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Eigenvalue problem

Definition of the problem

Given an application

A(·) : C→ Cn×n

find a pair (λ, x) ∈ C× Cn such that

A(λ)x = 0

The number λ is called eigenvalue
The vector x is called eigenvector

In practical applications the task is to compute eigenvalues in a subset Ω ⊂ C.



Linear eigenvalue problem

If A(λ) is linear we call the problem linear eigenvalue problem

Let
A(λ) = A− λB A,B ∈ Cn×n

then the linear eigenvalue problem is

Ax = λBx Generalized eigenvalue problem

in case B = I (identity matrix)

Ax = λx Classic eigenvalue problem



Arnoldi’s algorithm for classic eigenvalue problem

Classic eigenvalue problem

Given A ∈ Cn×n the problem is to compute the pairs (λ, x) such that Ax = λx

Definition (Krylov subspace)

Given a vector x ∈ Cn and a natural number m

Km(A, x) = span
(
x ,Ax ,A2x , . . . ,Am−1x

)
is the Krylov subspace

The idea is to project the matrix A in the Krylov subspace and solve the projected
problem.



Arnoldi’s algorithm for classic eigenvalue problem

Gram–Schmidt orthogonalization

Given x ∈ Cn define

v1 := x/‖x‖
hi,j = Avj · vi i = 1, . . . j

wj+1 := Avj − h1,jv1 − h2,jv2 − · · · − hj,jvj

hj+1,j = ‖wj+1‖
vj+1 = wj+1/hj+1,j

Then v1, . . . , vm is an orthonormal basis of Km(A, x).

Arnoldi sequence

In a vectorial form
AVm = Vm+1Hm+1,m



Arnoldi’s algorithm for classic eigenvalue problem

Observation

The matrix Hm,m is the projection of A in Km(A, x), that is

V H
m AVm = Hm,m

Definition

Given an eigenpair (θ, s) of Hm,m, the value θ is called Ritz value and the vector
Vms Ritz vector.

Proposition

If (θ, s) is an eigenpair of Hm,m then

AVms − θVms = hm+1,msmvm+1.

If hm+1,mym is small, then (θ,Vms) is an approximation of an eigenpair of A.



Arnoldi’s algorithm for classic eigenvalue problem

Arnoldi’s algorithm

1: Chose a starting vector x
2: for m = 1, . . . , till convergence do
3: Compute the Arnoldi sequence AVm = Vm+1Hm+1,m

4: Compute eigenpairs (θi , yi ) of Hm,m

5: if |hm+1,m(eH
myi )| < tol then

6: Store (θi ,Vmyi ) as approximation of an eigenpair of A
7: end if
8: end for

Questions:
How big must be m to get a good approximation of an eigenpair?

How to choose a starting vector x?

Which eigenpairs will be firstly approximated?
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Convergence of Arnoldi’s algorithm

Theorem (Saad)

If A is diagonalizable and (λi , ui ) are the eigenpairs, if

|λk − λ1| > |λk − λj | ∀k 6= 1, j 6= 1

then λ1 is the first eigenvalue to be approximated. Moreover the closer x to the
eigenvector u1 the faster the convergence to u1.

In other words (under the hypothesis of the theorem) the outermost eigenvalues
will be firstly approximated.

Heuristically, after a few steps, the approximations to the eigenvalues start to
convergence linearly.
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Thick restart

Problem
When the Arnoldi sequence grows too long, every step of the Arnoldi iteration
gets slower. Moreover orthogonality is numerically lost.

Thick restart
Let AVm = Vm+1Hm+1,m be an Arnoldi sequence with θ1, . . . , θk a subset of Ritz
values, where at least one has not (numerically) converged yet. Then it is possible

to build another Arnoldi sequence AWk = Wk+1H̃k+1,k such that θ1, . . . , θk are
the Ritz values.

The generation of the new sequence is numerically stable since it is done using
Householder transformations.

The idea of thick restart is to select the Ritz values which we want to refine and
remove the others.

Lock

Purge
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Arnoldi’s algorithm for the linear eigenvalue problem

Tthe linear eigenproblem
Ax = λBx

can be solved by using Arnoldi’s algorithm applied to the matrix B−1A

Matrices are often sparse/structured.

B−1 is never computed.

At each step of the algorithm a linear systems with the matrix B must be
solved.

The LU factorization of B can be performed once for all.



Shifted–and–inverted Arnoldi’s algorithm for the linear
eigenvalue problem

Proposition

If (θ, x) is an eigenpair of (A− σB)−1B then (σ + 1/θ, x) is an eigenpair of the
linear problem

Ax = λBx .

Observation

If θ is one of the outermost eigenvalues of (A− σB)−1B then σ + 1/θ is one of
the eigenvalues of the linear problem nearest σ. [Saad theorem].

This strategy can be used to compute eigenvalues of the linear problem near a
point σ. If we want to compute eigenvalues in Ω ⊂ C then we can select a few
(equidistributed) points σ0, . . . , σt ∈ Ω and use this approach.
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Rational Krylov algorithm for linear eigenvalue problem

Problem
To compute eigenvalues near a set of points σ0, . . . , σt ∈ Ω, one needs to apply
Shifted–and–inverted Arnoldi’s algorithm to each σi

Theorem (Ruhe)

In O(m3) it is possible change shift in the Arnoldi sequence, in particular

(A− σ0B)−1BVm = Vm+1Hm+1,m =⇒ (A− σ1B)−1BWm = Wm+1H̃m+1,m

moreover span(Vm+1) = span(Wm+1). These operations are numerically stable if
σ0 and σ1 are far enough from the eigenvalues of the original problem.
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Rational Krylov algorithm for linear eigenvalue problem

Rational Krylov algorithm

1: Chose a starting vector x and a starting shift σ0 and define v1 = x/‖x‖.
2: for i = 1, . . . , till convergence do
3: Extend the Arnoldi sequence (A − σiB)−1BVm = Vm+1Hm+1,m till enough

Ritz values near σi numerically converge. When needed, perform a thick
restart.

4: Chose the next shift σi+1 and transform the previous Arnoldi sequence in
(A− σi+1B)−1BVm = Vm+1Hm+1,m ny using O(m3) ops.

5: end for

Practical issues

When shift changes, an LU factorization of (A− σi+1B) is performed

Heuristically, a good choice of the next shift is taking the average of cstep
(small) Ritz values not yet converged and near the previous shift.

Thick restart is performed.
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Numerical experimentation

Tubolar reactor model
The conservation of reactant and energy in a homogeneous tube of length L in
dimensionless form is modeled by

L

v

dy

dt
= − 1

Pem

∂2y

∂X 2
+
∂y

∂X
+ Dyeγ−γT

−1

,

L

v

dT

dt
= − 1

Peh

∂2T

∂X 2
+
∂T

∂X
+ β(T − T0)− BDyeγ−γT

−1

,

B.C. : y ′(0) = Pemy(0),T ′(0) = PehT (0), y ′(1) = 0,T ′(1) = 0.

Where y is the concentration, T the temperature and 0 ≤ X ≤ 1 the spatial
coordinate. The setting of the problem is
Pem = Peh = 5,B = 0.5, γ = 25, β = 3, 5,D = 0, 2662 and L/v = 1.

The task is to solve numerically the equation with the method of lines.



Numerical experimentation

Stability of the time discretization

With a semi-discretization in space, setting x = (y1,T 1, y2,T2, . . . , yN/2,TN/2)
we get

d

dt
x = Ax A ∈ R2N×2N ,

where h = 1/N is the discretization step. A is a banded matrix with bandwidth 5.
In order to chose a stable time discretization it is needed to compute the
rightmost eigenvalues of A.



Numerical experimentation

N = 50, Arnoldi with 20 iterations.
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Numerical experimentation

N = 500, Rational Krylov algorithm to compute 60 rightmost eigenvalues
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Numerical experimentation

Convergence of the rightmost eigenvalues with Shift-and-inverted Arnoldi and
with Rational Krylov

Wanted eigenvalues Shift–and–inverted Rational Krylov Savings percentage

( number of steps ) ( number of steps ) (steps)

20 45 38 16 %
40 79 64 19 %
60 112 89 21 %
80 144 113 22 %

The advantage seems light, but with Rational Krylov method we can perform a
thick restart. With shifted–and–inverted Arnoldi the restart induces a loop.



Numerical experimentation

Stability of a flow in a pipe


{

(D2 − α)2 − iαRe[U0(D2 − α2)− U ′′0 ]
}

ṽ = −icαRe(D2 − α2)ṽ

ṽ(1) = 0, Dṽ(1)y = 0

ṽ(−1) = 0, Dṽ(−1) = 0

The setting is α = 1 and Re = 10000.

Discrete problem

Using finite differences, we discretized with discretization step h = 1/N

Aṽ = cB ṽ

Where A,B ∈ RN×N , det(A) 6= 0 , rank(B) = N − 4 because of B.C.
A and B are banded matrices with bandwidth respectively 5 and 3.

The spectrum of the continuum problem has a branch structure, in particular it
looks like a Y. The task is to compute the branch connected to zero.
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Numerical experimentation
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Numerical experimentation

N = 100, Ritz values computed with shift–invert Arnoldi.
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Numerical experimentation

N = 100, Ritz values computed with Rational Krylov.
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Nonlinear eigenvalue problem and linearization

Nonlinear eigenvalue problem (NLEP)

Given a nonlinear application

A(·) : C→ Cn×n

the task is to compute (λ, x) ∈ C× Cn×n such that A(λ)x = 0 with λ ∈ Ω ⊂ C

Linearization

Given a nonlinear eigenvalue problem defined by A(λ), the application Ã(λ) is a
linearization if it defines a linear eigenvalue problem such that its eigenvalues (in
Ω) are a good estimation of the eigenvalues (in Ω) of the original problem.

We can every time express the nonlinear eigenvalue problem as

A(λ) =
m∑
i=1

fi (λ)Bi
Bi ∈ Cn×n

fi : C→ C
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linearization if it defines a linear eigenvalue problem such that its eigenvalues (in
Ω) are a good estimation of the eigenvalues (in Ω) of the original problem.

We can every time express the nonlinear eigenvalue problem as

A(λ) =
m∑
i=1

fi (λ)Bi
Bi ∈ Cn×n

fi : C→ C



Nonlinear eigenvalue problem and linearization

Nonlinear eigenvalue problem (NLEP)

Given a nonlinear application

A(·) : C→ Cn×n

the task is to compute (λ, x) ∈ C× Cn×n such that A(λ)x = 0 with λ ∈ Ω ⊂ C

Linearization

Given a nonlinear eigenvalue problem defined by A(λ), the application Ã(λ) is a
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Linearization by means of Hermite interpolation

Consider the NLEP defined by

A(λ) =
m∑
i=1

fi (λ)Bi

and select a set of points σ0, . . . , σN ∈ Ω (repetitions are allowed)

fj(λ)
Hermite−−−−−−−−−−−→

interpolation

N∑
i=0

αi,jni (λ)

then we can approximate the NLEP with a PEP defined by

PN(λ) =
N∑
i=0

ni (λ)Ai where Ai =
m∑
j=1

αi,jBj



Linearization by means of Hermite interpolation

Theorem (Companion-type linearization)

The pair (λ, x) 6= 0 is an eigenpair of the PEP if and only if ANyN = λBNyN
where

AN :=


A0 A1 A2 . . . AN

σ0I I
σ1I I

. . .
. . .

σN−1I I

 ,BN :=


0
I 0

I 0
. . .

. . .
I 0

 , yN :=


x

n1(λ)x
n2(λ)x
n3(λ)x
...

nN (λ)x


Advantages

Since Ai =
∑m

j=1 αi,jBj , it is not needed to store Ai , it is sufficient to store
the interpolation coefficients αi,j .

If it is needed to add an interpolation point, we just need to one can just
compute (implicitly) AN+1 and add a column and a row to the linearization
matrices.

Only the coefficients αi,j are stored, all the other matrices are implicitly built.
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Rational Krylov algorithm to solve the linearized problem

Lemma

Consider the linear problem defined by the linearization (AN ,BN), apply the
rational Krylov algorithm by using as shifts the interpolation points and

v1 := vec
(

v
[1]
1 , 0, . . . , 0

)
, v1 ∈ C(N+1)n, v

[1]
1 ∈ Cn

as starting vector. Then at the j-th step of the rational Krylov algorithm the
vectors of the Arnoldi sequence have the following structure

vk = vec
(

v
[1]
k , v

[2]
k , . . . , v

[j]
k , 0, . . . , 0

)
, for k ≤ j ≤ N,

where v
[i ]
k ∈ Cn for i = 1, . . . , j .



Building the basis of the Krylov subspace

Size of linearization: N = 8 (blocks)
Nodes/shifts: σ0 σ0 σ0 σ1 σ1 σ2 σ2

v1 = ( v
[1]
1 0 0 0 0 0 0 0 )

v2 = ( v
[1]
2 v

[2]
2 0 0 0 0 0 0 )

v3 = ( v
[1]
3 v

[2]
3 v

[3]
3 0 0 0 0 0 )

v4 = ( v
[1]
4 v

[2]
4 v

[3]
4 v

[4]
4 0 0 0 0 )

w8 =( w
[1]
8 w

[1]
8 w

[1]
8 w

[1]
8 w

[1]
8 w

[1]
8 w

[1]
8 w

[1]
8 )
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Rational Krylov algorithm to solve the linearized problem

Lemma
At each iteration j of the rational Krylov algorithm, only the top-left parts of the
matrices AN − σjBN are used to compute the nonzero top parts ṽj+1 of the
vectors vj+1, i.e.,

(Aj − σjBj)ṽj+1 = Bj ṽj ,

where

ṽj+1 = vec
(

v
[1]
j+1, v

[2]
j+1, . . . , v

[j+1]
j+1

)
,

and

ṽj = vec
(

v
[1]
j , v

[2]
j , . . . , v

[j]
j , 0

)
,



Rational Krylov algorithm to solve the linearized problem

Lemma

The linear system (Aj − σjBj)ṽj+1 = Bj ṽj can be efficiently solved by using the
following equations

A(σj)v
[1]
j+1 = y

(j)
0 ,

where

y
(j)
0 = −

j∑
i=1

Aj

(
v

[i ]
j +

i−1∑
k=1

(
i−1∏
l=k

µ
(j)
l

)
v

[k]
j

)
,

and

v
[2]
j+1 = v

[1]
j + µ

(j)
0 v

[1]
j+1,

v
[3]
j+1 = v

[2]
j + µ

(j)
1 v

[2]
j+1,

... ,

v
[j+1]
j+1 = v

[j]
j + µ

(j)
j−1v

[j]
j+1.



HIRK (Hermite Interpolation Rational Krylov Method)

1: Choose the shift σ0 and starting vector v1.
2: for j = 1, . . . ,m do
3: EXPANSION PHASE.
4: Choose the shift σj .
5: Compute the next divided difference: Aj .
6: Expand Aj , Bj and Vj .
7: RATIONAL KRYLOV STEP
8: if σj−1 6= σj then

9: Change basis Vj → Ṽj and matrix Hj,j−1 → H̃j,j−1

(according to the Rational Krylov algorithm)
such that the Arnoldi sequence becomes

(Aj − σjBj )
−1Bj Ṽj = H̃j,j−1Vj−1.

10: end if
11: Compute the next vector of the sequence:

r = (Aj − σjBj )
−1Bjvj ,

r = v − Vjhj , where hj = V H
j r orthogonalization,

vj+1 = r/hj+1,j , where hj+1,j = ‖r‖ normalization.

12: Compute the eigenpair (θi , yi ) for i = 1, . . . , j of Hj,j−1 and then the Ritz pairs (θi ,Vjyi ).
13: Test the convergence for the NLEP.
14: end for
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Hermite Interpolation Rational Krylov Method

Comments

At every step it is solved a system of the size of the original NLEP and not of
the size of the linarization.

The computation of the interpolation coefficients is numerically unstable.
These coefficients must be computed semianalitically.

Applying this method to a NLEP is like to solve a linear eigenvalue problem
of infinite size.

The bottleneck of the algorithm is the Gram–Schmidt process.

At every step, the vectors of the basis of Krylov space get longer.

Exploiting the low rank structure of the matrix coefficients can speedup the
algorithm.



Outline

Arnoldi (and its variants) for linear eigenproblems

Rational Krylov algorithm for linear eigenproblems

Applications of Rational Krylov algorithm for nonlinear eigenproblems

- Linearization by means of Hermite interpolations
- Iterative projection methods



Nonlinear Rational Krylov

Definition (Generalized Arnoldi’s sequence)

Given a pole σ ∈ C and a sequence of shifts λ1, . . . , λm it holds

A(σ)−1A(λm)Vm = Vm+1Hm+1,m

Generation of the sequence

A(σ)−1A(λj−1)Vj−1 = VjHj,j−1
linear−−−−−−−−−−→

interpolation
A(σ)−1A(λj)Vj = Vj+1H j+1,j .



Nonlinear Rational Krylov

Definition (Generalized Arnoldi’s sequence)

Given a pole σ ∈ C and a sequence of shifts λ1, . . . , λm it holds

A(σ)−1A(λm)Vm = Vm+1Hm+1,m

Generation of the sequence

A(σ)−1A(λj−1)Vj−1 = VjHj,j−1
linear−−−−−−−−−−→

interpolation
A(σ)−1A(λj)Vj = Vj+1H j+1,j .



Nonlinear Rational Krylov

Observation
With a linear Lagrange–interpolation between λj and σ we get the linearized
problem

A(λ) =
λ− λj
σ − λj

A(σ) +
λ− σ
λj − σ

A(λj).

If (θ, x) is such that
A(σ)−1A(λj)x = θx

then (λj+1, x) is an eigenpair or the linearized problem, where

λj+1 = λj +
θ

1− θ
(λj − σ).

The closer θ to 0 the closer λj+1 to λj .



Nonlinear Rational Krylov

Nonlinear Rational Krylov algorithm (Preliminary version)

1: Choose a starting vector v1

2: for j = 1, . . . , till convergence do
3: Compute the Arnoldi sequence A(λj)Vj = A(σ)Vj+1Hj+1,j

4: Compute the smallest eigenpairs (θ, s) of Hj,j

5: λj+1 = λj + θ
1−θ (λj − σ)

6: Hj+1,j = 1
1−θHj+1,j − θ

1−θ Ij+1,j

7: end for

It turns out that this algorithm does not work well.
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Nonlinear Rational Krylov

Proposition

It holds
A(σ)−1A(λj+1)Vj − VjHj,j = A(σ)−1A(λj+1)Vjs eH

j .

Observation
In the linear case it holds

A(σ)−1A(λj+1)Vjs = sjhj+1,jvj+1

that is, the residual is orthogonal to Vm. This property does not hold in the
nonlinear case. We can introduce INNER ITERATIONS to enforce it.
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NLRK

1: Choose a starting vector v1 with ‖v1‖ = 1, a starting shift λ1 and a pole σ and set
j = 1.

2: OUTER ITERATION
3: Set hj = 0; s = ej = (0, . . . , 0, 1)H ∈ Rj ; x = vj ;
4: Compute r = A(σ)−1A(λ)x and kj = V H

j r
5: while ‖kJ‖ > ResTol do
6: INNER ITERATION
7: Orthogonalize r = r − Vkj
8: Set hj = hj + s−1

j kj
9: Compute the smallest eigenpair (θ, s) of Hj,j

10: x = Vjs
11: Update λ = λ+ θ

1−θ (λ− θ)
12: Update Hj,j =

1
1−θHj,j − θ

1−θ I

13: Compute r = A(σ)−1A(λ)x and kj = V H
j r

14: end while
15: Compute hj+1,j = ‖r‖/sj
16: if |hj+1,jsj | > EigTol then
17: vj+1 = r/‖r‖; j = j + 1; GOTO 3
18: end if
19: Store (θ, x) as eigenpair
20: If more eigenvalues are requested, choose next θ and s, and GOTO 10



Numerical experimentation

GUN problem

This is a large-scale NLEP that models a radio frequency gun cavity and is of the
form

F (λ)x =

(
K − λM + i

√
λ− σ2

1W1 + i
√
λ− σ2

2W2

)
x = 0

Where M,K ,W1,W2 ∈ R9956×9956 are real symmetric, K is positive semidefinite,
and M is positive definite. The domain of interest is

Ω = {λ ∈ C such that |λ− µ| ≤ γ and Im(λ) ≥ 0} .

The parameters are set to σ1 = 0, σ2 = 108.8774, γ = 50000 and µ = 62500.

Before solving the problem we applied shift and rescaling in order to transform Ω
into the upper part of the unit circle.



Numerical experimentation: HIRK

NLRK diverges
HIRK succeeds to compute eigenvalues

Eigenvalues of the gun problem are computed with 60 iterations. The same node
is used 12 times.
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Numerical experimentation

Vibrating string with elastically attached mass

Consider the system of a limp string of unit length, which is clamped at one end.
The other end is free but has a mass m attached to it via an elastic spring of
stiffness k. The eigenvibrations of the string are governed by the eigenvalue
problem 

−u′′(x) = λu(x)

u(0) = 0

u′(1) + k λ
λ−k/mu(1) = 0



Numerical experimentation

Eigenvalues of the continuum problem

With easy computations, we found that the eigenvalues are the solution of the
equation

tan(
√
λ) =

1

mλ
−
√
λ

k

Discrete problem

Discretizing the problem by means of the finite element method using P1
elements we arrive at the nonlinear eigenproblem

A− λB + k
λ

λ− k/m
C = 0,

A =
1

h


2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

, B =
h

6


4 1

1
. . .

. . .

. . . 4 1
1 2

, C = ene
H
n .
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Numerical experimentation: NLRK

Task
Compute the second smallest eigenvalue λ2

Se set EigTol = 10−6 and ResTol = 10−6.

For m = 1 and k = 0.01 we have λ2 ' 2.4874.

N |λ2 − λ̃2| Outer iterations Average of inner iterations ˜̃A

100 10−3 5 2 ˜̃A

10000 10−5 6 2 ˜̃A

For m = 1 and k = 0.1 we have λ2 ' 2.6679.

N |λ2 − λ̃2| Outer iterations Average of inner iterations ˜̃A

100 10−2 5 3 ˜̃A

10000 10−3 6 3 ˜̃A

For m = 1 and k = 1 NLRK diverges.

HIRK succeeds to compute λ2 but it is slow. On the other hand it works also for
m = 1 and k = 1.



Numerical experimentation

Fluid-solid structure interaction
The study of free vibrations of a tube bundle immersed in a slightly compressible
(under a few simplifications) leads to the following continuum eigenproblem.
Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

c2

∫
Ω0

∇u · ∇vdx = λ

∫
Ω0

uvdx +
∑
j=1k

λρ0

kj − λmj

∫
Γj

unds ·
∫

Γj

vnds

All the constants in the above problem are set equal to 1.

Discrete problem

After discretization by means of finite elements we obtain

A(λ)x = −Ax + λBx +
λ

1− λ
Cx = 0

where C collects the contributions of all tubes. A, B, and C are symmetric
matrices, A and C are positive semidefinite, and B is positive definite
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Numerical experimentation

In our setting there are 9 tubes. We discretized the problem with FreeFem++
using P1 triangular elements. Example of discretization of domain with
FreeFem++
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Convergence history of Ritz values computed with the discretization of FreeFem++
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(a) n = 50, m = 10, N = 1636
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(b) n = 100, m = 10, N = 2156
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(c) n = 200, m = 10, N = 3277
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(d) n = 400, m = 10, N = 5604



Thank you for your attention.


