SF1544

Övning 4

This övning

- Newton method with several variables
- Linear systems and condition number (linjärt ekvationssystem och konditionstal)

Newton method

- One variable: compute \bar{x} such that $f(\bar{x})=0$

Newton method

- One variable: compute \bar{x} such that $f(\bar{x})=0$

$$
x_{0}=\text { initial guess } \quad x_{j+1}=x_{j}-\frac{f\left(x_{j}\right)}{f^{\prime}\left(x_{j}\right)}
$$

- Two variables: compute (\bar{x}, \bar{y}) such that

$$
\begin{aligned}
& F_{1}(\bar{x}, \bar{y})=0 \\
& F_{2}(\bar{x}, \bar{y})=0
\end{aligned}
$$

Newton method

- One variable: compute \bar{x} such that $f(\bar{x})=0$

$$
x_{0}=\text { initial guess } \quad x_{j+1}=x_{j}-\frac{f\left(x_{j}\right)}{f^{\prime}\left(x_{j}\right)}
$$

- Two variables: compute (\bar{x}, \bar{y}) such that

$$
\begin{aligned}
& F_{1}(\bar{x}, \bar{y})=0 \\
& F_{2}(\bar{x}, \bar{y})=0
\end{aligned}
$$

$$
\binom{x_{0}}{y_{0}}=\text { initial guess } \quad\binom{x_{j+1}}{y_{j+1}}=\binom{x_{j+1}}{y_{j+1}}-J\binom{x_{j}}{y_{j}}^{-1} F\binom{x_{j}}{y_{j}}
$$

where

$$
J(x, y)=\left(\begin{array}{ll}
\partial_{x} F_{1}(x, y) & \partial_{y} F_{1}(x, y) \\
\partial_{x} F_{2}(x, y) & \partial_{y} F_{2}(x, y)
\end{array}\right)
$$

A complete example

Man vill för olika värden på parametern a studera den slutna kurvan som definieras av ekvationen $x^{2}+y^{2}=1+a \sin x y$.
Då $a=0$ utgörs kurvan av enhetscirkeln. Figuren visar fallen $a=1.6$ (ovalen) och $a=3.2$ (blöjkurvan). Beräkna maxpunktens koordinater för de fyra fallen $a=0.8,1.6,2.4,3.2$.
Beskriv också lämpligt tillvägagångssätt för att räkna fram och rita upp de slutna kurvorna i de fyra fallen.

Plot the curve

$$
x^{2}+y^{2}=1+a \sin (x y)
$$

Plot the curve

$$
x^{2}+y^{2}=1+a \sin (x y)
$$

go in polar coordinates

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

Plot the curve

$$
x^{2}+y^{2}=1+a \sin (x y)
$$

go in polar coordinates

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

$$
r^{2}=1+a \sin \left(r^{2} \cos (\theta) \sin (\theta)\right)
$$

Plot the curve

$$
x^{2}+y^{2}=1+a \sin (x y)
$$

go in polar coordinates

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

$$
r^{2}=1+a \sin \left(r^{2} \cos (\theta) \sin (\theta)\right)
$$

$$
r^{2}=1+a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right)
$$

Plot the curve

$$
x^{2}+y^{2}=1+a \sin (x y)
$$

go in polar coordinates

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

$$
r^{2}=1+a \sin \left(r^{2} \cos (\theta) \sin (\theta)\right)
$$

$$
r^{2}=1+a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right)
$$

Fix θ and solve

$$
f(r)=r^{2}-1-a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right)=0
$$

Plot the curve

$$
x^{2}+y^{2}=1+a \sin (x y)
$$

go in polar coordinates

$$
x=r \cos (\theta) \quad y=r \sin (\theta)
$$

$$
r^{2}=1+a \sin \left(r^{2} \cos (\theta) \sin (\theta)\right)
$$

$$
r^{2}=1+a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right)
$$

Fix θ and solve

$$
f(r)=r^{2}-1-a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right)=0
$$

Special case: $\theta=0 \Rightarrow r=1$

Plot the curve

$$
f(r)=r^{2}-1-a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right)
$$

Plot the curve

$$
\begin{gathered}
f(r)=r^{2}-1-a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right) \\
f^{\prime}(r)=2 r-a r \sin (2 \theta) \cos \left(\frac{r^{2}}{2} \sin (2 \theta)\right)
\end{gathered}
$$

Plot the curve

$$
\begin{gathered}
f(r)=r^{2}-1-a \sin \left(\frac{r^{2}}{2} \sin (2 \theta)\right) \\
f^{\prime}(r)=2 r-a r \sin (2 \theta) \cos \left(\frac{r^{2}}{2} \sin (2 \theta)\right)
\end{gathered}
$$

The Newton method becomes

$$
\begin{aligned}
r_{0} & =\text { initial guess } \\
r_{i+1} & =r_{i}-\frac{f\left(r_{i}\right)}{f^{\prime}\left(r_{i}\right)}
\end{aligned}
$$

Matlab implementation

```
close all
clear all
clc
n=100; theta=linspace(0,2*pi,n);
a=3.2; R(1)=1;
for j=2:n
    h=1; r=R(j-1);
    while abs(h)>1e-10
        f=r^2-1-a*sin(0.5*r^2*sin(2*theta(j)));
        fp=2*r-a*r*sin(2*theta(j))*\operatorname{cos}(0.5*r^2*\operatorname{sin}(2*theta(j)));
        h=-f/fp; r=r+h;
    end
    R(j)=r;
end
x=R.*cos(theta); y=R.*sin(theta); plot(x,y)
axis equal
```


MATLAB DEMO

A complete example

Man vill för olika värden på parametern a studera den slutna kurvan som definieras av ekvationen $x^{2}+y^{2}=1+a \sin x y$.
Då $a=0$ utgörs kurvan av enhetscirkeln. Figuren visar fallen $a=1.6$ (ovalen) och $a=3.2$ (blöjkurvan). Beräkna maxpunktens koordinater för de fyra fallen $a=0.8,1.6,2.4,3.2$.
Beskriv också lämpligt tillvägagångssätt för att räkna fram och rita upp de slutna kurvorna i de fyra fallen.

Compute max x-coordinate point

The curve is

$$
x^{2}+y^{2}-1+a \sin (x y)=0
$$

Compute max x-coordinate point

The curve is

$$
x^{2}+y^{2}-1+a \sin (x y)=0
$$

Maximize with respect $x \rightarrow$ derive an set equal to zero

$$
\partial_{x}\left[x^{2}+y^{2}-1+a \sin (x y)\right]=0
$$

Compute max x-coordinate point

The curve is

$$
x^{2}+y^{2}-1+a \sin (x y)=0
$$

Maximize with respect $x \rightarrow$ derive an set equal to zero

$$
\partial_{x}\left[x^{2}+y^{2}-1+a \sin (x y)\right]=0
$$

$$
2 x-a y \cos (x y)=0
$$

In conclusion we have

$$
\begin{aligned}
x^{2}+y^{2}-1+a \sin (x y) & =0 \\
2 x-a y \cos (x y) & =0
\end{aligned}
$$

the point is on the curve
x-coord. is maximized

Compute max x-coordinate point

In conclusion we have

$$
\begin{aligned}
x^{2}+y^{2}-1+a \sin (x y) & =0 \\
2 x-a y \cos (x y) & =0
\end{aligned}
$$

the point is on the curve
x-coord. is maximized

Compute max x-coordinate point

In conclusion we have

$$
\begin{array}{rl}
x^{2}+y^{2}-1+a \sin (x y)=0 & \text { the point is on the curve } \\
2 x-a y \cos (x y)=0 & x \text {-coord. is maximized }
\end{array}
$$

So we have the system of nonlinear equations

$$
\begin{cases}x^{2}+y^{2}-1+a \sin (x y) & =0 \\ 2 x-a y \cos (x y) & =0\end{cases}
$$

Compute max x-coordinate point

In conclusion we have

$$
\begin{aligned}
x^{2}+y^{2}-1+a \sin (x y) & =0 \\
2 x-a y \cos (x y) & =0
\end{aligned}
$$

the point is on the curve
x-coord. is maximized

So we have the system of nonlinear equations

$$
\begin{cases}x^{2}+y^{2}-1+a \sin (x y) & =0 \\ 2 x-a y \cos (x y) & =0\end{cases}
$$

The solutions are the roots of the function

$$
F\binom{x}{y}=\binom{x^{2}+y^{2}-1+a \sin (x y)}{2 x-a y \cos (x y)}
$$

Compute max x-coordinate point

The solutions are the roots of the function

$$
F\binom{x}{y}=\binom{x^{2}+y^{2}-1+a \sin (x y)}{2 x-a y \cos (x y)}
$$

Compute max x-coordinate point

The solutions are the roots of the function

$$
\begin{gathered}
F\binom{x}{y}=\binom{x^{2}+y^{2}-1+a \sin (x y)}{2 x-a y \cos (x y)} \\
J\binom{x}{y}=\left(\begin{array}{cc}
2 x+a y \cos (x y) & 2 y+a x \cos (x y) \\
2+a y^{2} \sin (x y) & a[x y \sin (x y)-\cos (x y)]
\end{array}\right)
\end{gathered}
$$

Matlab implementation

```
plot_curve
grid on
% x=z (1) and y=z (2)
F=@(z) [z(1)^2+z(2)^2-1-a*Sin(z(1)*z(2))
        2*z(1)-a*z(2)*\operatorname{cos}(z(1)*z(2))];
J=@(z) [2*z(1)-a*z(2)*\operatorname{cos}(z(1)*z(2)) 2*z(2)-a*z(1)*\operatorname{cos(z(1)*z(2))}
        2+a*z(2)^ 2*sin(z(1)*z(2)) a*(z(1)*z(2)*\operatorname{sin}(z(1)*z(2))-\operatorname{cos}(z(1)*z(2)))]
z=[0.5; 1.5]; h=1;
while norm(h)>1e-15
    h=J (z)\F(z); z=z-h;
end
hold on; plot(z(1),z(2),'o'); axis([[-3 3 - - 3 3]);
```


MATLAB DEMO

Linear system

Let A a matrix and b a vector, we look for \bar{x} such that

$$
A \bar{x}=b
$$

Let x an approximation of \bar{x}

- Relative forward error

$$
\frac{\|x-\bar{x}\|}{\|\bar{x}\|}
$$

- Relative backward error

$$
\frac{\|A x-b\|}{\|b\|}
$$

- Condition number $\kappa(A)=\|A\|\left\|A^{-1}\right\|$
- Relation between relative forward error, relative backward error and condition number

$$
\frac{\|x-\bar{x}\|}{\|\bar{x}\|} \leq \kappa(A) \frac{\|A x-b\|}{\|b\|_{\square}}
$$

Problem

3.4 Ekvationssystemet $\mathbf{A x}=\mathbf{b}$ ska lösas där \mathbf{A} är en tridiagonal matris:

$$
\mathbf{A}=\left(\begin{array}{rrrrrr}
-4 & 3 & 0 & 0 & 0 & 0 \\
1 & -2 & 2 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}
9.6 \\
-3.7 \\
1.1 \\
-1.2 \\
2.0 \\
-1.9
\end{array}\right)
$$

Lös systemet för hand eller med hjälp av matlab. Vi vill avgöra hur tillförlitlig den erhållna lösningsvektorn \mathbf{x} är, då vi vet att högerledets komponenter är korrekt avrundade till en decimal. Undersökningen görs experimentellt med några olika störningar i b-vektorn:

$$
\mathbf{b}_{1}=\mathbf{b}+\left(\begin{array}{r}
-0.05 \\
0.05 \\
-0.05 \\
0.05 \\
-0.05 \\
0.05
\end{array}\right), \quad \mathbf{b}_{2}=\mathbf{b}+\left(\begin{array}{r}
0.05 \\
0.05 \\
0.05 \\
-0.05 \\
-0.05 \\
-0.05
\end{array}\right), \quad \mathbf{b}_{3}=\mathbf{b}+\left(\begin{array}{r}
0.05 \\
0.05 \\
-0.05 \\
-0.05 \\
0.05 \\
0.05
\end{array}\right)
$$

Vilket av störningsexperimenten ger största förändring i lösningsvektorn? Beräkna det experimentellt erhållna konditionstalet för det värsta fallet. Beräkna även det teoretiska konditionstalet.

Matlab implementation

```
% solve the linear system
xx=A\bb;
% condition number
cond(A,'inf')
% compute an approximation of the condition number
cond_est=1;
for j=1:10000
    b=bb+0.05* (-1 + 2*rand (6,1));
    x=A\b;
    FW=norm(x-xx,'inf')/norm(xx,'inf');
    BW=norm(A*x-bb,'inf')/norm(bb,'inf');
    t=FW/BW;
    cond_est=max(cond_est,t);
end
cond_est
```


MATLAB DEMO

