SF1544

Övning 3

This övning

- Numerical integration (Numerisk integrering)
- Composite trapezoidal rule (Trapetsmetoden)
- Numerical differentiation (Differensoperator)

Numerisk integrering

Let

$$
a=x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

then we approximate

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Numerisk integrering

Let

$$
a=x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

then we approximate

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Examples

- Mid point rule $\int_{a}^{b} f(x) d x \approx(b-a) f\left(\frac{a+b}{2}\right)$

Numerisk integrering

Let

$$
a=x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

then we approximate

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

Examples

- Mid point rule $\int_{a}^{b} f(x) d x \approx(b-a) f\left(\frac{a+b}{2}\right)$
- Trapezoidal rule $\int_{a}^{b} f(x) d x \approx(b-a)\left[\frac{f(a)+f(b)}{2}\right]$

Illustration of composite trapezoidal

Trapezoidal rule

$$
\left.\int_{a}^{b} f(x) d x \approx \frac{1}{2} \sum_{i=1}^{N-1}\left(x_{i+1}-x_{i}\right)\left[f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)\right]
$$

Trapezoidal rule

$$
\left.\int_{a}^{b} f(x) d x \approx \frac{1}{2} \sum_{i=1}^{N-1}\left(x_{i+1}-x_{i}\right)\left[f\left(x_{i+1}\right)+f\left(x_{i}\right)\right)\right]
$$

If $x_{i+1}=x_{i}+h$ (uniform grid)

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \frac{h}{2}\left[\sum_{i=1}^{N-1} f\left(x_{i+1}\right)+\sum_{i=1}^{N-1} f\left(x_{i}\right)\right] \\
& \int_{a}^{b} f(x) d x \approx h\left[\frac{f(a)+f(b)}{2}+\sum_{i=2}^{N-1} f\left(x_{i}\right)\right]
\end{aligned}
$$

Exercise

Approximate with trapezoidal rule and $n=5$

$$
\int_{0}^{1} x^{2} d x
$$

Exercise

Approximate with trapezoidal rule and $n=5$

$$
\int_{0}^{1} x^{2} d x
$$

We have $h=0.25$ and

$$
x_{1}=0, \quad x_{2}=0.25, \quad x_{3}=0.5, \quad x_{4}=0.75, \quad x_{5}=1
$$

Exercise

Approximate with trapezoidal rule and $n=5$

$$
\int_{0}^{1} x^{2} d x
$$

We have $h=0.25$ and

$$
x_{1}=0, \quad x_{2}=0.25, \quad x_{3}=0.5, \quad x_{4}=0.75, \quad x_{5}=1
$$

and then

$$
\int_{0}^{1} f(x) d x \approx 0.25\left[\frac{f(0)+f(2)}{2}+f(0.25)+f(0.5)+f(0.75)\right]
$$

Exercise

Approximate with trapezoidal rule and $n=5$

$$
\int_{0}^{1} x^{2} d x
$$

We have $h=0.25$ and

$$
x_{1}=0, \quad x_{2}=0.25, \quad x_{3}=0.5, \quad x_{4}=0.75, \quad x_{5}=1
$$

and then

$$
\begin{aligned}
& \int_{0}^{1} f(x) d x \approx 0.25\left[\frac{f(0)+f(2)}{2}+f(0.25)+f(0.5)+f(0.75)\right] \\
& \int_{0}^{1} x^{2} d x \approx 0.25\left[\frac{0^{2}+2^{2}}{2}+0.25^{2}+0.5^{2}+0.75^{2}\right]=0.34375
\end{aligned}
$$

Exercise

Approximate with trapezoidal rule and $n=5$

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3}=0 . \overline{3}
$$

We have $h=0.25$ and

$$
x_{1}=0, \quad x_{2}=0.25, \quad x_{3}=0.5, \quad x_{4}=0.75, \quad x_{5}=1
$$

and then

$$
\begin{aligned}
& \int_{0}^{1} f(x) d x \approx 0.25\left[\frac{f(0)+f(2)}{2}+f(0.25)+f(0.5)+f(0.75)\right] \\
& \int_{0}^{1} x^{2} d x \approx 0.25\left[\frac{0^{2}+2^{2}}{2}+0.25^{2}+0.5^{2}+0.75^{2}\right]=0.34375
\end{aligned}
$$

Matlab implementation

```
function [ res ] = trapez(f, a, b, n )
%TRAPEZ composite trapezoidal rule
    x=linspace (a,b,n) ;
    res=f(a)+f(b);
    for i=2:n-1
        res=res+2*f(x(i));
    end
    h=x(2)-x(1);
    res=res*h/2;
end
```


MATLAB DEMO

Exercise from the book

6.1 För att mäta bensinförbrukningen vid kallstart av en personbil har man vid förgasaren monterat en genomströmningsmätare. Experiment gav följande värden:

x	0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1
B	2.60	2.08	1.72	1.45	1.26	1.13	1.04	0.97	0.92

x är sträckan i mil efter start och B (korrekt avrundat) är momentan bränsleförbrukning i liter/mil. Beräkna bränsleförbrukningen under den första milens körning och gör noggrannhetsbedömning.

Solution

We have $N=9$ points

$$
\int_{0}^{1} B(x) d x \approx h\left[\frac{B(0)+B(1)}{2}+\sum_{i=2}^{8} B\left(x_{i}\right)\right]
$$

Solution

We have $N=9$ points

$$
\int_{0}^{1} B(x) d x \approx h\left[\frac{B(0)+B(1)}{2}+\sum_{i=2}^{8} B\left(x_{i}\right)\right]
$$

and $h=0.125$,

Solution

We have $N=9$ points

$$
\int_{0}^{1} B(x) d x \approx h\left[\frac{B(0)+B(1)}{2}+\sum_{i=2}^{8} B\left(x_{i}\right)\right]
$$

and $h=0.125$,

$$
\begin{array}{llll}
x_{1}=0, & x_{2}=0.1250, & x_{3}=0.2500, & x_{4}=0.3750, \\
x_{6}=0.5000 \\
x_{6}=0.6250, & x_{7}=0.7500, & x_{8}=0.8750 & x_{9}=1.0000
\end{array}
$$

Solution

We have $N=9$ points

$$
\int_{0}^{1} B(x) d x \approx h\left[\frac{B(0)+B(1)}{2}+\sum_{i=2}^{8} B\left(x_{i}\right)\right]
$$

and $h=0.125$,

$$
\begin{array}{llll}
x_{1}=0, & x_{2}=0.1250, & x_{3}=0.2500, & x_{4}=0.3750, \\
x_{6}=0.6250, & x_{7}=0.7500, & x_{8}=0.8750 & x_{9}=1.0000
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{1} B(x) d x \approx & 0.125\left[\frac{2.60+0.92}{2}+2.08+1.72+1.45+1.26\right. \\
& +1.13+1.04+0.97]=1.426
\end{aligned}
$$

Numerical differentiation

Recall

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Then we can approximate for h small

forward difference formula

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \quad h \text { small }
$$

Example

Let $f(x)=\log (x)$, approximate $f^{\prime}(1)$.

$$
f^{\prime}(1) \approx \frac{f(1+h)-f(1)}{h}=\frac{\log (1+h)}{h}
$$

Example

Let $f(x)=\log (x)$, approximate $f^{\prime}(1)$.

$$
f^{\prime}(1) \approx \frac{f(1+h)-f(1)}{h}=\frac{\log (1+h)}{h}
$$

- For $h=0.1$

$$
f^{\prime}(1) \approx \frac{\log (1.1)}{0.1}=0.9531
$$

Example

Let $f(x)=\log (x)$, approximate $f^{\prime}(1)$.

$$
f^{\prime}(1) \approx \frac{f(1+h)-f(1)}{h}=\frac{\log (1+h)}{h}
$$

- For $h=0.1$

$$
f^{\prime}(1) \approx \frac{\log (1.1)}{0.1}=0.9531
$$

- For $h=0.01$

$$
f^{\prime}(1) \approx \frac{\log (1.01)}{0.01}=0.9950
$$

Example

Let $f(x)=\log (x)$, approximate $f^{\prime}(1)$.

$$
f^{\prime}(1) \approx \frac{f(1+h)-f(1)}{h}=\frac{\log (1+h)}{h}
$$

- For $h=0.1$

$$
f^{\prime}(1) \approx \frac{\log (1.1)}{0.1}=0.9531
$$

- For $h=0.01$

$$
f^{\prime}(1) \approx \frac{\log (1.01)}{0.01}=0.9950
$$

- For $h=0.001$

$$
f^{\prime}(1) \approx \frac{\log (1.001)}{0.001}=0.9995
$$

Example

Let $f(x)=\log (x)$, approximate $f^{\prime}(1)$.

$$
f^{\prime}(1) \approx \frac{f(1+h)-f(1)}{h}=\frac{\log (1+h)}{h}
$$

- For $h=0.1$

$$
f^{\prime}(1) \approx \frac{\log (1.1)}{0.1}=0.9531
$$

- For $h=0.01$

$$
f^{\prime}(1) \approx \frac{\log (1.01)}{0.01}=0.9950
$$

- For $h=0.001$

$$
f^{\prime}(1) \approx \frac{\log (1.001)}{0.001}=0.9995
$$

Correct value: $f^{\prime}(x)=\frac{1}{x}$ and so $f^{\prime}(1)=1$

Exercise

Prove that

$$
f^{\prime}(x)=\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}+O\left(h^{2}\right)
$$

Exercise

Prove that

$$
f^{\prime}(x)=\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}+O\left(h^{2}\right)
$$

Solution:

TAYLOR EXPANSION

Taylor expansion

Recall

$$
f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\frac{\Delta x^{2}}{2} f^{\prime \prime}(x)+\cdots+f^{(m)}(x) \frac{\Delta x^{m}}{m!}+O\left(\Delta x^{m+1}\right)
$$

Taylor expansion

Recall
$f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\frac{\Delta x^{2}}{2} f^{\prime \prime}(x)+\cdots+f^{(m)}(x) \frac{\Delta x^{m}}{m!}+O\left(\Delta x^{m+1}\right)$
In a compact form

$$
f(x+\Delta x)=\sum_{i=0}^{m} f^{(i)}(x) \frac{\Delta x^{i}}{i!}+O\left(\Delta x^{m+1}\right)
$$

Exercise

Prove that

$$
f^{\prime}(x)=\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}+O\left(h^{2}\right)
$$

Exercise

Prove that

$$
f^{\prime}(x)=\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}+O\left(h^{2}\right)
$$

Solution:

TAYLOR EXPANSION

Solution

- With $\Delta x=2 h$ and $m=2$ we have

$$
f(x+2 h)=f(x)+2 h f^{\prime}(x)+f^{\prime \prime}(x) \frac{4 h^{2}}{2}+O\left(h^{3}\right)
$$

Solution

- With $\Delta x=2 h$ and $m=2$ we have

$$
f(x+2 h)=f(x)+2 h f^{\prime}(x)+f^{\prime \prime}(x) \frac{4 h^{2}}{2}+O\left(h^{3}\right)
$$

- With $\Delta x=h$ and $m=2$ we have

$$
f(x+h)=f(x)+h f^{\prime}(x)+f^{\prime \prime}(x) \frac{h^{2}}{2}+O\left(h^{3}\right)
$$

Solution

- With $\Delta x=2 h$ and $m=2$ we have

$$
f(x+2 h)=f(x)+2 h f^{\prime}(x)+f^{\prime \prime}(x) \frac{4 h^{2}}{2}+O\left(h^{3}\right)
$$

- With $\Delta x=h$ and $m=2$ we have

$$
f(x+h)=f(x)+h f^{\prime}(x)+f^{\prime \prime}(x) \frac{h^{2}}{2}+O\left(h^{3}\right)
$$

- With $\Delta x=0$ we have

$$
f(x)=f(x)
$$

Solution

- With $\Delta x=2 h$ and $m=2$ we have

$$
f(x+2 h)=f(x)+2 h f^{\prime}(x)+f^{\prime \prime}(x) \frac{4 h^{2}}{2}+O\left(h^{3}\right)
$$

- With $\Delta x=h$ and $m=2$ we have

$$
f(x+h)=f(x)+h f^{\prime}(x)+f^{\prime \prime}(x) \frac{h^{2}}{2}+O\left(h^{3}\right)
$$

- With $\Delta x=0$ we have

$$
f(x)=f(x)
$$

With a direct computation

$$
\frac{-f(x+2 h)+4 f(x+h)-3 f(x)}{2 h}=f^{\prime}(x)+O\left(h^{2}\right)
$$

