Krylov methods for large-scale generalized

 Sylvester equations with low-rank commuting coefficients
Giampaolo Mele

KTH Royal Institute of technology

13 February 2017
Joint work with D. Palitta, E. Ringh, E. Jarlebring
METT 2017, Pisa

Framework

Framework

- Sylvester equations: $A X+X B^{T}=C_{1} C_{2}^{T}$

Framework

- Sylvester equations: $A X+X B^{T}=C_{1} C_{2}^{T}$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_{-}$ Methods: Krylov, ADI, etc

Framework

- Sylvester equations: $A X+X B^{T}=C_{1} C_{2}^{T}$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_{-}$ Methods: Krylov, ADI, etc
- Generalized Sylvester equation:

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Framework

- Sylvester equations: $A X+X B^{T}=C_{1} C_{2}^{T}$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_{-}$ Methods: Krylov, ADI, etc
- Generalized Sylvester equation:

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Low rank solution: N_{i}, M_{i} low rank and [Benner,Breiten '13] Methods: Krylov, ADI, etc [Shank et al '15], [Benner,Damm '11]

$$
\text { if }\left\|N_{i}\right\| \ll\|A\|,\left\|M_{i}\right\| \ll\|B\|
$$

Framework

- Sylvester equations: $A X+X B^{T}=C_{1} C_{2}^{T}$ Low rank solution: $\lambda(A) \cup \lambda(B) \subset \Omega \subset \mathbb{C}_{-}$ Methods: Krylov, ADI, etc
- Generalized Sylvester equation:

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Low rank solution: N_{i}, M_{i} low rank and [Benner,Breiten '13] Methods: Krylov, ADI, etc [Shank et al '15], [Benner,Damm '11]

$$
\text { if }\left\|N_{i}\right\| \ll\|A\|,\left\|M_{i}\right\| \ll\|B\|
$$

- We consider (\star). Our assumptions:

$$
A N_{i}-N_{i} A=U_{i} \tilde{U}_{i}^{T}, \quad B M_{i}-M_{i} B=Q_{i} \tilde{Q}_{i}^{T}
$$

Outline

O Neumann series expansion

Orylov method: exploiting the low rank commutation

O Low rank numerical solutions

O Numerical experiments

Neumann series expansion

Neumann series expansion

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Solution as a Neumann series
Let $\mathcal{L}(X):=A X+X B^{T}$ and $\Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$. Assume $\left\|\mathcal{L}^{-1} \Pi\right\|<1$, then the unique solution satisfies

$$
X=\sum_{j=0}^{\infty}(-1)^{j} Y_{j}
$$

where $\mathcal{L}\left(Y_{0}\right)=C_{1} C_{2}^{T}$ and $\mathcal{L}\left(Y_{j+1}\right)=\Pi\left(Y_{j}\right)$

Neumann series expansion

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Solution as a Neumann series

Let $\mathcal{L}(X):=A X+X B^{T}$ and $\Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$. Assume $\left\|\mathcal{L}^{-1} \Pi\right\|<1$, then the unique solution satisfies

$$
X=\sum_{j=0}^{\infty}(-1)^{j} Y_{j}
$$

where $\mathcal{L}\left(Y_{0}\right)=C_{1} C_{2}^{T}$ and $\mathcal{L}\left(Y_{j+1}\right)=\Pi\left(Y_{j}\right)$
Proof:

$$
x=\left(I+\mathcal{L}^{-1} \Pi\right)^{-1} \mathcal{L}^{-1}\left(C_{1} C_{2}^{T}\right)=\sum_{j=0}^{\infty}(-1)^{j}\left(\mathcal{L}^{-1} \Pi\right)^{j} \mathcal{L}^{-1}\left(C_{1} C_{2}^{T}\right)
$$

Neumann series expansion

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Solution as a Neumann series

Let $\mathcal{L}(X):=A X+X B^{T}$ and $\Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$. Assume $\left\|\mathcal{L}^{-1} \Pi\right\|<1$, then the unique solution satisfies

$$
X=\sum_{j=0}^{\infty}(-1)^{j} Y_{j}
$$

where $\mathcal{L}\left(Y_{0}\right)=C_{1} C_{2}^{T}$ and $\mathcal{L}\left(Y_{j+1}\right)=\Pi\left(Y_{j}\right)$

- Approximation:

$$
X_{N}=\sum_{j=0}^{N}(-1)^{j} Y_{j}
$$

Neumann series expansion

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Solution as a Neumann series

Let $\mathcal{L}(X):=A X+X B^{T}$ and $\Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$. Assume $\left\|\mathcal{L}^{-1} \Pi\right\|<1$, then the unique solution satisfies

$$
X=\sum_{j=0}^{\infty}(-1)^{j} Y_{j}
$$

where $\mathcal{L}\left(Y_{0}\right)=C_{1} C_{2}^{T}$ and $\mathcal{L}\left(Y_{j+1}\right)=\Pi\left(Y_{j}\right)$

- Approximation:

$$
\begin{gathered}
X_{N}=\sum_{j=0}^{N}(-1)^{j} Y_{j} \\
\left\|X-X_{N}\right\| \leq\left\|\mathcal{L}^{-1}(C)\right\| \frac{\left\|\mathcal{L}^{-1} \Pi\right\|^{N+1}}{1-\left\|\mathcal{L}^{-1} \Pi\right\|}
\end{gathered}
$$

- Error:

Neumann series expansion

$$
A X+X B^{T}+\sum_{i=1}^{m} N_{i} X M_{i}^{T}=C_{1} C_{2}^{T}
$$

Solution as a Neumann series

Let $\mathcal{L}(X):=A X+X B^{T}$ and $\Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$. Assume $\left\|\mathcal{L}^{-1} \Pi\right\|<1$, then the unique solution is approximated by

$$
X_{N}=\sum_{j=0}^{N}(-1)^{j} Y_{j}
$$

where

$$
\begin{aligned}
A Y_{0}+Y_{0} B^{T} & =C_{1} C_{2}^{T} \\
A Y_{j+1}+Y_{j+1} B^{T} & =\sum_{i=1}^{m} N_{i} Y_{j} M_{i}^{T}
\end{aligned}
$$

Krylov method: exploiting the low rank commutation

Projection method for Sylvester equations

$$
A X+X B^{T}=C_{1} C_{2}^{T}
$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_{k} \subset \mathbb{R}^{n}, \mathcal{H}_{k-1} \subset \mathcal{H}_{k} \subset \mathbb{R}^{n}$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$
X_{k}=V_{k} Z_{k} W_{k}^{T}
$$

V_{k} and W_{k} are orthogonal and s.t. $\operatorname{span}\left(V_{k}\right)=\mathcal{K}_{k}, \operatorname{span}\left(W_{k}\right)=\mathcal{H}_{k}$. Z_{k} satisfy (Galerkin orth. condition)

$$
\tilde{A}_{k} Z_{k}+Z_{k} \tilde{B}_{k}^{T}=\tilde{C}_{1} \tilde{C}_{2}^{T}
$$

Projection method for Sylvester equations

$$
A X+X B^{T}=C_{1} C_{2}^{T}
$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_{k} \subset \mathbb{R}^{n}, \mathcal{H}_{k-1} \subset \mathcal{H}_{k} \subset \mathbb{R}^{n}$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$
X_{k}=V_{k} Z_{k} W_{k}^{T}
$$

V_{k} and W_{k} are orthogonal and s.t. $\operatorname{span}\left(V_{k}\right)=\mathcal{K}_{k}, \operatorname{span}\left(W_{k}\right)=\mathcal{H}_{k}$. Z_{k} satisfy (Galerkin orth. condition)

$$
\tilde{A}_{k} Z_{k}+Z_{k} \tilde{B}_{k}^{T}=\tilde{C}_{1} \tilde{C}_{2}^{T}
$$

Our choice: $\mathcal{K}_{k}=\mathbf{E K}_{k}^{\square}\left(A, C_{1}\right), \mathcal{H}_{k}=\mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)$.

Projection method for Sylvester equations

$$
A X+X B^{T}=C_{1} C_{2}^{T}
$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_{k} \subset \mathbb{R}^{n}, \mathcal{H}_{k-1} \subset \mathcal{H}_{k} \subset \mathbb{R}^{n}$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$
X_{k}=V_{k} Z_{k} W_{k}^{T}
$$

V_{k} and W_{k} are orthogonal and s.t. $\operatorname{span}\left(V_{k}\right)=\mathcal{K}_{k}, \operatorname{span}\left(W_{k}\right)=\mathcal{H}_{k}$. Z_{k} satisfy (Galerkin orth. condition)

$$
\tilde{A}_{k} Z_{k}+Z_{k} \tilde{B}_{k}^{T}=\tilde{C}_{1} \tilde{C}_{2}^{T}
$$

Our choice: $\mathcal{K}_{k}=\mathbf{E K}_{k}^{\square}\left(A, C_{1}\right), \mathcal{H}_{k}=\mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)$.

Observation

There are $S_{1}, S_{2} \in \mathbb{C}^{n \times k r}$ s.t. $\operatorname{span}\left(S_{1}\right) \subseteq \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right), \operatorname{span}\left(S_{2}\right) \subseteq \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)$

$$
X_{k}=S_{1} S_{2}^{T}
$$

Theorem: low rank commuting and Krylov spaces

Consider the generalized Sylvester equation

$$
A X+X B^{T}+N X M^{T}=C_{1} C_{2}^{T}
$$

such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ and $\operatorname{com}(B, M)=Q \tilde{Q}^{T}$.

Theorem: low rank commuting and Krylov spaces

Consider the generalized Sylvester equation

$$
A X+X B^{T}+N X M^{T}=C_{1} C_{2}^{T}
$$

such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ and $\operatorname{com}(B, M)=Q \tilde{Q}^{T}$. Let \tilde{Y}_{i} be the low-rank numerical solution of

$$
\begin{aligned}
A Y_{0}+Y_{0} B^{T} & =C_{1} C_{2}^{T} \\
A Y_{j+1}+Y_{j+1} B^{T} & =N \tilde{Y}_{j} M^{T},
\end{aligned}
$$

obtained with the Extended Krylov method with k iterations.

Theorem: low rank commuting and Krylov spaces

Consider the generalized Sylvester equation

$$
A X+X B^{T}+N X M^{T}=C_{1} C_{2}^{T}
$$

such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ and $\operatorname{com}(B, M)=Q \tilde{Q}^{T}$. Let \tilde{Y}_{i} be the low-rank numerical solution of

$$
\begin{aligned}
A Y_{0}+Y_{0} B^{T} & =C_{1} C_{2}^{T} \\
A Y_{j+1}+Y_{j+1} B^{T} & =N \tilde{Y}_{j} M^{T},
\end{aligned}
$$

obtained with the Extended Krylov method with k iterations. Let $\tilde{X}_{N}=\sum_{j=0}^{N}(-1)^{j} \tilde{Y}_{j}$.

Theorem: low rank commuting and Krylov spaces

Consider the generalized Sylvester equation

$$
A X+X B^{T}+N X M^{T}=C_{1} C_{2}^{T}
$$

such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ and $\operatorname{com}(B, M)=Q \tilde{Q}^{T}$. Let \tilde{Y}_{i} be the low-rank numerical solution of

$$
\begin{aligned}
A Y_{0}+Y_{0} B^{T} & =C_{1} C_{2}^{T} \\
A Y_{j+1}+Y_{j+1} B^{T} & =N \tilde{Y}_{j} M^{T},
\end{aligned}
$$

obtained with the Extended Krylov method with k iterations. Let $\tilde{X}_{N}=\sum_{j=0}^{N}(-1)^{j} \tilde{Y}_{j}$. Then there exist $S_{1} \in \mathbf{E K}_{(N+1) k}\left(A, \hat{C}_{1}^{(N)}\right)$ and $S_{2} \in \mathbf{E K}_{(N+1) k}^{\square}\left(B, \hat{C}_{2}^{(N)}\right)$ such that $\tilde{X}_{N}=S_{1} S_{2}^{T}$

Theorem: low rank commuting and Krylov spaces

Consider the generalized Sylvester equation

$$
A X+X B^{T}+N X M^{T}=C_{1} C_{2}^{T}
$$

such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ and $\operatorname{com}(B, M)=Q \tilde{Q}^{T}$. Let \tilde{Y}_{i} be the low-rank numerical solution of

$$
\begin{aligned}
A Y_{0}+Y_{0} B^{T} & =C_{1} C_{2}^{T} \\
A Y_{j+1}+Y_{j+1} B^{T} & =N \tilde{Y}_{j} M^{T},
\end{aligned}
$$

obtained with the Extended Krylov method with k iterations. Let $\tilde{X}_{N}=\sum_{j=0}^{N}(-1)^{j} \tilde{Y}_{j}$. Then there exist $S_{1} \in \mathbf{E K}_{(N+1) k}^{\square}\left(A, \hat{C}_{1}^{(N)}\right)$ and $S_{2} \in \mathbf{E K}_{(N+1) k}^{\square}\left(B, \hat{C}_{2}^{(N)}\right)$ such that $\tilde{X}_{N}=S_{1} S_{2}^{T}$ where

$$
\begin{aligned}
& \hat{C}_{1}^{(N)}=\left[C_{1}, N C_{1}, \ldots, N^{N} C_{1}, U, N U, \ldots, N^{N-1} U\right] \\
& \hat{C}_{2}^{(N)}=\left[C_{2}, M C_{2}, \ldots, M^{N} C_{2}, Q, M Q, \ldots, M^{N-1} Q\right]
\end{aligned}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

$$
A Y_{1}+Y_{1} B^{T}=N Y_{0} M^{T}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

$$
A Y_{1}+Y_{1} B^{T}=N Y_{0} M^{T}=\left(N F_{0}\right)\left(M R_{0}\right)^{T}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

$$
A Y_{1}+Y_{1} B^{T}=N Y_{0} M^{T}=\left(N F_{0}\right)\left(M R_{0}\right)^{T} \xrightarrow[\text { Krylov }]{\text { Extended }}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
A Y_{1}+Y_{1} B^{T}=N Y_{0} M^{T}=\left(N F_{0}\right)\left(M R_{0}\right)^{T} \xrightarrow[\text { Kxylov }]{\text { Extended }} \\
Y_{1}=F_{1} R_{1}^{T}, \begin{array}{l}
F_{1} \in \mathbf{E K}_{k}^{\square}\left(A, N F_{0}\right) \\
R_{1} \in \mathbf{E K}_{k}^{\square}\left(B, M R_{0}\right)
\end{array}
\end{gathered}
$$

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

\[

\]

Sketch/Illustration of the proof

Lemma

Assume that $A \in \mathbb{R}^{n \times n}$ is nonsingular and let $N \in \mathbb{R}^{n \times n}$ such that $\operatorname{com}(A, N)=U \tilde{U}^{T}$ with $U, \tilde{U} \in \mathbb{R}^{n \times s}$. Let $C \in \mathbb{R}^{n \times r}$, then

$$
N \cdot \mathbf{E K}_{d}^{\square}(A, C) \subseteq \mathbf{E K}_{d}^{\square}(A,[N C, U])
$$

$$
A Y_{0}+Y_{0} B^{T}=C_{1} C_{2}^{T} \xrightarrow[\text { Krylov }]{\text { Extended }} Y_{0}=F_{0} R_{0}^{T}, \begin{aligned}
& F_{0} \in \mathbf{E K}_{k}^{\square}\left(A, C_{1}\right) \\
& R_{0} \in \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
A Y_{1}+Y_{1} B^{T}=N Y_{0} M^{T}=\left(N F_{0}\right)\left(M R_{0}\right)^{T} \xrightarrow[\text { Kxylonded }]{\text { Kry }} \\
Y_{1}=F_{1} R_{1}^{T}, \quad F_{1} \in \mathbf{E K}_{k}^{\square}\left(A, N F_{0}\right) \\
N F_{0} \in N \cdot \mathbf{E K}_{k}^{\square}\left(B, M R_{0}\right) \\
\left.M R_{0} \in M \cdot C_{1}\right) \quad \subseteq \mathbf{E K}_{k}^{\square}\left(B, C_{2}\right) \quad \subseteq \mathbf{E K}_{k}^{\square}\left(B,\left[N C_{1}, U\right]\right) \\
\left.\left(M C_{2}, Q\right]\right)
\end{gathered}
$$

Projection method for generalized Sylvester equations

$$
A X+X B^{T}+N X M^{T}=C_{1} C_{2}^{T}
$$

Given $\mathcal{K}_{k-1} \subset \mathcal{K}_{k} \subset \mathbb{R}^{n}, \mathcal{H}_{k-1} \subset \mathcal{H}_{k} \subset \mathbb{R}^{n}$ nested subspaces, the approximation is computed as the product of low-rank matrices,

$$
X_{k}=V_{k} Z_{k} W_{k}^{T}
$$

V_{k} and W_{k} are orthogonal and s.t. $\operatorname{span}\left(V_{k}\right)=\mathcal{K}_{k}, \operatorname{span}\left(W_{k}\right)=\mathcal{H}_{k}$. Z_{k} satisfy (Galerkin orth. condition)

$$
\tilde{A}_{k} Z_{k}+Z_{k} \tilde{B}_{k}^{T}+\tilde{N}_{k} Z_{k} \tilde{M}_{k}^{T}=\tilde{C}_{1} \tilde{C}_{2}^{T}
$$

$$
\begin{gathered}
\mathcal{K}_{k}=\mathbf{E K}_{d}^{\square}\left(A,\left[C_{1}, N C_{1}, \ldots, N^{N} C_{1}, U, N U, \ldots, N^{N-1} U\right]\right) \\
\mathcal{H}_{k}=\mathbf{E K}_{d}^{\square}\left(B,\left[C_{2}, M C_{2}, \ldots, M^{N} C_{2}, Q, M Q, \ldots, M^{N-1} Q\right]\right)
\end{gathered}
$$

Low rank numerical solutions

Low rank approximations

Let $\mathcal{L}(X):=A X+X B^{T}, \Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$ and $C_{1}, C_{2} \in \mathbb{C}^{n \times r}$

Low rank approximations

Let $\mathcal{L}(X):=A X+X B^{T}, \Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$ and $C_{1}, C_{2} \in \mathbb{C}^{n \times r}$
Theorem [Grasedyck '04]: low rank Sylvester eq.
Let $\mathcal{L}(X)=C_{1} C_{2}^{T}$. Then there exists an \bar{X} such that

$$
\begin{aligned}
\operatorname{rank}(\bar{X}) & \leq(2 k+1) r \\
\|X-\bar{X}\| & \leq K(\mathcal{L}) e^{-\pi \sqrt{k}}
\end{aligned}
$$

Low rank approximations

Let $\mathcal{L}(X):=A X+X B^{T}, \Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$ and $C_{1}, C_{2} \in \mathbb{C}^{n \times r}$
Theorem [Grasedyck '04]: low rank Sylvester eq.
Let $\mathcal{L}(X)=C_{1} C_{2}^{T}$. Then there exists an \bar{X} such that

$$
\begin{aligned}
\operatorname{rank}(\bar{X}) & \leq(2 k+1) r \\
\|X-\bar{X}\| & \leq K(\mathcal{L}) e^{-\pi \sqrt{k}}
\end{aligned}
$$

Theorem: low rank generalized Sylvester eq.
Let X_{N} be the matrix obtained by truncating the Neumann series. Then there exists an \bar{X}_{N} such that

$$
\begin{aligned}
\operatorname{rank}\left(\bar{X}_{N}\right) & \leq(2 k+1) r+N(2 k+1)^{N+1} m^{N} r \\
\left\|X_{N}-\bar{X}_{N}\right\| & \leq K(\mathcal{L}, N) e^{-\pi \sqrt{k}}
\end{aligned}
$$

Low rank approximations

Let $\mathcal{L}(X):=A X+X B^{T}, \Pi(X):=\sum_{i=1}^{m} N_{i} X M_{i}^{T}$ and $C_{1}, C_{2} \in \mathbb{C}^{n \times r}$
Theorem [Grasedyck '04]: low rank Sylvester eq.
Let $\mathcal{L}(X)=C_{1} C_{2}^{T}$. Then there exists an \bar{X} such that

$$
\begin{aligned}
\operatorname{rank}(\bar{X}) & \leq(2 k+1) r \\
\|X-\bar{X}\| & \leq K(\mathcal{L}) e^{-\pi \sqrt{k}}
\end{aligned}
$$

Theorem: low rank generalized Sylvester eq.
Let X_{N} be the matrix obtained by truncating the Neumann series. Then there exists an \bar{X}_{N} such that

$$
\begin{aligned}
\operatorname{rank}\left(\bar{X}_{N}\right) & \leq(2 k+1) r+N(2 k+1)^{N+1} m^{N} r \\
\left\|X_{N}-\bar{X}_{N}\right\| & \leq K(\mathcal{L}, N) e^{-\pi \sqrt{k}}
\end{aligned}
$$

Similar result for $\Pi(X)$ low rank [Benner,Breiten '13]

Numerical experiments

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

- $\gamma>0$ small

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

- $\gamma>0$ small

$$
A=\left(\begin{array}{cccc}
-5 & 2 & & \\
2 & \ddots & \ddots & \\
& \ddots & & 2 \\
& & 2 & -5
\end{array}\right) \quad N_{1}=\left(\begin{array}{cccc}
0 & -3 & & \\
3 & \ddots & \ddots & \\
& \ddots & & -1 \\
& & 3 & 0
\end{array}\right)
$$

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

- $\gamma>0$ small

$$
A=\left(\begin{array}{cccc}
-5 & 2 & & \\
2 & \ddots & \ddots & \\
& \ddots & & 2 \\
& & 2 & -5
\end{array}\right) \quad N_{1}=\left(\begin{array}{cccc}
0 & -3 & & \\
3 & \ddots & \ddots & \\
& \ddots & & -1 \\
& & 3 & 0
\end{array}\right)
$$

- $N_{2}=-N_{1}+I$

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

- $\gamma>0$ small

$$
A=\left(\begin{array}{cccc}
-5 & 2 & & \\
2 & \ddots & \ddots & \\
& \ddots & & 2 \\
& & 2 & -5
\end{array}\right) \quad N_{1}=\left(\begin{array}{cccc}
0 & -3 & & \\
3 & \ddots & \ddots & \\
& \ddots & & -1 \\
& & 3 & 0
\end{array}\right)
$$

- $N_{2}=-N_{1}+l$
- $\operatorname{com}\left(A, N_{1}\right)=-\operatorname{com}\left(A, N_{2}\right)=12\left[e_{1}, e_{n}\right]\left[e_{1},-e_{n}\right]^{T}$

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

- $\gamma>0$ small

$$
A=\left(\begin{array}{cccc}
-5 & 2 & & \\
2 & \ddots & \ddots & \\
& \ddots & & 2 \\
& & 2 & -5
\end{array}\right) \quad N_{1}=\left(\begin{array}{cccc}
0 & -3 & & \\
3 & \ddots & \ddots & \\
& \ddots & & -1 \\
& & 3 & 0
\end{array}\right)
$$

- $N_{2}=-N_{1}+l$
- $\operatorname{com}\left(A, N_{1}\right)=-\operatorname{com}\left(A, N_{2}\right)=12\left[e_{1}, e_{n}\right]\left[e_{1},-e_{n}\right]^{T}$
- $\operatorname{EK}_{d}^{\square}\left(A,\left[C, N_{1} C,\left[e_{1}, e_{n}\right]\right]\right)$

MIMO: multiple input multiple output

Application: bilinear systems (stability)

$$
A X+X A^{T}+\gamma^{2}\left(N_{1} X N_{1}^{T}+N_{2} X N_{2}^{T}\right)=C C^{T}
$$

MIMO: comparison with other methods

	γ	Its.	Memory	rank (X)	Lin. solves
Ext. Krylov (low rank-comm)	$1 / 6$	8	7.32 MB	64	48
BilADI ${ }^{1}$ (4 Wach. shifts)	$1 / 6$	15	5.18 MB	68	591
BilADI (8 \mathcal{H}_{2}-opt. shifts)	$1 / 6$	14	5.18 MB	68	522
GLEK ${ }^{2}$	1/6	13	16.78MB	52	1549
Ext. Krylov (low rank-comm)	$1 / 5$	8	7.32 MB	72	48
BilADI (4 Wach. shifts)	$1 / 5$	20	5.95 MB	78	990
BilADI (8 \mathcal{H}_{2}-opt. shifts)	$1 / 5$	20	5.95 MB	78	987
GLEK	$1 / 5$	17	20.30MB	59	2309
Ext. Krylov (low rank-comm)	$1 / 4$	10	9.16MB	89	60
BilADI (4 Wach. shifts)	1/4	30	7.25MB	95	1978
BilADI (8 \mathcal{H}_{2}-opt. shifts)	$1 / 4$	33	7.25 MB	95	2269
GLEK	$1 / 4$	30	33.42MB	118	5330

[^0]
Poisson problem: generalized Sylvester equation

Poisson-Chi problem

$$
\begin{array}{ll}
\Delta u+\chi u=f & (x, y) \in[0,1] \times \mathbb{R} \\
u(x, 0)=u(x, 1)=0 & \text { homogeneous Dirichlet b.c. } \\
u(x, y+1)=u(x, y) & \text { periodic b.c. }
\end{array}
$$

- f : source term (separable function)

$$
\chi(x, y)= \begin{cases}1 & x, y>1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Poisson problem: generalized Sylvester equation

Poisson-Chi problem

$$
\begin{aligned}
& \Delta u+ \\
& u(x, 0) \\
& u(x, y \\
& \hline
\end{aligned}
$$

$$
\Delta u+\chi u=f
$$

$$
(x, y) \in[0,1] \times \mathbb{R}
$$

$$
u(x, 0)=u(x, 1)=0 \quad \text { homogeneous Dirichlet b.c. }
$$

$$
u(x, y+1)=u(x, y) \quad \text { periodic b.c. }
$$

Discretization

$$
A X+X B^{T}+D X D^{T}=C_{1} C_{2}^{T}
$$

- A: Circulant tridiagonal with elements $n^{2}(1,-2,1)$
- B: Toeplitz tridiagonal with elements $n^{2}(1,-2,1)$
- C_{1}, C_{2} low rank, $D=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

Poisson problem: generalized Sylvester equation

Poisson-Chi: Sylvester equation

$$
A X+X B^{T}+D X D^{T}=C_{1} C_{2}^{T}
$$

Properties

- $A D=D A+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}-v_{2} w_{2}^{T}+w_{2} v_{2}^{T}$
- $B D=D B+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}$
- $D^{2}=D$
- A: singular

Let $U=\left[v_{1}, v_{2}, w_{1}, w_{2}\right]$ and $Q=\left[v_{1}, w_{1}\right]$ then

$$
\begin{aligned}
\mathcal{K}_{d} & =\mathbf{E K}_{d}^{\square}\left(A,\left[C_{1}, D C_{1}, \ldots, D^{N} C_{1}, U, N, \ldots, D^{N-1} U\right]\right) \\
\mathcal{H}_{d} & =\mathbf{E K}_{d}^{\square}\left(B,\left[C_{2}, D C_{2}, \ldots, D^{N} C_{2}, Q, D Q, \ldots, D^{N-1} Q\right]\right)
\end{aligned}
$$

Poisson problem: generalized Sylvester equation

Poisson-Chi: Sylvester equation

$$
A X+X B^{T}+D X D^{T}=C_{1} C_{2}^{T}
$$

Properties

- $A D=D A+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}-v_{2} w_{2}^{T}+w_{2} v_{2}^{T}$
- $B D=D B+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}$
- $D^{2}=D$
- A: singular

Let $U=\left[v_{1}, v_{2}, w_{1}, w_{2}\right]$ and $Q=\left[v_{1}, w_{1}\right]$ then

$$
\begin{aligned}
& \mathcal{K}_{d}=\mathbf{E K}_{d}^{\square}\left(A,\left[C_{1}, D C_{1}, U, D U\right]\right) \\
& \mathcal{H}_{d}=\mathbf{E K}_{d}^{\square}\left(B,\left[C_{2}, D C_{2}, Q, D Q\right]\right)
\end{aligned}
$$

Poisson problem: generalized Sylvester equation

Poisson-Chi: Sylvester equation

$$
A X+X B^{T}+D X D^{T}=C_{1} C_{2}^{T}
$$

Properties

- $A D=D A+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}-v_{2} w_{2}^{T}+w_{2} v_{2}^{T}$
- $B D=D B+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}$
- $D^{2}=D$
- A : singular

Let $U=\left[v_{1}, v_{2}, w_{1}, w_{2}\right]$ and $Q=\left[v_{1}, w_{1}\right]$ then

$$
\begin{aligned}
& \mathcal{K}_{d}=\mathbf{E K}_{d}^{\square}\left(A,\left[C_{1}, D C_{1}, U, D U\right]\right) \\
& \mathcal{H}_{d}=\mathbf{E K}_{d}^{\square}\left(B,\left[C_{2}, D C_{2}, Q, D Q\right]\right)
\end{aligned}
$$

but A is singular...

Poisson problem: generalized Sylvester equation

Poisson-Chi: Sylvester equation

$$
(A+I) X+X B^{T}+D X D^{T}-X=C_{1} C_{2}^{T}
$$

Properties

- $A D=D A+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}-v_{2} w_{2}^{T}+w_{2} v_{2}^{T}$
- $B D=D B+v_{1} w_{1}^{T}-w_{1} v_{1}^{T}$
- $D^{2}=D$
- A: singular

Let $U=\left[v_{1}, v_{2}, w_{1}, w_{2}\right]$ and $Q=\left[v_{1}, w_{1}\right]$ then

$$
\begin{gathered}
\mathcal{K}_{d}=\mathbf{E K}_{d}^{\square}\left(A+I,\left[C_{1}, D C_{1}, U, D U\right]\right) \\
\mathcal{H}_{d}=\mathbf{E K}_{d}^{\square}\left(B,\left[C_{2}, D C_{2}, Q, D Q\right]\right)
\end{gathered}
$$

Poisson problem: generalized Sylvester equation

Poisson-Chi: Sylvester equation (shifted)

$$
(A+I) X+X B^{T}+D X D^{T}-X=C_{1} C_{2}^{T}
$$

Conclusion

Scientific contributions:

- New low rank method for generalized Sylvester equations
- Structured exploitation for Extended Krylov method
- Characterization of the low rank numerical solutions

Future of this project:

- Preprint available soon

[^0]: ${ }^{1}$ [Benner,Breiten '13]
 ${ }^{2}$ [Shank,Simoncini,Szyld '16]

