remarked about his theorem
(Tutte 1979, p. 446) that “the proof ... is long, but it is purely graph-theoretical
and geometrical in nature. I am rather surprised that it seems to have acquired a
reputation for extreme difficulty”. No significant simplification of the origindl proof
seems to be known, other than in special cases. One such case isif XUY # L' —q
for all pairs X,Y of copoints “off a” such that X AY is a coline. Then the top
three levels of L — [a,1] form a poset which is 1-connected by (11.10) (iv), (11.2)
and Theorem 11.14, and the 1-connectivity can be transferred to TC(L,a) by an
application of the Fiber Theorem 10.5, similar to the proof of Theorem 6.6. A
simpler and more conceptual proof of Tutte’s Theorem in full strength would be
of definite interest.

Unfortunately the available space does not permit a thorough explanation of
how Theorem 6.10 is used in representation theory. Here is a briefest possible
sketch of the idea. Tutte’s proof of sufficiency for his characterization of regular
matroids runs by induction on the size of the ground set (that is why it is of interest
to delete the point a). Roughly speaking, the “regular” coordinatization lives on
the copoints, and its value at the new point a is extended from one copoint in L;‘al
to another via paths in the Tutte graph TG(L,a). The Homotopy Theorem is then
needed to check that different paths do not lead to contradictions. A similar idea
is illustrated in greater detail in the proof of Theorem 7.6.

7. Oriented matroids

Two topics from the theory of oriented matroids will be discussed in this sec-
tion. Most important is the topological representation theorem of Folkman and
Lawrence (1978), which states that every oriented matroid can be realized by an
arrangement of pseudospheres. As an application we show how such realizations
lead to quick proofs of some combinatorial properties of rank 3 oriented ma-
troids. Second, we sketch (following Las Vergnas 1978) how Maurer’s Homotopy
Theorem 6.7 can be used to deduce the existence of a determinantal sign function.

Oriented matroids are defined in chapter 9 by Welsh. Since we will use a slightly
different formulation of the concept (due to Folkman and Lawrence 1978) and
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need to refer to the linear case for motivation, we will start with a quick review
of the basics, which will also serve to fix notation. More extensive treatments can
be found in the monographs Bachem and Kern (1992) and Bjorner, Las Vergnas,
Sturmfels, White and Ziegler (1993).

Let E be a finite set with a fixed-point free involution x — x* (i.e., x* # x = x**
for all x € E). Write A* = {x* | x € A}, for subsets A C E. An oriented matroid
0 = (E,*,%) is such a set together with a family € of nonempty subsets such that

(OM1) € is a clutter (i.e., C; # C, implies C; € C, for all C1,C; € €);

(OM2) if C € € then C* € € and C N C* = §;

(OM3) it Gy, G, € €,Cy # C5 and x € C; N (], then there exists D € € such that
D C CuGC —{x,x*}.

The sets in € are called circuits of the oriented matroid 0. For elements x € £
let ¥ = {x,x*}, and let A={x|x € A},ACE, and € = {C|C € %¢}. The system
€ satisfies the usual matroid circuit-exchange axioms, so 6 = (E, €) is a matroid,
called the underlying matroid of 0. Not all matroids arise from oriented matroids
in this way; those that do are called orientable. A subset B C E is called a basis of
O if B is a basis of 0. The rank of O equals the rank of @. Without significant loss
of generality we will make the tacit assumption in what follows that all oriented
. matroids are simple, meaning that no circuit has fewer than three elements.

The fundamental models for oriented matroids are sets of vectors in R¢ and
the relation of positive linear dependence (or, more generally, positive linear de-
pendence of vectors over any ordered field). Suppose that E is a finite subset of
R? — {0} such that E = —E, and if x # y in E are parallel then y = —x. For x € E
let x* = —x. A subset A C E is positive linearly dependent if 3,,c s Axx = 0 for some
real coefficients A, > 0, not all equal to zero. Let 4 be the family of all inclusion-
wise minimal positive linearly dependent subsets of E, except those of the form
{x,x*},x € E. Equivalently, € consists of all subsets of £ which form the vertex
set of a simplex of dimension > 2 containing the origin in its relative interior. Ori-
ented matroids (E,*,€) which arise in this way are called linear (or, realizable)
over R. Not all oriented matroids are isomorphic to linear ones.

Topological Representation Theorem

To pave the way for the Representation Theorem for oriented matroids it is best
to look at the linear case for motivation. The Representation Theorem in fact says
that intuition gained from the linear case is going to be essentially correct (mod-
ulo some topological deformation which cannot be too bad) for general oriented
matroids.

Let E be a finite subset of R? — {0} such that E = —E, and let 0 = (E, *, %)
be the linear oriented matroid as previously discussed. For each e € E = {¥ =
{x,x*}|x € E}, let H, be the hyperplane orthogonal to the line spanned by e.
The arrangement of hyperplanes 3 = {H, | e € E} contains all information about
0, since one can go from H, back to a pair of opposite normal vectors, and the
definition of the sets which form circuits in O (i.e., the sets in 4) is independent

of the length of vectors. By intersecting with the unit sphere $4~! we can alterna-
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tively look at the arrangement of spheres ¥ = {H,NS%"! | e € E}, which is merely
a collection of equatorial (d — 2)-spheres inside the (d — 1)-sphere. Clearly: linear
oriented matroids (up to reorientation), arrangements of hyperplanes and arrange-
ments of spheres are the same thing.

When thinking about a linear oriented matroid (E,*, €) as an arrangement of
spheres it is useful to visualize elements x € E as closed hemispheres H, = {y €
$971| (y,x) > 0}. Then a subset A C E belongs to € if and only if A NA* = ( and
A is minimal such that | J,_, H, =S*".

We shall need the following terminology. A sphere ) is a topological space
for which there is a homeomorphism f:$’ — Y with the standard j-sphere

= {x e RI*! | ||x|| =1}, for some j >0. A pseudosphere S in ) is any image
S f({x € §' | xj;1 = 0}) under such a homeomorphism. [In the topological liter-
ature pseudospheres are known as “tamely embedded (or, flat) codimension-one
subspheres” cf. Rushing (1973).] The two sides (or, pseudohemispheres) of S are

=f({x €8 |xj,1 20}) and S~ = f({x € §7 | x;,1 <0}). Clearly, S is the:inter-
sectlon of its two sides, which are homeomorphic to balls.

The crucial definition is this: An arrangement of pseudospheres (E,sf) in $27! is
a finite collection & = {S, | e € E} of distinct pseudospheres S, in $9=1 such that

(AP1) Every nonempty intersection Sy = [,c4 Se, A C E, is a sphere.

(AP2) For every nonempty intersection S, and all e € E, either S, C S, or
Sa NS, is a pseudosphere in S4 with sides S, NS, and S4 NS, .

This definition is due to Folkman and Lawrence (1978). They actually required
more, but the additional assumptions in their definition were proved to be redun-
dant by Mandel (1982).

In analogy with the linear case (arrangement of spheres), an arrangement of
pseudospheres (E,sf) gives rise to a system O(sf) = (E,*,€) as follows: put
E={S|ec E}U{S; |e€ E}, let (S)* = S; and vice versa, and define € to be
the collection of the minimal subsets A C E such that [JA =89! and AN A* =0,
It turns out that O(sf) is an oriented matroid (in spite of the topological defor-
mations). What is more surprising is that the construction leads to all oriented
matroids. We call an arrangement & essential if (| s = 0.

Theorem 7.1 (Representation Theorem, Folkman and Lawrence 1978).
() If o is an arrangement of pseudospheres in 871, then O(sd) is an oriented
matroid. Furthermore, if o is essential then rank O(H) =
(ii) If O is an oriented matroid of rank d, then 0= O() for some essential
arrangement of pseudospheres in $%1
(iii) The mapping A — O(HA) induces a one-to-one correspondence between rank

d oriented matroids and essential arrangements of pseudospheres in S up to
natural equivalence relations.

The proof of this result is quite involved. For part (ii) a poset is first constructed
from the oriented matroid, and then it is shown using Theorem 12.6 that this poset
is the poset of faces of some regular cell complex €.This complex € provides the
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(d — 1)-sphere and various subcomplexes the (d — 2)-subspheres forming the ar-
rangement. The sphere € is constructible (Edmonds and Mandel 1978, Mandel
1982), and even shellable (Lawrence 1984), which implies that the whole construc-
tion of € and the relevant subcomplexes can be carried out in piecewise linear
topology. In particular, this means that no topological pathologies need to be dealt
with in representations of oriented matroids. Complete proofs of Theorem 7.1
can be found in Folkman and Lawrence (1978), Mandel (1982), and Bj6rner, Las
Vergnas, Sturmfels, White and Ziegler (1993).

The Representation Theorem shows that oriented matroids of rank 3 correspond
to arrangements of “pseudocircles” on the 2-sphere or, in the projective version,
arrangements of pseudolines in the real projective plane. This representation can
be used for quick proofs of some combinatorial properties as in the following
application.

Theorem 7.2. Let M be an orientable matroid of rank 3. Then: -
(i) M has a 2-point line,
(ii) if the points of M are 2-colored there exists a monochromatic line.

Here is how Theorem 7.2 follows from Theorem 7.1. Represent the points of M
as pseudocircles on the 2-sphere. Then lines are maximal collections of pseudocir-
cles with nonempty intersection (which is necessarily a 0-sphere, i.e., two points).
The arrangement of pseudocircles gives a graph G whose vertices are the points of
intersection and edges the segments of pseudocircles between such points. Since
this graph lies embedded in §? it is planar, and since rk(M) =3 it is simple. We
need the following lemma.

Lemma 7.3. For any planarly embedded simple graph:

(i) some vertex has degree at most five,

(ii) if the edges are 2-colored then there exists a vertex around which the edges of
each color class are consecutive in the cyclic ordering induced by the embedding.

Part (i) is a well-known consequence of Euler’s formula (cf. chapter 5 by
Thomassen). Part (ii) is also a consequence of Euler’s formula, but not as well
known. It was used by Cauchy in the proof of his Rigidity Theorem for 3-
dimensional convex polytopes.

To finish the proof of Theorem 7.2, look at the graph G determined by the
arrangement of pseudocircles. If all lines in M have at least 3 points, then every
vertex in G will have degree at least 6, in violation of (i). If the pseudocircles are
2-colored and through every intersection point there is at least one pseudocircle
of each color, then the induced coloring of the edges of G will violate (ii).

The proof of the first part of Theorem 7.2, a generalization of the Sylvester—
Gallai Theorem (see chapter 17 by ErdSs and Purdy), has been known since the
1940s in the linear case. The following strengthening by Csima and Sawyer (1993)
also uses pseudoline representation: The number of 2-point lines in M is at least
£ (card M). The proof of the second part, due to G.D. Chakerian in the linear
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case, was rediscovered by Edmonds, Lovasz and Mandel (1980), who also observed
the generalization to oriented matroids.

Basis signatures

Just like ordinary matroids, oriented matroids can be characterized in several ways.
We shall discuss a characteristic property of the set of bases 3B of an oriented ma-
troid, namely that a determinant can be defined up to sign (but not magnitude).
This was first shown by Las Vergnas (1978). Characterizations of oriented ma-
troids in terms of signed bases were also discovered by J. Bokowski, A. Dress, L.
Gutierrez-Novoa and J. Lawrence.

Let us review some essential features of the function &:% — {+1, —1}, taking
ordered bases of a linear oriented matroid (E,*, %), E C R?, to the sign of their
determinants. A function 7 can be defined for certain pairs of ordered bases 8
and B’ in R? as follows:

7.4. Suppose B and B’ are permutations of the same basis B. Let n(B,B’) = +1 if
they are of the same parity and = —1 otherwise.

7.5. Suppose B =x1xp -+ -x,_1y and B’ = x1x, - - - x,_1z With y # z. Let n(B,8') = +1
if y and z are on the same side of the hyperplane spanned by {xi,...,x,_1}, and
= —1 otherwise.

Now, once we choose an ordered basis By and put det(fy) := +1, the function
det(B) and its sign 8(B) is determined for all ordered bases B8 by the usual rules of
linear algebra. But the function 8(8) is also combinatorially determined, because
any pair of ordered bases can be connected by a chain of steps of type (7.4)
or (7.5) and we have: If B and B’ are ordered bases as in (7.4) or (1.5) then
8(B) =n(B,B')- 8(B').

The preceding discussion points the way how to generalize the determinantal
sign function to all oriented matroids. First, to cast (7.5) in a form which is more
compatible with the axiom system (OM 1)~(OM 3), we replace it by the following
reformulation:

7.5'. Suppose B =x1x3---x,_1y and B’ =x1x;---x,_1z with y # z, and if y # z*
let {C,C*} be the unique pair of circuits such that in the underlying matroid
(9,2} € C C {%1,..., % 7,2} Put n(B, B') = +1 if one of y and 7 lies in C and the
other in C*, and put n(B, B") = —1 otherwise.

Theorem 7.6 (Las Vergnas 1978). Let B be the set of ordered bases of an oriented
matroid, and let By € 9B. There exists a unique function §: % — {+1,~1} such that
8(Bo) = +1 and if B, B’ € B are related as in (7.4) or (1.5') then 8(B) = n(B,B')-

(8-

The proof runs as follows. Define a graph on the vertex set % by connect-
ing pairs {B, B’} which are related as in (7.4) or (7.5') by an edge. The graph is
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clearly connected, and there is a projection 7: % — @ to the basis graph % of the
underlying matroid. Now, put 8(8;) := +1, and for B8 € & define

3(B) =] [n(Bi-1, )

i=1

for some choice of path By, 8i,...,8, = 8 in %. The proof is complete once we
show that this definition is independent of the choice of path from By to B. If
P; and P, are two such paths then by Theorem 6.7 their projections 7(P;) and
a(P,) in the basis graph differ by a sequence of elementary homotopies. Thus the
checking is reduced to verifying

k
Hn(ai—l) ai) =1
i=1

for closed paths ap, ay,. .., = ay in 9% whose projection in 9% is an edge BCB,
triangle BCDB or square BCDEB. However, the basis configurations which give
triangles or squares in the basis graph are explicitly characterized in (6.3)-(6.5),
and this way the checking is brought down to a manageable size. See Las Vergnas
(1978) for further details.

8. Discrete applications of the Hard Lefschetz Theorem

One of the most esoteric results to have found applications in combinatorics is the
Hard Lefschetz Theorem. It was used by R. Stanley to prove the Erdés-Moser
conjecture (chapter 32 by Alon) and to show necessity in the characterization of
f-vectors of simplicial convex polytopes (chapter 18 by Klee and Kleinschmidt).

In this section we will state the Hard Lefschetz Theorem and briefly explain
how it is used for these applications. The presentation follows Stanley (1980a,b,
1983b, 1985, 1989). Other applications appear in Stanley (1987a,b).

Unfortunately, concepts must be used here which go beyond what is reviewed
and explained in part II of this chapter. In particular we must assume some fa-
miliarity with the singular cohomology ring of a topological space, and with a few
basic notions of algebraic geometry (projective varieties, smoothness, etc.). See
Hartshorne (1977) for this.

Let X be a smooth irreducible complex projective variety of complex dimen-
sion d, and let H*(X) = H*(X) @ H{(X) @ - - - @ H**(X) denote its singular coho-
mology ring with real coefficients. Recall that if o € H'(X) and 7 € H/(X) then
o - 7 € H'*/(X). Being projective, we may intersect X with a generic hyperplane H

- of an ambient projective space. By a standard construction in algebraic geometry

the subvariety X N H represents a cohomology class w € H2(X).

Theorem 8.1 (The Hard Lefschetz Theorem). Let X and o € H*(X) be as above,
and let 0 < i < d. Then the linear map H'(X) — H*~(X) given by multiplication
by w® is an isomorphism of vector spaces.
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See Stanley (1983b) for references to various proofs of this theorem (the first
rigorous one is due to W. Hodge). Note that the fact that H'(X) and H?**~(X)
are isomorphic is known already from Poincaré duality. Thus the point of the
theorem is entirely the existence of a special cohomology class w with such fa-
vorable multiplicative properties. Whereas Poincaré duality is a purely topological
- phenomenon (valid for all compact orientable manifolds, and in various versions
also more generally), the Hard Lefschetz Theorem uses smoothness in an essential
way. There is not (as far as is known) any intrinsically topological construction of a
good cohomology class & that would make Theorem 8.1 valid for some reasonable
class of topological manifolds. Nevertheless, the Hard Lefschetz Theorem has been
extended to some more general classes of varieties, e.g., to Kédhler manifolds in
differential topology and to V-varieties (nonsmooth varieties with finite quotient
singularities, e.g., the toric varieties of simplicial polytopes discussed below).

Stanley’s (1980a) proof of the ErdGs—Moser conjecture is outlined in section 9 of

chapter 32 by Alon. Referring to the discussion there, and using the same notatlon
we will now indicate how Theorem 8.1 is used.
- For a certain poset M (n) of rank N = (") and with rank-level sets M (n);,i =
0, 1,...,N, let V; be the real vector space with basis M (n);,. For the proof
it is needed to construct linear mappings ¢; : V; — V;,; such that the compo-
sition ON-j—1OPN_j_20+ -0 ZV,' — Vy_; is invertible, for 0<i < [N/2], and if
x € M(n); and ¢;(x) =3, cpri),,, S - ¥, then ¢, 5 0 implies y > x.

Take the special orthogonal group G = S0O,,,1(C) and let P be the maximal
parabolic subgroup corresponding to the simply-laced part of its Dynkin diagram.
Then G/P is a smooth irreducible complex projective variety having a cell decom-
position (in a certain algebraic-geometric sense) such that the poset of closed cells
is isomorphic to M (n). This cell decomposition of G/P (induced by the Bruhat
decomposition of G) has cells only in even dimensions, and we may identify M (n);
with the set of 2i-dimensional cells and conclude that V; = H?%(G/P). The rele-
vance of Theorem 8.1 is now becoming clear; indeed, letting the linear mapping
¢; : Vi — Vi1 be multiplication with w, all required properties turn out to hold.

The poset M (n) is a member of a class of finite rank-symmetric posets arising as
Bruhat order on Weyl groups and on their quotients modulo parabolic subgroups.
Using Theorem 8.1, Stanley (1980a) showed that all such posets are rank-unimodal
and satisfy a strong form of the Sperner property.

Many of the results of Stanley (1980a), including the proof of the Erdés—-Moser
conjecture, can be proven with just linear algebra, see Proctor (1982). This is done,
essentially, by rewriting the first proof (including a proof of the Hard Lefschetz
Theorem) as concretely as possible and throwing out all mention of algebraic
geometry.

We now turn to the characterization of f-vectors of simplicial polytopes. This
application of Theorem 8.1 uses more of its content. The fact that the linear map-
pings ¢; constructed above are given by multiplication is irrelevant for the previous
argument, whereas the global multiplicative structure of H*(X) is essential in what
follows.
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We refer to chapter 18 by Klee and Kleinschmidt for definitions relating to
simplicial d-polytopes P and their h-vectors h(P) = (ho,h,...,hy). As observed
there, every simplicial polytope in R? is combinatorially equivalent to one with
vertices in Q¢

Let P be a d-dimensional convex polytope with vertices in @“. There is a general
construction (see Ewald 1995, Fulton 1993 or Oda 1988) which associates with P
an irreducible complex projective variety X(P) of complex dimension d, called a
toric variety. This variety is in general not smooth, not even in the simplicial case.

Suppose now that P is simplicial. Then the following is true [work of V.I. Danilov,
J. Jurkiewicz, M. Saito and others; see the cited books or Stanley (1983b, 1985,
1987a):

(i) the cohomology of X (P) vanishes in all odd dimensions, and dimg H*(X(P))
hi(P), fori=0,1,...,d.

(ii) H*(X(P)) is generated (as an algebra over R) by H2(X(P)),

(iii) the Hard Lefschetz Theorem 8.1 holds for X=X(P) and the class of a
hyperplane section w € H?(X).

It follows from (iii) that the mapping H%(X) — H?(+D(X) given by multiplica-
tion with w is injective if i < d/2 and surjective if i > [d/2]. Therefore, taking the
quotient of the cohomology ring

H*(X) = &i_H" (X)
by the ideal generated by w, we get a graded ring

R=H"(X)/(w) = &2]'R;,
where R; = H*(X)/oH% %(X), fori > 1, and Ry = H°(X) = R. Furthermore, R is
generated by R; [by (ii)], and dimg R; = h; — h;_1 [by (i) and (iii)]. This shows that
(ho,h1 — ho,hy — by, . .. hyaya — hajy-1) is an “O-sequence”, as defined in Theorem
6.2 of chapter 18 by Klee and Kleinschmidt. As explained after Theorem 6.5 of
that chapter, this is precisely what needs to be shown to complete the proof of
necessity of the characterization of f-vectors of simplicial polytopes.

A more elementary (and self-contained) proof of necessity has recently been
found by McMullen (1993). He replaces the cohomology ring of the toric variety
by a certain subalgebra of the polytope algebra and proves the needed analog of
the Hard Lefschetz Theorem using convex geometry.

In Stanley (1987a) sharp lower bounds are given for the differences h; — h;_1,1 <
i <[d/2), for a centrally symmetric simplicial d-polytope. The proof involves the
interaction between the Hard Lefschetz Theorem and a finite group action.

The toric variety X=X (P) of a non-simplicial polytope P with rational vertices
is unfortunately more difficult to use for combinatorial purposes. For instance,
dimg H'(X) may depend on the embedding of P and not only on its combinatorial
type, and cohomology may fail to vanish in odd dimensions. However, the inter-
section cohomology (of middle perversity) /H*(X), defined by M. Goresky and R.
MacPherson, turns out to be combinatorial and to satisfy a module version of the
hard Lefschetz theorem. This leads to some interesting information for general
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rational polytopes, such as Theorem 6.8 of chapter 18 by Klee and Kleinschmidt.
See Stanley (1987b) for more information.

PART II. TOOLS

The rest of this chapter is devoted to a review of some definitions and results
from combinatorial topology that have proven to be particularly useful in combi-
natorics. The material in sections 9 (simplicial complexes), 12 (cell complexes) and
13 (fixed-point and antipodality theorems) is of a very general nature and detailed
treatments can be found in many topology books. Specific references will therefore
be given only sporadically. Most topics in sections 10 and 11, on the other hand, are
of a more special nature, and more substantial references (and even some proofs)
will be given.

Many of the results mentioned have been discussed in a large number of papers
and books. When relevant, our policy has been to reference the original source
(when known to us) and some more recent papers that contribute simple proofs,
extensions or up-to-date discussion (a subjective choice). We apologize for any
inaccuracy or omission that may unintentionally have occurred.

9. Combinatorial topology

This section will review basic facts concerning simplicial complexes. Good general
references are Munkres (1984a) and Spanier (1966). Basic notions such as (fopo-
logical) space, continuous map and homeomorphism will be considered known.
Throughout this chapter, every map between topological spaces is assumed to be
continuous, even if not explicitly stated.

Simplicial complexes and posets

9.1. An (abstract) simplicial complex A = (V,A) is a set V (the vertex set) together
with a family A of nonempty finite subsets of V (called simplices or faces) such
that § # o C 7 € A implies o € A. Usually, V =[J A (shorthand for V =], 0)
so V. can be suppressed from the notation.

The dimension of a face ¢ is dim o = card o — 1, the dimension of Ais dim4 =
max, -4 dimo. A d-dimensional complex is pure if every face is contained in a
d-face (i.e., d-dimensional face). The complex consisting of all nonempty subsets
of a (d +1)-element set is called the d-simplex.

Note that our definition allows the empty complex A = . It is, by convention,
(—1)-dimensional. [Remark: The definition of a simplicial complex (with nonempty
faces) that we use here is the standard one in topology. In combinatorics it is usually
more convenient to allow the empty set as a face of a complex; in particular, this
is consistent with the definition of reduced homology.]
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Let A* = {k-faces of A} and AS* =, 4/, for k > 0. The elements of A® =V

and A! are called vertices and edges, tespectively. If A is pure d-dimensional the
elements of A? are called facets (or chambers). AS* is the k-skeleton of A. It is a
subcomplex of A.

A (geometric) simplicial complex is a polyhedral complex in R? [in the sense
of (12.1)] whose cells are geometric simplices (the convex hull of affinely inde-
pendent point-sets). If I" is a geometric simplicial complex then the family of
extreme-point-sets of cells in I" form an abstract simplicial complex A(I") which
is finite. Conversely, if A # @ is a d-dimensional finite abstract simplicial complex
then there exist geometric simplicial complexes I' in R?4*! such that A(I") = A. The
underlying space | J I" of any such I', unique up to linear homeomorphism, is called
the geometric realization (or space) of A, denoted by ||A||. Conversely, A is called a
triangulation of the space ||4||, and of every space homeomorphic to it. Thus, ab-
stract and geometric simplicial complexes are equivalent notions in the finite case
(and more generally, when finite-dimensional, denumerable and locally finite). The
geometric realization ||A|| of arbitrary infinite abstract simplicial complexes A can
be constructed as in Spanier (1966).

A simplicial map f:A; — A, is a mapping f:A) — A such that f(o) € 4,
for all o € A;. By affine extension across simplices it induces a continuous map
LA Al = (1451

Whereas the rectilinear realization of all d-dimensional simplicial complexes
in R*¥*1 is easy to prove (and 2d +1 is best possible), the existence in special
cases of rectilinear and of topological realizations in spaces R/, for d < j < 2d, are
difficult and much studied problems. For d =1 this is the question of planarity
of graphs (see chapter 5 by Thomassen), for rectilinear embeddings when d > 2,
see, e.g., Bokowski and Sturmfels (1989) and the references found therein, and for
topological embeddings see Rushing (1973). It is for instance not known whether
every triangulation of the 2-dimensional torus has a rectilinear embedding into R>.
A classical result concerning topological embeddings is the van Kampen-Flores
Theorem (from 1932-33), which says that the d-skeleton of a (2d +2)-simplex
does not embed into R??. Sarkaria (1991b) gives an up-to-date discussion of this
result in a setting which also includes the topological Radon-Tverberg theorems
discussed in section 5, see also Sarkaria (1991a).

92. Let P = (P,<) be a poset (partially ordered set). A totally ordered subset
Xo < X1 < -+ < xy is called a chain of length k. The supremum of this number over
all chains in P is the rank (or length) of P. If all maximal chains have the same
finite length then P is pure. P is a lattice if every pair of elements x,y € P has a
least upper bound (join) x Vy and a greatest lower bound (meet) x A y.

For x € P, let Psy, P>y, P<y, P<, be defined by P, ={y € P:y > x}, etc. For
x < y define the open interval (x,y) = P, N P, and the closed interval [x,y] =

P>, N Pg,. A bottom element 0 and a top element 1in P are elements satisfying
0 < x (respectively x < 1) for all x € P. If both 0 and 1 exist, P is bounded. Then
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P =P —{0, i} denotes the proper part of P. For arbitrary poset P, P = Pcup{0, 1}
denotes P extended by new top and bottom elements (so, card (P \P) =2).

Let P be a pure poset of rank r. For x € P, let r(x) = rank(Pg.). The rank
function r : P — {0,1,...,r} is bijective on each maximal chain. It decomposes P
into rank levels P = {x EP:r(x)=i},0<ix<r.

9.3. The face poset P(A) = (A,C) of a simplicial complex A is the set of faces
ordered by inclusion. The face lattice of A is P(A) = P(A)uU{0,1}. It is a lattice.
P(A) is pure iff A is pure, and rank P (A4) = dim A.

The order complex A(P) of a poset P is the simplicial complex on vertex set P
whose k-faces are the k-chains xg < x; <--- <x; in P. A poset map f:P; — P,
which is order-preserving [x <y implies f(x) < f(y)] or order-reversing [x <y im-
plies f(x) > f(y)] is simplicial f: A(P;) — A(P;), and therefore induces a continu-
ous map ||f]|:||A(P1)|| — ||A(P2)||- The definition of A(P) goes back to Aleksan-
drov (1937).

For a simplicial complex A, sd4 = A(P (4)), is called the (first) barycentric subdi-
vision (due to its geometric version). A basic fact is that A and sdA are homeomor-
phic. Therefore, passage between simplicial complexes and posets via the mappings
P(-) and A(:) does not affect the topology, and from a topological point of view
simplicial complexes and posets can be considered to be essentially equivalent
notions.

The geometric realization || P|| = || A(P)|| associates a topological space with ev-
ery poset P. In this chapter, whenever we make topological statements about a
poset P we have the space ||P|| in mind.

There exists at least one other way of associating a useful topology with a poset
P (also due to Aleksandrov 1937), namely, let the order-ideals (subsets A C P
satisfying x <y € A implies x € A) be the open sets of a topology on P. Denote
this space T'(P). For instance, for the poset depicted to the right in fig. 2 (section
12), T(P) is a space with exactly ten open sets, whereas A(P) is homeomorphic
to the 2-sphere. For the ideal topology T(-) the continuous maps are precisely
the order-preserving maps and homotopy [see (9.10)] has a direct combinatorial
meaning. For instance, T(P) is contractible iff P is dismantlable in the sense of
(11.1); see Stong (1966). The ideal topology T (P) is relevant for sheaf cohomology
over posets (Bactawski 1975, Yuzvinsky 1987) and has surprising connections with
the order complex topology A(P) (McCord 1966).

94. Let T be a topological space, =~ an equivalence relation on 7, and 7: T —
T /~ the projection map. The quotient T /~ is made into a topological space by
letting A C T /~ be open iff 771(A) is open in T. If S;,i € I, are pairwise disjoint
subsets of T, then T /(S;);c; denotes the quotient space obtained by identifying the
points within each set S;,i € I. For example, cone(T) =T x [0,1]/(T x {1}) is the
cone over T, and susp(T) =T x [0,1]/(T x {0}, T x {1}) is the suspension of T.
The d-ball modulo its boundary is homeomorphic to the d-sphere: B?/§9~! = §4,
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If (T;,x)ic1,xi € T;, is a family of pointed pairwise-disjoint spaces, then the
wedge of this family is (J;c; T;/(U;e; {xi})- The join of two spaces T and T, is the
space Tl * T2 = Tl X T2 X [O, 1]/({(t’x;0)|x € TZ}’{(YaS71) |y € Tl})teTl,seTz-

The join of two simplicial complexes A; and 4, (with A? N A) = @) is the com-
plex Ay x Ay = A UA U{ocUT|0o € 4 and 7 € A,}. Further, the cone over A and
suspension of A are the complexes cone(A) = A x I, susp(4) = A* I, where I is
the 0-dimensional complex with i vertices, i = 1,2. There is a homeomorphism

141 % Aa || = [|44]] + [| Ao (9.5)

[In case 4; and A, are not locally finite the topology of the right-hand side may
need to be modified to the associated compactly generated topology, see Walker
(1988).] In particular, ||cone(4)| = cone(||4||) and ||susp(A)|| = susp(]|4]|).

The join of two complexes A; and A, has the following geometric realization.
First realize 4; and 4, in the same space R?, with d sufficiently large, so that two
distinct line segments [x1, x;] and [y, y;] with xq,y; € ||4;]| and x;,y, € ||4;]| never
intersect in an interior point. Then take the union of all such line segments (with
the topology induced as a subspace of R?) — this gives ||4; * 4,]|.

The p-fold deleted join AP) of a simplicial complex A is defined as follows. Let
4y,...,4, be disjoint copies of A with isomorphisms f;: 4; — A. Then AP is the
subcomplex of 4 x---% A, consisting of all faces oy U---U g, such that fj(a;) N
fij(o;) =0 for all i # j. For combinatorial uses of this construction see Sarkaria
(1990, 1991a,b) and Zivaljevié¢ and Vreéica (1992).

The direct product P x Q of two posets is the Cartesian product set ordered by
(x,y) < (x,y)ifx<x'in P and y < y' in Q. The join (or ordinal sum) P x Q of
two posets is their disjoint union ordered by making each element of P less than
each element of Q and otherwise keeping the given orderings within P and Q.
Clearly, A(P x Q) = A(P) * A(Q).

There are the following homeomorphisms (Quillen 1978, Walker 1988):

1P > Q= [IP[ < IQll, (9.6)
(P % Q) ixpll = 1Pxl # |5yl (9.7)
1(Ce, ), ', y DI = susp ([l Ge, x ) * (1, 01D,

ifx<x'inP and y <y’ in Q. (9.8)

(Again, special care has to be taken with the topology of the right-hand sides if
the participating order complexes are not locally finite.)

9.9. Let A be a simplicial complex and o € AU {@}. Then define the subcomplexes:
deletion dly(o)={r€A|tNno =0}, star sty(c) ={r€ A|TU0o € A} and link
lkky(o) ={re€A|TNo=0and 7Uo € A}. Clearly, di(c) Nst(og) =1k(o) and o *
k(o) = st(a). If o € A then also di(a) Ust(o) = 4A; and dI(0) = st(d) = 1k(0) = A.
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Homotopy and homology

9.10. Two mappings fy, fi : Ty — T, of topological spaces are homotopic (written
fo ~ f1) if there exists a mapping (called a homotopy) F:Ty x [0,1] — T, such
that F(t,0) = fy(¢) and F(z,1) = f;(¢) for all ¢t € T;. (Remember that all mappings
between topological spaces are assumed to be continuous.) The spaces T; and T,
are of the same homotopy type (or are homotopy equivalent) if there exist mappings
fi:Ti = T, and f,: T, — T; such that f, o f; ~idy, and fj o f, ~idy,. Denote this
by 71 =~ T5. A space which is homotopy equivalent to a point is called contractible.

Let $7' = {x ¢ R?|||x|| =1} and B¢ = {x € R?| ||x|| < 1} denote the standard
(d — 1)-sphere and d-ball, respectively. Note that $~' =0, §° = {two points} and
B° = {point}. The class of spheres and balls is closed under the operation of taking
joins (up to homeomorphism): §°  §2 = §4*%*1 B? « B® =~ B% x §? = Bl

A space T is k-connected if for all 0 <i < k each mapping f:S§' — T can be
extended to a mapping f: B'*' — T such that f(x) = f(x) for all x € §'. In partic-
ular, O0-connected means arcwise connected. The property of being k-connected is
a homotopy invariant (i.e., is transferred to other spaces of the same homotopy
type). $¢ is (d — 1)-connected but not d-connected (see Theorem 13.1), B? is con-
tractible. It is convenient to define the following degenerate cases: (—1)-connected
means “nonempty”, and every space (whether empty or not) is k-connected for
k< -2 ‘

A simplicial complex A is contractible iff A is k-connected for all £ > 0 (or equiv-
alently, for all 0 < k& < dim A). (The corresponding statement for general spaces is
false in the nontrivial direction.) Furthermore, a simplicial complex is k-connected
iff its (k + 1)-skeleton is k-connected.

Let m(T) = m(T,x) denote the set of homotopy classes of maps f:8° — T
such that f((1,0,...,0)) = x, from the pointed i-sphere to a pointed topological
space (T,x),x€ T, i >0. For i > 1 there exists a composition that makes m;(T)
into a group, the ith homotopy group of T (at the point x). For i > 2, the group
m;(T) is Abelian. m(T) is the fundamental group, and T is simply connected if
7 (T) = 0. The space T is k-connected iff 7;(7,x) =0forall0<i<kandx€eT.
So, 1-connected means simply connected and arcwise connected.

9.11. For the definitions of simplicial homology groups H;(A,G) and reduced sim-
plicial homology groups H;(A, G) of a complex A with coefficients in an Abelian
group G, we refer to Munkres (1984a) or Spanier (1966).

Let H;(A) = H;(4,7). The degenerate case
] ~ Z; [= _1,
Hl(m) - { 07 i # _17

should be noted. For A # @, H;(A) =0 for all i < 0 and all i > dim 4, and Hy(4) =
Z¢71, where c is the number of connected components of A. H;(A) = H;(4) for all
[ 75 -—1,0; H._l(A) =0 and Ho(A) = H()(A) e
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Let 4, and 4, be finite complexes and assume that at least one of ﬁp(Al) and
H,(4,) is torsion-free when p +g =i — 1. Then

Hin(dx &)= ) (Hy(41) © Hy(4y)). (9.12)
prq=i

The same decomposition holds (without any restriction) for reduced homology
with coefficients in a field. See Milnor (1956) or chapter V of Cooke and Finney
(1967) for further details.

For a finite simplicial complex A let B; = rank H;(4) = dimg H;(4,Q),i > 0.
The Betti numbers 3; satisfy the Euler—Poincaré formula

> (1)’ card(4’) - > (1B (9.13)

iz0 i20

Either side of (9.13) can be taken as the definition of the Euler characteristic
x(4). The reduced Euler characteristic is ¥(A) = x(A) — 1. Formula (9.13) is valid
with B; = dimy H;(4A, k) for an arbitrary field k, although the individual integers
B; may depend on k. Additional relations exist between the face-count numbers
f; = card(4A?) and the Betti numbers B; (Bjorner and Kalai 1988). Much is known
about the f-vectors f(4A) = (fy, f1,-..) for various special classes of complexes A.
See chapter 18 by Klee and Kleinschmidt for the important case of polytope bound-
aries, and Bjorner and Kalai (1989) for a survey devoted to more general classes
of complexes.

The Mobius function of a (locally) finite poset is defined in chapter 21 by Gessel
and Stanley. Theorem 13.4 of that chapter (due to P. Hall) can in view of (9.13)
be restated as

px,y) = x(A((x,y))), if x <y, (9-14)

where the right-hand side denotes the reduced Euler characteristic of the order
complex of the open interval (x,y). This connection between the Mobius function
and topology, first pointed out by Rota (1964) and Folkman (1966), has many
interesting ramifications.

9.15. Two complexes of the same homotopy type have isomorphic homology groups
in all dimensions. A complex A is k-acyclic over G if H;(A,G) =0 for all i < k.
So, (—1)-acyclic means nonempty and 0-acyclic means nonempty and connected.
Further, A is acyclic over G (or simply “G-acyclic” if confusion cannot arise) if
H;(A,G) =0 for all i € Z When G is suppressed from the notation we always
mean G = Z.

We now list some relations between homotopy properties and homology of a
complex A, which are frequently useful. They are consequences of the theorems
of Hurewicz and Whitehead (see Spanier 1966).

9.16. A is k-connected iff A is k-acyclic (over Z) and simply connected, k > 1.



1848 A. Bjorner

9.17. A is contractible iff A is Z-acyclic and simply connected.

9.18. If A is simply connected, H; (A)=0fori#d>1,and I:Id (A) 2 7%, then A is
homotopy equivalent to a wedge of k d-spheres.

9.19. Assume dim A =d > 0. Then A is (d — 1)-connected iff A is homotopy equiv-
alent to a"wedge of d-spheres.

[Remark: The analogues of (9.17)-(9.19) may fail for non-triangulable spaces.|

9.20. If A; is k;-acyclic and 4, is ky-acyclic then A4, * 4; is (k1 + k, + 2)-acyclic. This
follows from (9.12). Using (9.16) it implies that if 4; is k;-connected then 4; x 4,
is (k; + k, +2)-connected. (For this, see also Milnor 1956.)

10. Combinatorial homotopy theorems

In this section we collect some tools for manipulating homotopies and the ho-
motopy type of complexes and posets, which have proven to be useful in com-
binatorics. Parallel tools for homology exist in most cases. We begin with some
elementary lemmas.

Suppose A is a simplicial complex and T a space. Let C:A— 27 be order-
preserving (i.e., C(oc) C C(1) C T, for all 0 C 7 in A). A mapping f: (A — T is
carried by C if f(||a|]) € C(o) for all o € A. Let k € Z, U {oo}.

Lemma 10.1 (Carrier Lemma). Assume that C(o) is min(k, dim(o))-connected for
all o € A. Then: .

() if f,g: [|AS¥|| — T are both carried by C, then f ~ g,

(ii) there exists a mapping ||A<**!|| — T carried by C.

In particular, if C(0) is always contractible then ||A|| can replace the skeleta in
(i) and (ii) (k = oo case). Carrier lemmas of various kinds are common in topology.
For proofs of this version, see Lundell and Weingram (1969) or Walker (1981b).

Lemma 10.2 (Contractible Subcomplex Lemma). If Aq is a contractible subcom-
plex of a simplicial complex A, then the projection map ||A|| — ||A||/||4o|| is a ho-
motopy equivalence.

This is a consequence of the homotopy extension property for simplicial pairs
[for more details see Brown (1968) or Bjorner and Walker (1983)].

Lemma 10.3 (Gluing Lemma). Examples of simple gluing results for simplicial
complexes Ay and A, are:
(i) if Ay and A, N A, are contractible, then A, U A; ~ Ay,
(ii) if A and A, are k-connected and Ay N 4, is (k — 1)-connected, then 4, U 4,
is k-connected,
(iii) if Ay U 4, and Ay N A, are k-connected, then so are also Ay and A,.



Topological methods 1849

Such results are often special cases of the theorems in this section, especially
Theorem 10.6. Otherwise they can be deduced from the Mayer—Vietoris long ex-
act sequence (for k-acyclicity) and the Seifert-van Kampen theorem (for simply-
connectedness), using (9.16) and (9.17).

A general principle for gluing homotopies appears in Brown (1968, p. 240) and
Mather (1966). It gives a convenient proof for part (i) of the following lemma.
For part (ii) use Lemma 10.2. A more general method for gluing homotopies (the
“diagrams of spaces” technique) appears in Ziegler and Zivaljevié (1993).

Lemma 104. Let A = AyU Ay U ---U A, be a simplicial complex with subcomplexes
A;, and assume that A;NA; C 4Ap forall1 <i<j<n.
(i) If A; is contractible for all 1 <i < n, then

A~ AU | cone(4on 4))

i=1

(i.e., raise a cone independently over each subcomplex Ay N 4;).
(ii) If 4; is contractible for all 0 < i < n, then

A =~ wedge, (;, susp(4o N 4;).

Some of the following results concern simplicial maps f: A — P from a simplicial
complex A to a poset P. Such a map sends vertices of A to elements of P in such a
way that each o € A is mapped to a chain in P. In particular, an order-preserving
or order-reversing mapping of posets Q — P is of this type.

Theorem 10.5 (Fiber Theorem, Quillen 1978, Walker 1981b). Let f: A — P be a
simplicial map from a simplicial complex A to a poset P.

(i) Suppose all fibers f~(Px,),x € P, are contractible. Then [ induces homotopy
equivalence between A and P.

(ii) Suppose all fibers f~*(Ps,),x € P, are k-connected. Then A is k-connected if
and only if P is k-connected.

Proof. Suppose that all fibers are contractible. Then the mapping C(o) =
Y Psmino), o € A(P), is a contractible carrier from A(P) to ||A|l. By Lemma
10.1 (ii) there exists a continuous map g: A(P) — A carried by C, i.e., g(||o]|) C
| (Psmine)||, for every chain o € A(P). One sees that g is a homotopy inverse
to f as follows, using Lemma 10.1 (i): C'(¢) = ||P>minc||, o € A(P), is contractible
and carries f o g and idp, and C"(7) = ||f " (Psminf(m)||, 7 € 4, is contractible and
carries go f and id,. Hence, fog ~idp and go f ~ id4.

The second part is proved analogously by passing to (k + 1)-skeleta and using
k-connected carriers in Lemma 10.1. O

The nerve of a family of sets (A4;);¢; is the simplicial complex &' = N (A;) defined
on the vertex set I so that a finite subset o C I is in N precisely when N, A; # 0.
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Theorem 10.6 (Nerve Theorem, Borsuk 1948, Bjorner et al. 1985, 1994). Let = A
be a simplicial complex (or, a regular cell complex) and (4;)ic; a family of sub-
complexes such that A =], A..

(1) Suppose every nonempty finite intersection A; N A;, N ---NA4; is contractible.
Then A and the nerve N{4;) are homotopy equivalent.

(ii) Suppose every nonempty finite intersection A; N4, N---N4; is (k—t+1)-
connected.Then A is k-connected if and only if N(4;) is k-connected.

Proof. For convenience, assume that the covering of A by the A,’s is locally finite,
meaning that each vertex of 4 belongs to only finitely many subcomplexes 4;. (The
case of more general coverings requires a slightly different argument.)

Let Q = P(A) and P = P (N (4;)) be the face posets. Define a mapping f: Q — P
by m—— {i € I | m € A;}. Clearly f is order-reversing, so f: A(Q) — P is simplicial.
The fiber at o € P is = (P5,) =;c, Ai- Part (i) now follows from Theorem 10.5.
Also, if all nonempty finite intersections are k-connected, part (ii) follows the same
way. In the stated generality, part (ii) is proved in Bjorner et al. (1994). O

The Nerve Theorem has several versions for coverings of a topological space
by subspaces. The earliest of these seem to be due to Leray (1945) and Weil
(1952). Discussions of results of this kind can be found in Wu (1962) and McCord
(1967). We state here a version which seems suitable for use in combinatorics. An
application to oriented matroids appears in Edelman (1984).

Theorem 10.7 (Nerve Theorem, Weil 1952, Wu 1962, McCord 1967). Let X be a
triangulable space and (A;)ic; a locally finite family of open subsets (or a finite
family of closed subsets) such that X = J;; Ai. If every nonempty intersection A; N
Ai, N---N A, is contractible, then X and the nerve N'(A;) are homotopy equivalent.

By locally finite is meant that each point of X lies in at most finitely many sets
A;. We warn that Theorem 10.7 is false for locally finite coverings by closed sets
and also for too general spaces X. For a counterexample in the first case, take X
to be the unit circle and A; = {e*™*|1/(i +1) <t < 1/i},i=1,2,.... In the second
case one can, e.g., let X be the wedge of two topologist’s combs A; and A; [as in
Spanier (1966, Ex. 5, p. 56)].

The conclusions in part (ii) of Theorems 10.5 and 10.6 can be strengthened:
In Theorem 10.5, if all fibers are k-connected, then f induces isomorphisms of
homotopy groups ;(4) = ;(P), for all j < k. Consequently, if in Theorem 10.6
all nonempty finite intersections 4; N4, N---N 4, are k-connected, then ;(4) =
7 (N (4;)), for all j < k. A similar k-connectivity version of Theorem 10.7 appears
in Wu (1962).

Let P be a poset. A subset C C P is called a crosscut if (1) C is an antichain, (2)
for every finite chain o in P there exists some element in C which is comparable
to each element in o, (3) if A C C is bounded (here meaning that A has an upper
bound or a lower bound in P) then the join VA or the meet AA exists in P. For
instance, the atoms of a lattice L of finite length form a crosscut in L and in L.
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A crosscut C in P determines the simplicial complex I'(P, C) consisting of the
bounded subsets of C.

Theorem 10.8 (Crosscut Theorem, Rota 1964, Folkman 1966, Bjorner 1981).
The crosscut complex I'(P,C) and P are homotopy equivalent.

Proof. For x € C, let Ay = A(P<, U Ps,). Then (4,).cc is a covering of A(P), by
condition (2), and every nonempty intersection is a cone, by condition (3), and
hence contractible. Since I'(P, C) = N (A,), Theorem 10.6 implies the result. [J

The neighborhood complex of a graph defined in section 4 is a special kind
of nerve complex. The following result gives a special decomposition property of
neighborhood complexes of bipartite graphs.

Theorem 10.9 (Bipartite Relation Theorem, Dowker 1952, Mather 1966). Suppose
G = (Vy,V1,E),E C Vo x V4, is a bipartite graph, and let A;,i = 0,1, be the simpli-
cial complex whose faces are all finite subsets o C V; that have a common neighbor
in Vi_;.. Then Ay and A, are homotopy equivalent.

Proof. First delete any isolated vertices from G. This does not affect 4y and A;.
Now, for every x € V; let A, consist of all finite subsets of {y € V| (y,x) € E}.
Then (Ay)yev, is a covering of Ay with contractible nonempty intersections. The
nerve of this covering is A;, so Theorem 10.6 applies. O

Theorems 10.6 (i), 10.8 and 10.9 are equivalent in the sense that either one
implies the other two. The following is a variation of the Fiber Theorem 10.5.

Theorem 10.10 (Ideal Relation Theorem, Quillen 1978). Let P and Q be posets
and suppose that R C P x Q is a relation such that (x,y) < (x',y’) € R implies that
(x,y) € R. (That is, R is an order ideal in the product poset.) Suppose furthermore
that R, = {y € Q| (x,y) € R} and Ry = {x € P | (x,y) € R} are contractible for all
x€P andy € Q. Then P and Q are homotopy equivalent.

Proof. By symmetry it suffices to show that P and R are homotopy equivalent.
By Theorem 10.5 it suffices for this to show that the fiber 7w~ 1(P,) is con-
tractible for all x € P, where 7: R — P is the projection map m(x,y) = x. Let F, =
7Y (Psy) ={(z,y) € R|z > x}, and let p: F, — R, be the projection p(z,y) = y.
Now, p~'((R:)3y) = {(z,w) € Fx |w 2y} = {(z,w) € R| (z,w) > (x,y)} is a cone
and hence contractible, for all y € R,. So by the Fiber Theorem F, is homotopy
equivalent to R,, which by assumption is contractible. (Remark: There is also an
obvious k-connectivity version of this result.) [

Theorem 10.11 (Order Homotopy Theorem, Quillen 1978). Let f,g: A — P besim-
plicial maps from a simplicial complex A to a poset P. If f(x) < g(x) for every vertex
x of A, then f and g are homotopic.
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Proof. For each face o € A, let C(o) = f(0) Ug(c). The minimal element in the
chain f(o) is below every other element in C(o). So the order complex of C(o)
is a cone, and hence contractible. Since C carries both f and g, these maps are
homotopic by Lemma 10.1. O

Corollary 10.12. Let f: P — P be an order-preserving map such that f(x) > x for
all x € P. Then f induces homotopy equivalence between P and f(P).

If also f2(x) = f(x) for all x € P (f is then called a closure operator on P) then
f(P) is a strong deformation retract of P. The hypotheses of Theorem 10.11 and
Corollary 10.12 can be weakened to that f(x) and g(x) [resp., f(x) and x] are
comparable for all x.

Call a poset P join-contractible (via p), if for some element p € P the join (least
upper bound) p Vv x exists for all x € P. Define meet-contractible in dual fashion.

Corollary 10.13 (Quillen 1978). If P is join-contractible then P is contractible.

Proof. Since x < pVXx > p, for all x € P, Theorem 10.11 shows that id ~ p vid ~
p, i.e., the identity map on P is homotopic to the constant map p. [

The following is a consequence of Corollary 10.12, and also of Theorem 10.8.

Corollary 10.14. Let L be a lattice of finite length and A the set of its atoms. Let
J={VB|B C A}. Then L and LNJ are homotopy equivalent.

Proof. The mapping f(x) = V(AN Lg,) satisfies f2(x) = f(x) < x for all x € L.
Now use Corollary 10.12. O

The set of complements €0(z) of an element z in a bounded lattice L is defined
in section 3. Recall that L = L — {0,1}.

Theorem 10.15 (Homotopy Complementation Theorem, Bjérner and Walker 1983).
Let L be a bounded lattice and z € L.

(i) The poset L — 60o(z) is contractible. In particular, if L is noncomplemented
then L is contractible.

(i) If 60o(z) is an antichain, then

L ~ wedge susp(L, * I:>y).
ye%o(z)

Proof. For each chain o in P =L —%€o(z), let C(o)={xeP|x>z}u{ye
P |y < maxo}. Either z vmaxo exists in P, in which case C(o) is meet-
contractible via it, or else z Amax o exists, and C(o) is join-contractible via it.
So, C is contractible and carries the constant map z as well as idp. Therefore
by Lemma 10.1 z ~idp, which proves part (i). Part (ii) then follows by Lemma
104 (i)). O
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Suppose that L is a bounded lattice whose proper part is not contractible.
Then by part (i) every element x has a complement in L. This conclusion can
be strengthened in the following way: [Lovasz and Schrijver (unpublished)] Every
chain xg < x; < --- <X in L has a complementing chain yp >y; > --- > y; (ie.,
x; Ly; for 0 <i< k). Here one can even demand that each complement y; is a
join of atoms (assuming that atoms exist, which is the case, e.g., if L is of finite
length). '

A more general poset version of Theorem 10.15 is given in Bjorner (1994b).
There the antichain assumption is dropped from part (ii) at the price of a more
complicated description of the right-hand side as a quotient space of a wedge
indexed by pairs x < y in 6o(z).

11. Complexes with special structure

Some special properties of complexes that are frequently encountered in combi-
natorics, and which express a certain simplicity of structure, will be reviewed.

Collapsible and shellable complexes

11.1. Let A be a simplicial complex, and suppose that o € A is a proper face of
exactly one simplex 7 € 4. Then the complex A’ = A\{o, 7} is obtained from 4 by
an elementary collapse (and A is obtained from A’ by an elementary anticollapse).
Note that A’ ~ A. If A can be reduced to a single point by a sequence of elementary
collapse steps, then A is collapsible.

The class of nonevasive complexes is recursively defined as follows: (i) a single
vertex is nonevasive, (ii) if for some x € A° both lk,(x) and dl(x) are nonevasive,
then so is A.

The following logical implications are strict (i.e., converses are false):

cone = nonevasive = collapsible => contractible —- Z-acyclic.
Furthermore, for an arbitrary field &:
Z-acyclic = k-acyclic = Q-acyclic= y =0,

and Z-acyclic <= Z,-acyclic for all prime numbers p.

Nonevasive complexes were defined by Kahn et al. (1984) to model the notion
of argument complexity discussed in section 2. A complex A is nonevasive iff for
all F C A it is possible in less than card A® questions of the type “Is x € F ?” to
decide whether F € A.

Collapsibility has long been studied in combinatorial topology. Noteworthy is the
fact that two simply connected finite complexes A and A’ are homotopy equivalent
iff a sequence of elementary collapses and elementary anticollapses can transform
A into A’ (see Cohen 1973). In particular, the contractible complexes are precisely
the complexes that collapse/anticollapse to a point.
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An element x in a poset P is irreducible if P, has a least element or P, a
greatest element. A finite poset is dismantlable if successive removal of irreducibles
leads to a single-element poset. A dismantlable poset is nonevasive. A topological
characterization of dismantlable posets of Stong (1966) is mentioned in (9.3). A
directed poset (for all x,y € P there exists z € P such that x,y < z) is contractible.

11.2. Let A be a pure d-dimensional simplicial complex, and suppose that the k-face
o is contained in exactly one d-face 7. Then the complex A’ = A\{y|oc Cy C 7} is
obtained from A by a (k, d)-collapse. If o # 7, then A’ ~ A. If A can be reduced to
a single d-simplex by a sequence of (k,d)-collapses, 0 < k < d, then A is shellable.

A pure simplicial complex A is vertex-decomposable if (i) A=0, or (ii) A
consists of a single vertex, or (iii) for some x € A’ both lks(x) and dls(x)
are vertex-decomposable. For example, every simplex and simplex-boundary is
vertex- decomposable The class of constructible complexes is defined by: (i) ev-
ery simplex and @ is constructible, (ii) if 4;,4, and A; N 4, are constructible and
dim 4; = dim 4; = 1 + dim(4; N 4;), then A; U A, is constructible.

The following logical implications between these properties of a pure d-
dimensional complex are strict:

vertex-decomposable = shellable = constructible

= (d — 1)-connected.

The first implication and the definition of vertex-decomposable complexes are
due to Provan and Billera (1980). The concept of shellability has an interesting
history going back to the 19th century, see Griinbaum (1967). Constructible com-
plexes were defined by M. Hochster, see Stanley (1977).

Shellability is usually regarded as a way of putting together (rather than collapsing
- taking apart) a complex. Therefore the following alternative definition is more
common: A finite pure d-dimensional complex A is shellable if its d-faces can be or-
dered 0y, 07,...,0; so that (807 U---U day_1) N0y is a pure (d — 1)-dimensional
complex for 2 < k <t, where 8o; =2\{0, 07} is the boundary complex of o;.
Equivalently, for all 1 <i <k <t there exists j <k such that o;Nox CojNoy
and dim(o; N gy) = d — 1. In words, the requirement is that the kth facet oy, inter-
sects the union of the preceding ones along a part of its boundary which is a union
of maximal proper faces of 0. Such an ordering of the facets is called a shelling.

If o € A and A is a shellable (or constructible) complex, then so is k(o). Shella-
bility is also preserved by some other constructions on complexes and posets such
as Theorem 11.13. Several basic properties of simplicial shellability (also for infi-
nite complexes) are reviewed in Bjorner (1984b). Shellability of cell complexes is
discussed in Danaraj and Klee (1974) and Bjorner (1984a); see also chapter 18 by
Klee and Kleinschmidt. To establish shellability of (order complexes of) posets,
a special method exists called lexicographic shellability. See Bjorner (1980) and
Bjorner and Wachs (1983, 1994) for details. The notions of shellability and vertex-
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decomposability and most of their useful properties can easily be generalized to
non-pure complexes, see Bjorner and Wachs (1994).

11.3. Simplicial PL spheres and PL balls are defined in (12.2), (PL = piecewise
linear). The property of being PL is a combinatorial property — whether a geometric
simplicial complex A is PL depends only on the abstract simplicial complex A.

For showing that specific complexes are homeomorphic to spheres or balls, the
following result is frequently useful.

Theorem 114. Let A be a constructible d-dimensional simplicial complex.
(i) If every (d — 1)-face is contained in exactly two d-faces, then A is a PL sphere.
(ii) If every (d — 1)-face is contained in one or two d-faces, and containment in
only one d-face occurs, then A is a PL ball.

Theorem 11.4 follows from some basic PL topology such as the facts quéted in
(12.2). For shellable A it appears implicitly in Bing (1964) and explicitly in Danaraj
and Klee (1974).

If A is a triangulation of the d-sphere (or any manifold) and o € 4, then Ik (o)
has the same homology as the (d — 1 — k)-sphere. If o € A°, then there is even
homotopy equivalence between lk, (o) and $¢~'. However, if 4 is a PL d-sphere
and o € AF, then lk,(0o) is itself a PL (d — 1 — k)-sphere.

Cohen—Macaulay complexes

11.5. Let k be a field or the ring of integers Z. A finite-dimensional simplicial
complex A is Cohen—Macaulay over k (written CM/k or CM if k is understood or
irrelevant) if Ik, (o) is (dimlk, (o) — 1)-acyclic over k for all o € AU {0}. Further,
A is homotopy-Cohen—Macaulay if 1k, (o) is (dimlk,(o) — 1)-connected for all o €
AuU{0}.

The following implications are strict:

constructible => homotopy—CM = CM/Z = CM/k = CM/Q,

for an arbitrary field k. Furthermore, CM/Z <= CM/Z, for all prime numbers
p- The first implication follows from the fact that constructibility implies (d — 1)-
connectivity and is inherited by links, the second implication follows from (9.15),
and the rest via the Universal Coefficient Theorem. In particular, shellable com-
plexes are homotopy-CM.

An important aspect of finite CM complexes 4 is that they have an equivalent
ring-theoretic definition. Suppose that A’ = {x{,x,,...,x,}, and consider the ideal
I in the polynomial ring k[x;, x5, ...,X,] generated by monomials x; x;, ...x; such
that {x;,,X;,,..., X, } €A 1<y <iy <--- <ip <n,k > 1. Let k[A] = k[xy,...,%]/
1, called the Stanley—Reisner ring (or face ring) of A. Then A is CM/k iff the ring
k[4] is Cohen-Macaulay in the sense of commutative algebra (Reisner 1976). An
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exposition of the ring-theoretic aspects of simplicial complexes, and their com-
binatorial use, can be found in Stanley (1983a). There other ring-theoretically
motivated classes of complexes, such as Gorenstein complexes and Buchsbaum
complexes, are also discussed. Other approaches to the ring-theoretic aspects of
complexes and to Reisner’s theorem can be found in Bactawski and Garsia (1981)
and Yuzvinsky (1987). See also section 5 of chapter 41 on Combinatorics in Pure
Mathematics:

Cohen-Macaulay complexes and posets were introduced around 1974-75 in the
work of Bactawski (1976, 1980), Hochster (1977), Reisner (1976) and Stanley (1975,
1977). The notion of homotopy-CM first appeared in Quillen (1978). Bjorner, Gar-
sia and Stanley (1982) give an elementary introduction to CM posets. A notable
combinatorial application of Cohen—Macaulayness is Stanley’s proof of tight upper
bounds for the number of faces that can occur in each dimension for triangulations
with n vertices of the d-sphere (Stanley 1975, 1983a; see also chapter 18 by Klee
and Kleinschmidt.) An application to lower bounds is given in Stanley (1987a).

11.6. Define a pure d-dimensional complex A to be strongly connected (or dually
connected) if each pair of facets o, 7 € A? can be connected by a sequence of facets
o = 0y,01,...,0, =T, 80 that dim(g;_1 No;)=d -1 for 1 <i < n.

Proposition 11.7. Every CM complex is pure and strongly connected.

This follows from the following lemma, which is proved by induction on dim A:
Let A be a finite-dimensional simplicial complex, and assume that 1k,(o) is con-
nected for all o € AU {0} such that dim(lky(0)) > 1. Then A is pure and strongly
connected.

The property of being CM is topologically invariant: whether A is CM /k or not
depends only on the topology of ||A||. This is implied by the following reformulation
of CM-ness, due to Munkres (1984b).

Theorem 11.8. A finite-dimensional complex A is CM/k iff its space T = ||4|| sat-
isfies: H(T, k) = H(T,T\p,k) =0 forallp € T and i < dim A.

In this formulation H; denotes reduced singular homology and H; relative sin-
gular homology with coefficients in k. A consequence of Theorem 11.8 is that
if M is a triangulable manifold (with or without boundary) and H;(M) =0 for
i < dim M, then every triangulation of M is CM. For instance: (1) every triangu-
lation of the d-sphere, d-ball or R? is CM/Z, but not necessarily homotopy-CM
(beware: homotopy-CM is not topologically invariant), (2) a triangulation of real
projective d-space is CM/k iff char k # 2. |

11.9. The definition of Cohen—-Macaulay posets (posets P such that A(P) is CM)
deserves a small additional comment. Let P be a poset of finite rank and o: xy <
X1 < -++ < X a chain in P. Then Ikypy(0r) = Py, * (Xo, 1) % - - % (Xg_1, X ) * Py,
It therefore follows from (9.20) that P is CM [resp. homotopy-CM] iff every open
interval (x,y) in P is (rank(x, y) — 1)-acyclic [resp. (rank(x,y) — 1)-connected].
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Some uses of Cohen—Macaulay posets in commutative algebra are discussed in
section 5 of chapter 41 on Combinatorics in Pure Mathematics.

11.10. An abundance of shellable and CM simplicial complexes appear in combi-
natorics. Only a few important examples can be mentioned here.

(i) The boundary complex of a simplicial convex polytope is shellable (Brugges-
ser and Mani 1971, Danaraj and Klee 1974; see also chapter 18 by Klee and Klein-
schmidt). Every simplicial PL sphere is the boundary of a shellable ball (Pachner
1986). There exist non-shellable triangulations of the 3-ball (M.E. Rudin) and of
the 3-sphere (see below). Shellability of spheres and balls is surveyed in Danaraj
and Klee (1978).

(ii) The following implications are valid for any simplicial sphere: constructible
= PL = homotopy-CM. The 5-sphere admits triangulations that are non-
homotopy-CM (R.D. Edwards, see Daverman 1986), and also PL triangulations
that are non-constructible (Mandel 1982). Every triangulation of the 3-sphere is
PL, but all are not shellable (Lickorish 1991, see also Vince 1985). Face lattices of
regular complex polytopes are CM (Orlik 1990).

(iii)) The complex of independent sets in a matroid is constructible (Stanley
1977) and vertex-decomposable (Provan and Billera 1980). More generally, the
complex generated by the basis-complements of a greedoid is vertex-decomposable
(Bjorner, Korte and Lovasz 1985). Complexes arising from matroids are discussed
in Bjorner (1992).

(iv) Every semimodular (in particular, every geometric or modular) lattice of
finite rank is CM (Folkman 1966) and shellable (Bjorner 1980). For any element
x # 0 in a geometric lattice L, the poset L\[x,1] is shellable (Wachs and Walker
1986).

(v) Tits buildings are CM (Solomon-Tits, see Brown 1989 or Ronan 1989) and
shellable (Bjorner 1984b). The topology of more general group-related geometries
has been studied by Ronan (1981), Smith (1988), Tits (1981) and others with a
view to uses in group theory. See Buekenhout (1995) and Ronan (1989) for general
accounts.

(vi) The poset of elementary Abelian p-subgroups of a finite group was shown
by Quillen (1978) to be homotopy-CM in some cases. See also Stong (1984). The
full subgroup lattice of a finite group G is shellable (or CM) iff G is supersolvable
(Bjorner 1980). Various posets of subgroups have been studied from a topological
point of view. See Thévenaz (1987), Webb (1987) and Welker (1994) for a guide
to this literature.

Induced subcomplexes

Connectivity, Cohen—Macaulayness, etc., are under certain circumstances inherited
by suitable subcomplexes. For a simplicial complex 4 and A C 4% let Ay = {0 €
A| o C A} (the induced subcomplex on A).

Lemma 11.11. Let A be a finite-dimensional complex, and A CV = A®. Assume that
lk,(0) is k-connected for all o € Ay\a. Then A4 is k-connected iff A is k-connected.
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Lemma 11.12, Let P be a poset of finite rank and A a subset. Assume that P-., is
k-connected for all x € P\A. Then A is k-connected iff P is k-connected.

Proof. These lemmas are equivalent. We start with Lemma 11.12. Let f:A — P
be the embedding map. For x € P,

A;x, if x EA,

_]Px —
f (P {P>an, if x ¢ A.

Now, A, is contractible (being a cone), and P., N A is k-connected by induction
on rank(P). The result therefore follows by Theorem 10.5 (ii).

To prove Lemma 11.11, let P = P(4) and Q={r€ A|7NA # 0} C P. Since
P.s =2 P(lks(0)) is k-connected for all o € P\Q, Lemma 11.12 applies. On the
other hand, by Corollary 10.12 the map f(7) =7NA on Q induces homotopy
equivalence between Q and f(Q) = P(4,). O

The homology versions of Lemmas 11.11 and 11.12, obtained by using k-
acyclicity throughout, can be proven by a parallel method. Also, if the hypothesis
“k-connected” were replaced by “contractible” in these lemmas, then the conclu-
sion would be that A4 and A (resp. A and P) are homotopy equivalent.

Theorem 11.13. Let A be a pure d-dimensional simplicial complex, A C A° and
1 < m < d. Suppose that card(A N o) =m for every facet o € A% If A is CM/E,
homotopy-CM or shellable, then the same property is inherited by A,.

For CM-ness this result was proven in varying degrees of generality by Bactawski
(1980), Munkres (1984b), Stanley (1979) and Walker (1981a). It follows easily from
Lemma 11.11. For shellability, proofs appear in Bjorner (1980, 1984b).

Suppose that A is a pure d-dimensional simplicial complex and that there exists
a mapping t: A% — {0,1,...,d} which restricts to a bijection on each facet o € A%
Then A is called completely balanced (or numbered, or colored) with type-map t.
For instance, the order complex of a pure poset is completely balanced with type-
map t = rank [cf. (9.2)], and also building-like incidence geometries (Buekenhout
1995) give rise to completely balanced complexes. CM complexes of this kind were
studied by Stanley (1979) and others.

For each J C {0,1,...,d}, the type-selected subcomplex Ay = A1y is the in-
duced subcomplex on t~1(J) C A°. Theorem 11.13 shows that if A is CM then A,
is also CM and hence (card J — 2)-acyclic. A certain converse is also true in the
sense of the following result, which gives an alternative characterization of the
CM property for completely balanced complexes. It is due to Bactawski and Gar-
sia (1981) in the finite CM case, and to J. Walker (letter to the author, 1981) in
general including the homotopy case.

Theorem 11.14. Let A be a pure d-dimensional completely balanced complex. Then
A is CM/k [resp., homotopy-CM)] if and only if Ay is (card J —2)-acyclic over k
[resp., (card J — 2)-connected] for all J C {0,1,...,d}.
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12. Cell complexes

Most classes of cell complexes differ from the simplicial case in that a purely
combinatorial description of these objects as such cannot be given. However, the
two classes defined here, polyhedral complexes and regular CW complexes, are
sufficiently close to the simplicial case to allow a similar combinatorial approach
in many cases. For simplicity only finite complexes will be considered.

Good general references for polyhedral complexes are Griinbaum (1967) and
Hudson (1969), and for cell complexes Cooke and Finney (1967) and Lundell and
Weingram (1969). Cell complexes are also discussed in many books on algebraic
topology such as Munkres (1984a) and Spanier (1966).

Polyhedral complexes and PL topology

12.1. A convex polytope 1 is a bounded subset of R? which is the solution set of a
finite number of linear equalities and inequalities. Any nonempty subset obtained
by changing some of the inequalities to equalities is a face of w. Equivalently,
m CR? is a convex polytope iff 7 is the convex hull of a finite set of points in
R?. See chapter 18 by Klee and Kleinschmidt for more information about convex
polytopes.

A polyhedral complex (or convex cell complex) I' is a finite collection of convex
polytopes in R? such that (i) if 7 € I' and o is a face of 7 then o € I', and (ii)
if m,7€I and mN71+#0 then wN7 is a face of both 7 and 7. The members
of I' are called cells. The underlying space of I is ||I'|| = |JI', with the topology
induced as a subset of R?. If every cell in I" is a simplex (the convex hull of
an affinely independent set of points) then I' is called a (geometric) simplicial
complex. The dimension of a cell equals the linear dimension of its affine span, and
dimI" = max . dim 7. Further terminology, such as vertices, edges, facets, pure, k-
skeleton, face poset, face lattice, etc., is defined just as in the simplicial case, see
- (9.1) and (9.3).

12.2. A polyhedral complex I is a subdivision of another such complex I3 if
||| = ||I2|| and every cell of I is a subset of some cell of I;. The abstract simpli-
cial complex A(P (I')), i.e., the order complex of I"s face poset, has geometric real-
izations (by choosing as new vertices an interior point in each cell) that subdivide
I'. Every polyhedral complex can be simplicially subdivided without introducing
new vertices.

Let 3¢ denote the complex consisting of a geometric d-simplex and all its faces,
and let 834 denote its boundary. These complexes provide the simplest triangula-
tions of the d-ball and the (d — 1)-sphere, respectively. A polyhedral complex I is
called a PL d-ball (or PL (d — 1)-sphere) if it admits a simplicial subdivision whose
face poset is isomorphic to the face poset of some subdivision of 3¢ (resp. §3¢).
This is equivalent to saying that there exists a homeomorphism ||I| — ||2¢|| (resp.
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||| — ||624)|) which is induced by a simplicial map defined on some subdivision
(a piecewise linear, or PL, map). The boundary complex of a convex d-polytope is
a PL (d — 1)-sphere.

The PL property is mainly of technical interest. Several properties of balls and
spheres that are desirable, and would in many cases seem intuitively “obvious”,
hold only in the PL case. Some examples are: (1) (Newman’s Theorem) the closure
of the compleinent of a PL d-ball lying in a PL d-sphere is itself a PL d-ball; (2)
the union of two PL d-balls, whose intersection is a PL (d — 1)-ball lying in the
boundary of each, is a PL d-ball; (3) the link of any face in a PL sphere is itself
a PL sphere (cf. remark following Theorem 11.4). All these statements would be
false with “PL” removed.

See Hudson (1969) for proofs and further information about PL topology. Man-
del (1982) develops basic PL topology from a combinatorial perspective.

Regular cell complexes

12.3. By “cell complex” we will here understand what in topology is usually called
a “finite CW complex”.

Let X be a Hausdorff space. A subset o is called an open d-cell if there exists
a mapping f: B? — X whose restriction to the interior of the d-ball is a homeo-
morphism f:Int(B?) — o. The dimension dimo = d is well-defined by this. The
closure & is the corresponding closed cell. It is true that f(B?) = &, but & is not
necessarily homeomorphic to BY. We write ¢ = &\0.

A cell complex € is a finite collection of pairwise disjoint sets together with a
Hausdorff topology on their union ||€|| = |J € such that:

(1) each o € 4 is an open cell in ||€||, and :

(i) o € €<9m7 (the union of all cells in € of dimension less than dim o), for
all o € 6.

Then € is also called a cell decomposition of the space ||€||. Furthermore, 4
is regular if each mapping f : B¢ — ||%|| defining the cells can be chosen to be a
homeomorphism on all of B%. Then, of course, every closed cell & is homeomorphic
to a ball. (However, it is not enough for the definition of a regular complex to only
require that every closed cell is homeomorphic to a ball. The smallest example
showing this has three vertices, three edges and one 2-cell.)

The cell decomposition of the d-sphere into one 0-cell and one d-cell (a point
and its complement in §¢) is not regular. Every polyhedral complex is a regular
cell complex (the relative interiors of the convex polytopes are the open cells).
Regular cell complexes are more general than polyhedral complexes in several
ways. For instance, it is allowed that the intersection of two closed cells can have
nontrivial topological structure.

12.4. From now on only regular cell complexes will be considered. Define the face
poset P (%) as the set of all closed cells ordered by containment.The following two
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Figure 2.

particular properties make a regular complex € favorable from a combinatorial
point of view (see Cooke and Finney 1967 or Lundell and Weingram 1969 for
proofs):

(i) The boundary o of each cell o € € is a union of cells (a subcomplex). Hence,
the situation resembles that of polyhedral complexes: each closed d-cell & is home-
omorphic to B¢, and its boundary ¢ (homeomorphic to $%7!) has a regular cell
decomposition provided by the cells that intersect g.

(i) ||| = |A(P(6))|, i-e., the order complex of P(€) is homeomorphic to ||€6||.
Geometrically this means that regular cell complexes admit “barycentric subdivi-
sions”. From a combinatorial point of view it means that regular cell complexes
can be interpreted as a class of posets without any loss of topological information.

Because of (i), regular cell complexes can be characterized in the following way:

A family of balls (homeomorphs of B d > 0) in a Hausdorff space X is the set of
closed cells of a regular cell complex iff the interiors of the balls partition X and
the boundary of each ball is a union of other balls. This is what Mandel (1982)
calls a “ball complex”.

An important consequence of (ii) is that a d-dimensional regular cell complex
% can always be “realized” in R?#*! by a simplicial complex, so that every closed
cell in € is a triangulated ball (a cone over a simplicial sphere).

For a detailed discussion of regular cell complexes from a combinatorial point of
view, see section 4.7 of Bjorner et al. (1993). Figure 2 shows a regular cell decom-
position € of the 2-sphere, its face poset P (%), and its simplicial representation
A(P(€)), where each original 2-cell is triangulated into four triangles.
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12.5. Given a finite poset P, does there exist a regular cell complex (or even a
polyhedral complex) € such that P=P (%); and if so, what is its topology and how
can 4 be constructed from P? This question is discussed in Bjorner (1984a) and
Mandel (1982) from different perspectives. One answer is that P is isomorphic
to the face poset of some regular cell complex iff A(P.,) is homeomorphic to a
sphere for all x € P. However, since it is known that simplicial spheres cannot be
recognized algorithmically this is not a fully satisfactory answer. The question of
how to recognize the face posets of polyhedral complexes is one version of the
Steinitz problem (see chapter 18 by Klee and Kleinschmidt).

For the celiular interpretation of posets the following result, derivable from
Theorem 11.4, has proven useful in practice. See Bjorner (1984a) for further details.
Let us call a poset P thin if every closed interval of rank 2 has four elements (two
“in the middle”). Also, P U {0} will denote P with a new minimum element 0
adjoined, and P = P U {0,1} as usual.

Theorem 12.6. Let P be a pure finite poset of rank d. Assume that A(P) is con-
structible.

(i) If P U {0} is thin, then P =2 P (%) for some regular cell complex € homotopy
equivalent to a wedge of d-spheres.

(ii) If P is thin, then P = P (%) for some regular cell decomposition of the d-
sphere.

13. Fixed-point and antipodality theorems

The topological fixed-point and antipodality theorems of greatest use for combina-
torics will be reviewed. We start by stating four equivalent versions of the oldest of
them: Brouwer’s fixed-point theorem (from 1912). Proofs and references to origi-
nal sources for all otherwise unreferenced material in this section can be found in
many topology books, e.g., in Dugundji and Granas (1982). Recall that mappings
between topological spaces are always assumed to be continuous.

Theorem 13.1 (Brouwer’s Theorem). (i) Every mapping f:B* — B has a fixed
point x = f(x).

(i) $*7! is not a retract of B? (i.e., no mapping B® — §%7! leaves each point of
841 fixed).

(iii) $471 is not (d — 1)-connected.

(iv) 847! is not contractible.

Brouwer’s Theorem is implied by the following combinatorial lemma of Sperner
(1928), see also Cohen (1967): If the vertices of a triangulation of $*! are colored
with d colors, then there cannot be exactly one (d — 1)-face whose vertices use all
d colors. Sperner’s Lemma was generalized by Lovdsz (1980): If the vertices of a
(d — 1)-dimensional manifold are labeled by elements from some rank-d loopless
matroid, then there cannot be exactly one (d — 1)-face whose vertices form a basis
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of the matroid. A further generalization and an application to hypergraphs appear
in Lindstrom (1981). Sperner’s Lemma is of practical use for the design of fixed-
point-finding algorithms in connection with applications of Brouwer’s Theorem,
see Todd (1976). '

It is well known that Brouwer’s Theorem for d = 2 implies that there is no draw
in the 2-person game HEX. Actually the implication goes the other way as well.
Gale (1979) defines a d-person d-dimensional HEX game, and proves that for
each d > 2 the Brouwer Theorem 13.1 is equivalent to the impossibility of a draw
in d-dimensional HEX.

We turn next to the (Hopf-)Lefschetz fixed-point theorem (from 1927-28), which
gives a vast generalization of Theorem 13.1. Lefschetz’ Theorem and the closely
related trace formula of Hopf will be stated in simplicial versions.

Let A be a nonempty simplicial complex and f: | 4| — ||4|| a continuous map.
The Lefschetz number A(f) is defined by A(f) =3,5o(~1)" trace (f}), where
fi : H;(4,Q) — H;(A,Q) is the induced mapping on i-dimensional reduced ho-
mology. (We use Q-coefficients throughout here for simplicity; other fields may
of course be used instead.) Note that f ~ g implies A(f) = A(g) (since homotopic
maps induce identical maps on homology), in particular if f is null-homotopic
(meaning homotopic to a constant map) then A(f) = 0. Also, if A is Q-acylic then
A(f) = 0 for all self-maps f.

Now, suppose that f: A — A is simplicial, and say that a face 7€ A is fixed
if f(r)=17 as a set. Let ¢/ (f) [resp. ¢ (f)]be the number of fixed i-faces
whose orientation is preserved [resp. reversed|. Here we consider the orienta-
tion of 7= {x¢,x1,...,x;} to be preserved if the permutations xg,x1,...,x; and
f(x0), f(x1), ..., f(x;) have the same parity. The following is a special case of the
Hopf trace formula:

AN +1=Y (1) [¢f () — o (- (13.2)

iz0

Notice that for f =id formula (13.2) specializes to the Euler-Poincaré formula
(9.13).

One sees from (13.2) that if f has no fixed face, then A(f) = —1. Using simplicial
approximation and compactness the following is deduced.

Theorem 13.3 (Lefschetz’s Theorem). If f:| 4| — ||4|| is a mapping such that
A(f) # =1, then f has a fixed point.

The following two consequences of Theorem 13.3 generalize Brouwer’s Theorem
in different directions.

Corollary 13.4. Let T be a compact triangulable space.
(a) Every null-homotopic self-map of T has a fixed point.
(b) If T is Q-acyclic, then every self-map of T has a fixed point.

The following consequence of the Hopf trace formula is useful in some combi-.
natorial situations. Let once more f: A — A be a simplicial mapping of a simplicial
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complex A. Assume that a face 7 € A is fixed if and only if 7 is point-wise fixed [i.e.,
f(7) = r implies f(x) = x for all x € 7|. One may then define the fixed subcomplex
A = {r € A|f(7) = 7}, which coincides with the induced subcomplex on the set
of fixed vertices, and (13.2) specializes to

A(f) = x(&). (13.5)

One situation where this is used (see, e.g., Curtis, Lehrer and Tits 1980) is in con-
nection with groups acting on finite complexes, where (13.5) says that the “Lef-
schetz character” has a topological interpretation as the reduced Euler character-
istic of the fixed subcomplex. Another such situation (see Bactawski and Bjorner
1979 and section 3 of this chapter) is when f: P — P is an order-preserving poset
map, in which case (13.5) can be rewritten A(f) = w(P7), the right-hand side de-
noting the value of the Mébius function computed over the subposet of fixed points
augmented with a new 0 and 1 [cf. (9.14)].

The following definitions will now be needed. Let p be a prime. By a Z,-space
we understand a pair (7', v) where T is a topological space and v : T — T is a fixed-
point free continuous mapping of order p (i.e., v» =id). A mapping f: 11 — T,
of Z,-spaces (T;,v;),i =1,2, is equivariant if v,o f = for,. A Z,-space is often
called an antipodality space. The standard example is (§¢, a), the d-sphere with its
antipodal map a(x) = —x.

‘We state five equivalent versions of the antipodality theorem of Borsuk (1933).

Theorem 13.6 (Borsuk’s Theorem).
() If §¢ is covered by d + 1 subsets, all closed or all open, then one of these must

contain a pair of antipodal points. (Borsuk-Liusternik-Schnirelman)

(ii) For every continuous mapping f : 8% — R? there exists a point x such that
f(x) = f(—x). (Borsuk—~Ulam)

(iii) For every odd [f(—y) = —f(y) for all y] continuous mapping f:8% — R4
there exists x for which f(x) = 0. (Borsuk-Ulam)

(iv) There exists no equivariant map S"* — S$%, if n > d.

(v) For any d-connected antipodality space T, there exists no equivariant map
T — §°

Borsuk’s Theorem is implied by a certain combinatorial lemma of A.W. Tucker,
much like Brouwer’s Theorem is implied by Sperner’s Lemma. See Freund and
Todd (1981) for a statement and proof of Tucker’s Lemma and further references.
In Theorem 13.6 (v) it suffices to assume that T is d-acyclic over Z;, see Walker
(1983b).

Steinlein (1985) gives an extensive survey of generalizations, applications and
references related to Borsuk’s Theorem. Applications to combinatorics are sur-
veyed by Alon (1988), Bdrdny (1993) and Bogatyi (1986); see also sections 4 and
5 of this chapter.

The following extension of the Borsuk—Ulam Theorem appears in Yang (1955):

For every mapping S — R? there exist n mutually orthogonal diameters whose 2n
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endpoints are mapped to the same point. The same paper also gives references to
the following related theorem of Kakutani—Yamabe-Yujob6: For every mapping
S" — R there exist (n+1) mutually orthogonal radii whose (n+ 1) endpoints are
mapped to the same point. An interesting consequence of the last result is that every
compact convex body K C R*! is contained in an (n + 1)-cube C such that every
maximal face of C touches K [for each x € §” let f(x) be the minimal distance
between two parallel hyperplanes orthogonal to the vector x and containing K
between them|.

Suppose E; and E, are two bounded and measurable subsets of R2. Identify
R? with the affine plane A = {(¢,71,1)} in R?, and for each x € §? let fi(x) be
the measure of that part of E; which lies on the same side as x of the plane H,
through the origin orthogonal to x, for i = 1, 2. The Borsuk-Ulam Theorem implies
that f;(x) = fi(—x) and f5(x) = f,(~x) for some x € $%, which means that the line
ANH, bisects both E; and E,. This “ham sandwich” argument generalizes to
arbitrary dimensions and leads to the following consequence of the Borsuk-Ulam
Theorem.

Corollary 13.7 (“Ham Sandwich Theorem”). Given d bounded and Lebesgue mea-
surable sets in RY there exists some affine hyperplane that simultaneously bisects them
all.

Also Corollary 13.7 has several generalizations and related results. The case
when k < d bounded and measurable sets are given is covered by the following
result of Zivaljevié and Vreéica (1990): Let w1, ua,.- ., ui be a collection of o-
additive probability measures defined on the o-algebra of all Borel sets in R%,1 <
k < d. Then there exists a (k — 1)-dimensional affine subspace A C R? such that
for every closed halfspace H C R* and every i =1,2,...,k,A C H implies u;(H) >
1/(d — k +2). For k = d this specializes to a measure-theoretic version of the Ham
Sandwich Theorem (see also Hill 1988), and for k = 1 it gives a theorem of Rado
(1946) which says that for any measurable E C R? there exists a point x € R? such
that every halfspace containing x contains at least a 1/(d + 1)-fraction of E.

We end by stating a useful generalization of the Borsuk-Ulam Theorem to
Zy-spaces for p > 2. First a few definitions, see Bérdny et al. (1981) for com-
plete details. Let p be a prime and n > 1. Take p disjoint copies of the n(p — 1)-
dimensional ball and identify their boundaries. Call this space X, ,. There ex-
ists a mapping v : §"?~V~1 _, §7(P—D-1 of the identified boundary which makes it
into a Z,-space. Extend this mapping to X, , as follows. If (y,r,q) denotes the
point of X,, , from the gth ball with radius r and §"?P~D-1_¢oordinate y, then put
v(y,r,q) = (vy,r,q +1), where g +1 is reduced modulo p. This mapping » makes
X,.p into a Z,- space. [Note that (X,,»,v) = (8", a).]

Theorem 13.8 (Bardny, Shlosman and Sziics 1981). For every continuous mapping
f: X, p — R" there exists a point x such that f(x) = f(vx) = --- = f(¥?~1x).

Some applications of Theorem 13.8 are mentioned in sections 4 and 5.
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