CORRIGENDUM TO 'TIME-INCONSISTENT MEAN-FIELD OPTIMAL STOPPING: A LIMIT APPROACH'

BOUALEM DJEHICHE AND MATTIA MARTINI

A correction of the proof of Theorem 3.3

We provide a correction of proof of Theorem 3.3 in [DM23]. This result plays a key role in the proof of the main result of [DM23], Theorem 3.4. In the proof of Theorem 3.3, we used a well known law of large numbers whose statement in Eq. (3.24) is unfortunately wrong.

First, we recall that the family of interacting Snell envelopes $\left\{Y^{i, n}\right\}_{i=1}^{n}$ and the family of finite horizon stopping problems $\left\{Y^{i}\right\}_{i \geq 1}$ are defined by (2.4) and (2.5) in [DM23|. The function h and sequence $\left\{\xi^{i}\right\}_{i \geq 1}$ satisfy Assumption 2.1 in \mid DM23| (in what follows we will simply say that Assumption 2.1 holds). For the new proof, we need to introduce a (fixed) sequence of random variables $\left\{\alpha_{j}\right\}_{j \geq 1}$ which are all independent of $\left\{\mathbb{F}^{i}\right\}_{i \geq 1}$ and for which

$$
\begin{equation*}
\mathbb{E}\left[\alpha_{j}\right]=1-2^{-j}, \quad \operatorname{Var}\left(\alpha_{j}\right) \leq a^{j}, \quad j \geq 1, \quad\left|\mathbb{E}\left[\alpha_{j} \alpha_{k}\right]\right| \leq a^{|j-k|}, \quad j, k \geq 1, \tag{1.1}
\end{equation*}
$$

for a given $a \in(0,1)$. We note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n}\left(\mathbb{E}\left[\alpha_{j}\right]-1\right)^{2}, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \operatorname{Var}\left(\alpha_{j}\right)=0, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} a^{j}=0 . \tag{1.2}
\end{equation*}
$$

The next lemma is the main ingredient in the new proof of Theorem 3.3.
Lemma 1.1. Let Assumption 2.1 hold. Then the following law of large numbers (LLN) holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{1 \leq i \leq n} \mathbb{E}\left[\operatorname{ess}_{\tau \in \mathcal{T}_{0}^{i}}\left(\frac{1}{n} \sum_{j=1}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right)^{2}\right]=0 . \tag{1.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{1 \leq i \leq n} \mathbb{E}\left[\underset{\tau \in \mathcal{T}_{0}^{i}}{\operatorname{ess} \sup _{n}}\left(\frac{1}{n} \sum_{j=1}^{n}\left(1-\alpha_{j}\right) Y_{\tau}^{j}\right)^{2}\right]=0 . \tag{1.4}
\end{equation*}
$$

Proof. Due to (1.1), the limit (1.4) is straightforward. To show (1.3), we note that since

$$
\frac{1}{n} \sum_{j=1}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)=\frac{1}{n}\left(\alpha_{i} Y_{\tau}^{i}-\mathbb{E}\left[\alpha_{i} Y_{\tau}^{i}\right]\right)+\frac{n-1}{n} \frac{1}{n-1} \sum_{j=1, j \neq i}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right),
$$

by Dominated Convergence it suffices to show

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{1 \leq i \leq n} \mathbb{E}\left[\underset{\tau \in \mathcal{T}_{0}^{i}}{\operatorname{ess} \sup }\left(\frac{1}{n-1} \sum_{j=1, j \neq i}^{n}\left(\alpha_{j} \gamma_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right)^{2}\right]=0 . \tag{1.5}
\end{equation*}
$$

By the properties of the essential supremum, for each $n \geq 2$, there exists a sequence $\left\{\tau_{m}^{n}\right\}_{m \geq 1}$ from $\mathcal{T}_{0}{ }^{i}$ such that

$$
\underset{\tau \in \mathcal{T}_{0}^{i}}{\operatorname{esssup}}\left(\frac{1}{n-1} \sum_{j=1, j \neq i}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right)^{2}=\lim _{m \rightarrow \infty}\left(\frac{1}{n-1} \sum_{j=1, j \neq i}^{n}\left(\alpha_{j} Y_{\tau_{m}^{n}}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau_{m}^{n}}^{j}\right]\right)\right)^{2} \quad \text { a.s. }
$$

and by Dominated Convergence, we have

$$
\begin{aligned}
\mathbb{E}\left[\underset{\tau \in \mathcal{T}_{0}^{i}}{\operatorname{ess} \sup }\left(\frac{1}{n-1} \sum_{j \neq i}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right)^{2}\right] & =\lim _{m \rightarrow \infty} \mathbb{E}\left[\left(\frac{1}{n-1} \sum_{j \neq i}^{n}\left(\alpha_{j} Y_{\tau_{m}^{n}}^{j}-\mathbb{E}\left[\alpha_{j} y_{\tau_{m}^{n}}^{j}\right]\right)\right)^{2}\right] \\
& \leq \sup _{\tau \in \mathcal{T}_{0}^{i}} \mathbb{E}\left[\left(\frac{1}{n-1} \sum_{j \neq i}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right)^{2}\right] .
\end{aligned}
$$

Now, by direct calculations it holds that, for every $\tau \in \mathcal{T}_{0}^{i}$ and every $\ell, j \neq i$,

$$
\begin{aligned}
& \mathbb{E}\left[Y_{\tau}^{\ell}\right]=\mathbb{E}\left[Y_{\tau}^{j}\right]=\mathbb{E}\left[\left.\mathbb{E}\left[Y_{s}^{1}\right]\right|_{s=\tau}\right], \quad \mathbb{E}\left[Y_{\tau}^{\ell} Y_{\tau}^{j}\right]=\mathbb{E}\left[\left.\left(\mathbb{E}\left[Y_{s}^{1}\right]\right)^{2}\right|_{s=\tau}\right] \geq 0, \\
& \operatorname{cov}\left(\alpha_{j} Y_{\tau}^{j}, \alpha_{k} Y_{\tau}^{k}\right)=\operatorname{cov}\left(\alpha_{j}, \alpha_{k}\right) \mathbb{E}\left[Y_{\tau}^{j} Y_{\tau}^{k}\right]+\mathbb{E}\left[\alpha_{j}\right] \mathbb{E}\left[\alpha_{k}\right] \operatorname{cov}\left(Y_{\tau}^{j}, Y_{\tau}^{k}\right) .
\end{aligned}
$$

Thus, the independence of $\left(\alpha_{j}, \alpha_{k}\right)$ from $\left(Y_{\tau}^{j}, Y_{\tau}^{k}\right)$ entails

$$
\begin{aligned}
\mathbb{E}\left[\left(\frac{1}{n-1} \sum_{j=1, j \neq i}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right)^{2}\right] & =\frac{1}{(n-1)^{2}} \sum_{j, k, j, k \neq i}^{n} \operatorname{cov}\left(\alpha_{j} Y_{\tau}^{j}, \alpha_{k} Y_{\tau}^{k}\right) \\
& \leq\left(\frac{1}{n-1}+\frac{n^{2}}{(n-1)^{2}} \frac{2}{n} \sum_{m=1}^{n} a^{m}\right) \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{1}\right|^{2}\right]
\end{aligned}
$$

This bound, being uniform in τ and in $i, 1 \leq i \leq n$, yields (1.3) due to (1.2).
We will now state a new and correct version of [DM23, Theorem 3.3] and sketch its proof. To this end we need to substitute the smallness condition $\gamma_{1}^{2}+\gamma_{2}^{2}<\frac{1}{16}$ with a new one.

Theorem 1.2. Let Assumptions 2.1 hold and let us assume that γ_{1} and γ_{2} satisfy the new condition

$$
\begin{equation*}
\gamma_{1}^{2}+3 \gamma_{2}^{2}<\frac{1}{28} \tag{1.6}
\end{equation*}
$$

Then, it holds that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{1 \leq i \leq n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{i, n}-Y_{t}^{i}\right|^{2}\right]=0 \tag{1.7}
\end{equation*}
$$

Proof. As in the proof of [DM23, Theorem 3.3], we have that for any $t \leq T$,

$$
\begin{align*}
& \left|Y_{t}^{i, n}-Y_{t}^{i}\right| \leq \mathbb{E}\left[\gamma_{1} \sup _{s \in[0, T]}\left|Y_{s}^{i, n}-Y_{s}^{i}\right|+\frac{\gamma_{2}}{n} \sum_{j=1}^{n} \sup _{s \in[0, T]}\left|Y_{s}^{j, n}-Y_{s}^{j}\right|\right. \\
& \left.\left.\quad+\frac{\gamma_{2}}{n} \sum_{j=1}^{n} \mathbb{E}\left[\left|\alpha_{j}\right|\right] \mathbb{E}\left[\sup _{s \in[0, T]}\left|Y_{s}^{j, n}-\Upsilon_{s}^{j}\right|\right]+\frac{\gamma_{2}}{n} \sum_{j=1}^{n} \mathbb{E}\left[\left|\alpha_{j}\right|\right] \mathbb{E}\left[\sup _{s \in[0, T]}\left|Y_{s}^{j, n}-Y_{s}^{i}\right|\right] \right\rvert\, \mathcal{F}_{t}^{i}\right] \tag{1.8}\\
& +\gamma_{2} \mathbb{E}\left[\left.\operatorname{ess} \sup \left|\frac{1}{n} \sum_{j=1}^{n}\left(\alpha_{j}-1\right) \mathcal{T}_{\tau}^{j}\right| \right\rvert\, \mathcal{F}_{t}^{i}\right]+\gamma_{2} \mathbb{E}\left[\left.\underset{\tau \in \mathcal{T}_{0}^{i}}{\operatorname{ess} \sup }\left|\frac{1}{n} \sum_{j=1}^{n}\left(\alpha_{j} Y_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} Y_{\tau}^{j}\right]\right)\right| \right\rvert\, \mathcal{F}_{t}^{i}\right] \\
& \quad+\gamma_{2}\left|\frac{1}{n} \sum_{j=1}^{n}\left(\mathbb{E}\left[\alpha_{j}\right]-1\right)\right| \mathbb{E}\left[\sup _{s \in[0, T]}\left|Y_{t}^{1}\right|\right] .
\end{align*}
$$

Set

$$
\begin{aligned}
& \Lambda_{n}:=28 \gamma_{2}^{2} \sup _{1 \leq i \leq n} \mathbb{E}\left[\operatorname{ess} \sup _{\tau \in \mathcal{T}_{0}^{i}}\left(\frac{1}{n} \sum_{j=1}^{n}\left(\alpha_{j} \gamma_{\tau}^{j}-\mathbb{E}\left[\alpha_{j} \gamma_{\tau}^{j}\right]\right)\right)^{2}\right] \\
& +28 \gamma_{2}^{2} \sup _{1 \leq i \leq n} \mathbb{E}\left[\operatorname{ess}_{\tau \in \mathcal{T}_{0}^{i}}^{\operatorname{esp}}\left(\frac{1}{n} \sum_{j=1}^{n}\left(\alpha_{j}-1\right) \gamma_{\tau}^{j}\right)^{2}\right]+28 \gamma_{2}^{2}\left|\frac{1}{n} \sum_{j=1}^{n}\left(\mathbb{E}\left[\alpha_{j}\right]-1\right)\right|^{2} \mathbb{E}\left[\sup _{s \in[0, T]}\left|Y_{t}^{1}\right|\right]^{2} .
\end{aligned}
$$

Since $\mathbb{E}\left[\alpha_{i}^{2}\right] \leq 1$, in view of the exchangeability of $\left\{Y^{j, n}, Y^{j}\right\}_{j=1}^{n}$, the Cauchy-Schwarz inequality and Doob's inequality, if we set $C:=\left(1-28\left(\gamma_{1}^{2}+3 \gamma_{2}^{2}\right)\right)^{-1}$, by 1.1) and Lemma 1.1 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{i, n}-Y_{t}^{i}\right|^{2}\right] \leq C \lim _{n \rightarrow \infty} \Lambda_{n}=0 . \tag{1.9}
\end{equation*}
$$

But, again due to the exchangeability of $\left\{Y^{j, n}, Y^{j}\right\}_{j=1}^{n}$, it holds that

$$
\begin{equation*}
\sup _{1 \leq i \leq n} \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{j, n}-Y_{t}^{i}\right|^{2}\right]=\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{j, n}-Y_{t}^{j}\right|^{2}\right] \rightarrow 0, \quad \text { as } n \rightarrow \infty, \tag{1.10}
\end{equation*}
$$

where the limit follows from (1.9). Now, from (1.8), we get

$$
\begin{gather*}
\frac{1}{28 \gamma_{2}^{2}}\left(1-28 \gamma_{1}^{2}\right) \sup _{1 \leq i \leq n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{i, n}-Y_{t}^{i}\right|^{2}\right] \leq \sup _{1 \leq i \leq n} \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{j, n}-Y_{t}^{i}\right|^{2}\right] \tag{1.11}\\
+2 \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{j, n}-Y_{t}^{j}\right|^{2}\right]+\frac{1}{28 \gamma_{2}^{2}} \Lambda_{n} .
\end{gather*}
$$

Finally, since (1.6) entails $28 \gamma_{1}^{2}<1$ and in view of $(1.3, \sqrt{1.9}$ and 1.10 , we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{1 \leq i \leq n} \mathbb{E}\left[\sup _{t \in[0, T]}\left|Y_{t}^{i, n}-Y_{t}^{i}\right|^{2}\right]=0 \tag{1.12}
\end{equation*}
$$

REFERENCES

[DM23] B. Djehiche and M. Martini, Time-inconsistent mean-field optimal stopping: A limit approach, Journal of Mathematical Analysis and Applications 528 (2023), no. 1, 127582.

Department of Mathematics, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
Email address: boualem@kth.se
Université Côte D'Azur, CNRS, Laboratoire J. A. Dieudonné, 06108 Nice, France
Email address: mattia.martini@univ-cotedazur.fr

