SF1544

Övning 6

This övning

- numerical discretization of PDE
- Monte Carlo method
- Nonlinear Least square problem

Heat equation

Problem

Heat equation

$$
\begin{array}{r}
\frac{\partial u}{\partial t}=\sigma \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, x)=g(x) \\
u(t, 0)=h(t) \\
u(t, 1)=r(t)
\end{array}
$$

where the domain is

$$
\begin{aligned}
& 0 \leq t \leq 1 \\
& 0 \leq x \leq 1
\end{aligned}
$$

Heat equation: discretization

Let consider the discretization

$$
\begin{array}{r}
0=t_{1}<t_{2}<\cdots<t_{N}=1 \\
0=x_{1}<x_{2}<\cdots<x_{N}=1
\end{array}
$$

Heat equation: discretization

Let consider the discretization

$$
\begin{array}{r}
0=t_{1}<t_{2}<\cdots<t_{N}=1 \\
0=x_{1}<x_{2}<\cdots<x_{N}=1
\end{array}
$$

such that

$$
\begin{array}{r}
t_{j+1}=t_{j}+\Delta t \\
x_{i+1}=x_{i}+\Delta x
\end{array}
$$

Heat equation: discretization

$$
\frac{\partial u}{\partial t}\left(t_{j}, x_{i}\right)=\sigma \frac{\partial^{2} u}{\partial x^{2}}\left(t_{j}, x_{i}\right)
$$

Heat equation: discretization

Notation

$$
u_{i}^{j} \approx u\left(t_{j}, x_{i}\right)
$$

Heat equation: discretization

Notation

$$
u_{i}^{j} \approx u\left(t_{j}, x_{i}\right)
$$

Heat equation: discretization

$$
\frac{\partial u}{\partial t}\left(t_{j}, x_{i}\right)=\sigma \frac{\partial^{2} u}{\partial x^{2}}\left(t_{j}, x_{i}\right)
$$

Heat equation: discretization

Notation

$$
u_{i}^{j} \approx u\left(t_{j}, x_{i}\right)
$$

Heat equation: discretization

$$
\frac{\partial u}{\partial t}\left(t_{j}, x_{i}\right)=\sigma \frac{\partial^{2} u}{\partial x^{2}}\left(t_{j}, x_{i}\right)
$$

Heat equation: discretization interior points

$$
\frac{u_{i}^{j+1}-u_{i}^{j}}{\Delta t}=\sigma \frac{u_{i+1}^{j}-2 u_{i}^{j}+u_{i-1}^{j}}{\Delta x^{2}}
$$

Heat equation: discretization

Heat equation: discretization interior points

$$
u_{i}^{j+1}=u_{i}^{j}-\frac{\sigma \Delta t}{\Delta x^{2}}\left(u_{i+1}^{j}-2 u_{i}^{j}+u_{i-1}^{j}\right)
$$

Heat equation: discretization

Heat equation: discretization interior points

$$
u_{i}^{j+1}=u_{i}^{j}-\frac{\sigma \Delta t}{\Delta x^{2}}\left(u_{i+1}^{j}-2 u_{i}^{j}+u_{i-1}^{j}\right)
$$

Heat equation: discretization intial and boundary conditions

$$
\begin{aligned}
u_{i}^{1} & =g\left(x_{i}\right) \\
u_{1}^{j} & =h\left(t_{j}\right) \\
u_{M}^{j} & =r\left(t_{j}\right)
\end{aligned}
$$

Heat equation: discretization (conclusion)

Heat equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\sigma \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, x)=g(x) \quad u(t, 0) & =h(t) \quad u(t, 1)=r(t)
\end{aligned}
$$

Heat equation: discretization interior points

$$
\begin{array}{r}
u_{i}^{j+1}=u_{i}^{j}-\frac{\sigma \Delta t}{\Delta x^{2}}\left(u_{i+1}^{j}-2 u_{i}^{j}+u_{i-1}^{j}\right) \\
u_{i}^{1}=g\left(x_{i}\right), \quad u_{1}^{j}=h\left(t_{j}\right), \quad u_{M}^{j}=r\left(t_{j}\right) \quad \mathrm{i}=1, \ldots, \mathrm{M}-1, \mathrm{j}=1, \ldots, \mathrm{~N}-1 \\
\end{array}
$$

Heat equation: example

Heat equation

$$
\begin{array}{r}
\frac{\partial u}{\partial t}=\frac{1}{\pi} \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, x)=\sin (\pi x) \\
u(t, 0)=0 \\
u(t, 1)=0
\end{array}
$$

Matlab implementation: complete it!

```
close all; clear all; clc
M=100; N=M^2;
u=zeros(N,M);
t=linspace(0,1,N); dt=t(2)-t(1);
x=???????????????; dx=x(2)-x(1);
u(1,:) = ???????;
u(:,1) = ?;
u(:,end)= 0;
K=(dt/dx^2)*?????;
for j=1:N-1
        for i=2:M-1
            u(j+1,i)=u(j,i)+K*(u(j,i+1)-2*u(j,i)+u(j,i-1));
        end
end
imagesc(t,x,abs(u))
```


Matlab implementation: solution

```
close all; clear all; clc
M=100; N=M^2;
u=zeros(N,M);
t=linspace(0,1,N); dt=t(2)-t(1);
x=linspace(0,1,M); dx=x(2)-x(1);
u(1,:) = sin(pi*x);
u(:,1) = 0;
u(:,end)= 0;
K=(dt/dx^2)*(1/pi);
for j=1:N-1
    for i=2:M-1
        u(j+1,i)=u(j,i)+K*(u(j,i+1)-2*u(j,i)+u(j,i-1));
        end
end
imagesc(t,x,abs(u))
```


MATLAB DEMO

Monte Carlo method

Exercise

Compute the area included between the two parabolas

$$
\begin{aligned}
& y=x^{2}-x+\frac{1}{2} \\
& y=-x^{2}+x+\frac{1}{2}
\end{aligned}
$$

for $0 \leq x \leq 1$

Monte Carlo method

Exercise

Compute the area included between the two parabolas

$$
\begin{aligned}
& y=x^{2}-x+\frac{1}{2} \\
& y=-x^{2}+x+\frac{1}{2}
\end{aligned}
$$

for $0 \leq x \leq 1$
IDEA: generate N random points $\left(x_{i}, y_{i}\right) \in[0,1] \times[0,1]$

Monte Carlo method

Exercise

Compute the area included between the two parabolas

$$
\begin{aligned}
& y=x^{2}-x+\frac{1}{2} \\
& y=-x^{2}+x+\frac{1}{2}
\end{aligned}
$$

for $0 \leq x \leq 1$
IDEA: generate N random points $\left(x_{i}, y_{i}\right) \in[0,1] \times[0,1]$
$\frac{\# \text { points between the parabolas }}{N}=\frac{\# \text { area between the parabolas }}{\# \text { total area }}$

Monte Carlo method

Exercise

Compute the area included between the two parabolas

$$
\begin{aligned}
& y=x^{2}-x+\frac{1}{2} \\
& y=-x^{2}+x+\frac{1}{2}
\end{aligned}
$$

for $0 \leq x \leq 1$
IDEA: generate N random points $\left(x_{i}, y_{i}\right) \in[0,1] \times[0,1]$

$$
\frac{\# \text { points between the parabolas }}{N}=\frac{\# \text { area between the parabolas }}{\# \text { total area }}
$$

\# total area $=1$

MATLAB DEMO

Matlab implementation: solution

```
close all
clear all
clc
p1=@(x) x.^ 2-x+1/2;
p2=@(x) -x.^ 2+x+1/2;
x=linspace (0,1,100);
plot(x,pl(x),'-k'); hold on
plot(x,p2(x),'-r');
N=1e4;
j=0;
for i=1:N
    x=rand; y=rand;
    if p1(x)<y && p2(x)>y
        j=j+1;
        end
end
Area=j/N
```


Nonlinear Least Square problem

4.25 Följande tabell visar den uppmätta positionen y vid olika tidpunkter för en massa i ett dämpat svängningsförlopp: $Y(t)=-0.17 e^{-b t}\left(\cos \omega t+\frac{b}{\omega} \sin \omega t\right)$.

t	0.8	1.7	2.5	3.3	4.1
y	0.12	-0.09	0.06	-0.05	0.032

Utnyttja de fem mätningarna för att bestämma parametrarna b och ω så bra som möjligt. Man vet att mätningarna gjorts nära max- och minlägena, vilket leder till följande goda startgissningar för parametrarna: $\omega=\frac{2 \pi}{t_{3}-t_{1}}$ och $b=\frac{\omega}{2 \pi}\left(\ln y_{1}-\ln y_{3}\right)$.

Matlab implementation: solution

```
close all
clear all
clc
t=[0.8 1.7 2. 5 3.3 4.1]'; y=[0.12 -0.09 0.06 -0.05 0.032]';
a=-0.17; s=0.001;
w=2*pi/(t(3)-t(1)); b=(log(y(1))-log(y(3)))*w/(2*pi);
c=[w b]';
for iter=1:4
        F=a*exp(-b*t).*(cos(w*t)+b/w*sin(w*t)); f=F-y;
        fnorm=norm(f)
        ws=w+s; Fw=a*exp(-b*t).*(cos(ws*t)+b/ws*sin(ws*t));
        bs=b+s; Fb=a*exp(-bs*t).*(cos(w*t)+bs/w*sin(w*t));
        J=[(Fw-F)/s (Fb-F)/s];
        dc=-J\f; c=c+dc; w=c(1); b=c(2);
end
```

