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Abstract. The seminal work of Yvonne Choquet-Bruhat published in 1952
demonstrates that it is possible to formulate Einstein’s equations as an initial

value problem. The purpose of this article is to describe the background to
and impact of this achievement, as well as the result itself.

In some respects, the idea of viewing the field equations of general relativity

as a system of evolution equations goes back to Einstein himself; in an argu-
ment justifying that gravitational waves propagate at the speed of light, Ein-

stein used a special choice of coordinates to derive a system of wave equations

for the linear perturbations on a Minkowski background. Over the following
decades, Hilbert, de Donder, Lanczos, Darmois and many others worked to put

Einstein’s ideas on a more solid footing. In fact, the issue of local uniqueness

(giving a rigorous justification for the statement that the speed of propagation
of the gravitational field is bounded by that of light) was already settled in

1937 by the work of Stellmacher. However, the first person to demonstrate

both local existence and uniqueness in a setting in which the notion of finite
speed of propagation makes sense was Yvonne Choquet-Bruhat. In this sense,

her work lays the foundation for the formulation of Einstein’s equations as an

initial value problem.
Following a description of the results of Choquet-Bruhat, we discuss the

development of three research topics that have their origin in her work. The
first one is local existence. One reason for addressing it is that it is at the heart

of the original paper. Moreover, it is still an active and important research

field, connected to the problem of characterizing the asymptotic behaviour of
solutions that blow up in finite time. As a second topic, we turn to the ques-

tions of global uniqueness and strong cosmic censorship. These questions are

of fundamental importance to anyone interested in justifying that the Cauchy
problem makes sense globally. They are also closely related to the issue of

singularities in general relativity. Finally, we discuss the topic of stability of

solutions to Einstein’s equations. This is not only an important and active
area of research, it is also one that only became meaningful thanks to the

work of Yvonne Choquet-Bruhat.

1. Introduction

Writing a review article on the work of Yvonne Choquet-Bruhat on the Cauchy
problem [78], including the historical background and the impact it has had, is a
difficult task. This is partly due to the fact that the roots go back to the inception
of general relativity, and that the consequences stretch to the present. However, it
is mainly due to the broad impact of the perspective developed by Choquet-Bruhat.
In fact, the research areas that have their origin in the initial value formulation of
Einstein’s equations are so numerous and diverse that it is not possible for a single

1



2 HANS RINGSTRÖM

author to do them justice. We consequently hope that the reader is able to forgive
the omissions which are due to the ignorance of the author.

From one perspective, the results of [78] can be considered to be abstract and
mathematical in nature; they concern the local existence and uniqueness of so-
lutions to Einstein’s equations without providing any information concerning the
global behaviour. However, the problems considered in [78] have their origin in the
question of determinism in general relativity, as well as in the question of the speed
of propagation of the gravitational field. Clearly, these are fundamental issues in
any physical theory, and they played an important role in Einstein’s thinking even
prior to the formulation of general relativity in [72, 73]. It is interesting to trace
the developments that led to the work of Choquet-Bruhat, starting with Einstein’s
papers concerning the speed of propagation of the gravitational field in [74, 75];
progressing via Hilbert’s observations concerning the problem of uniqueness in [95];
de Donder’s [68] and Lanczos’ [109] introduction of the coordinates which lie at the
heart of Choquet-Bruhat’s argument; the remarkable insights of Darmois, stated in
[66], concerning the problem of solving Einstein’s equations given data on a space-
like hypersurface; the overview of the state of the field given in [67]; Stellmacher’s
resolution of the problem of local uniqueness in [161]; to Lichnerowicz’s statement
(in [111]) of the problem that Yvonne Choquet-Bruhat addresses in [78], and his
discussion of the constraint equations in [112]. Describing this sequence of results
is interesting since it illustrates how the small steps taken by each author in the
end lead to insights, statements and questions which go a significant distance be-
yond the original ideas and perspectives. The questions and doubts that appear
along the way also illustrate the strength of the current formulation of the initial
value problem (as well as the painstaking effort required to arrive at it). For these
reasons, we devote Section 2 to a discussion of the historical background to [78].

Turning to the impact of the work of Choquet-Bruhat, the results of [78] demon-
strate the possibility of solving Einstein’s equations, given initial data. Needless
to say, this observation has far reaching consequences, since it opens up the pos-
sibility of using a wide variety of numerical and analytical techniques in order to
study solutions. In the present article, we limit ourselves to a discussion of math-
ematical methods, since we do not have the competence required to describe, e.g.,
the numerical perspective (see, however, the contribution of Ulrich Sperhake to the
present volume). Following a description of the results and arguments contained in
[78], cf. Section 3, we thus turn to an overview of three fields of research that can
be studied using mathematical methods, and that have their origin in the work of
Choquet-Bruhat.

Local existence. A large part of [78] is devoted to proving local existence of solu-
tions to the Cauchy problem that arises when expressing Einstein’s equations with
respect to the isothermal coordinates introduced by de Donder. The corresponding
subject has a long history in its own right, and it is a history that it is at least partly
necessary to understand in order to appreciate the contribution of Choquet-Bruhat.
Moreover, the subject of local existence is still an active field of research. Partly
for these reasons, we discuss this topic at some length in Section 4. However, the
question of local existence is also related to the study of blow up phenomena more
generally. The reason for this is that local existence results typically come with
a so-called continuation criterion. A continuation criterion is a statement of the
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form: either the solution exists globally, or a certain norm of the solution becomes
unbounded as the maximal time of existence is approached. Continuation criteria
are of central importance in several contexts. First of all, they provide information
concerning the behaviour of the solution close to the time at which it blows up
(though, needless to say, it is necessary to keep in mind that the blow up could be
caused by a bad choice of gauge, as opposed to representing a physically relevant
singularity). Moreover, they are a basic first step in the problem of analyzing the
global behaviour of solutions. In particular, they are needed in stability proofs.
Another reason for taking an interest in this topic is related to the following ques-
tion: to what extent can our universe or an isolated system be approximated by
the highly idealized solutions normally used? To take one example, the universe
is normally said to be almost spatially homogeneous and isotropic. However, in
order to fit this statement with Einstein’s equations, the notion of proximity has
to be strong enough that the initial value problem is well posed with respect to the
corresponding norm. If the notion is not strong enough, the proximity to spatial
homogeneity and isotropy is due to some sophisticated non-linear phenomenon, as
opposed to the consequence of a stability result. From the mathematical point of
view, the natural perspective from which to address this issue is by trying to prove
local existence of solutions in as low a regularity as possible.

Global uniqueness, strong cosmic censorship. Even though the contributions
of Stellmacher and Choquet-Bruhat settle the question of local uniqueness of so-
lutions to Einstein’s vacuum equations, the question of global uniqueness remains.
Again, this may seem to be a mathematical question of limited practical insterest.
However, if it is not possible to associate a unique global development with initial
data, there would be no contradiction in several authors obtaining several different
solutions (corresponding to the same initial data) with completely different geo-
metric properties. Solving Einstein’s equations by means of the Cauchy problem
would then not be of much use, and speaking of any type of “properties of the
solution” corresponding to a given initial data set would, a priori, be meaningless.
Interestingly, a very important step in the direction towards a global uniqueness re-
sult was taken by Yvonne Choquet-Bruhat, this time in collaboration with Robert
Geroch. The result they prove in [24] is that there is a unique maximal globally
hyperbolic development corresponding to a given initial data set. For the sake of
brevity, we shall refer to this development as the maximal Cauchy development.
Due to the importance of the result, we spend some time discussing the contents
of [24] in Section 5. Unfortunately, there are examples of initial data for which the
maximal Cauchy development has inequivalent maximal extensions; we describe
some examples in Subsection 5.2. Since the examples are very special, one is led
to the so-called strong cosmic censorship conjecture, one version of which states
that for generic initial data, the maximal Cauchy development is inextendible. We
formulate and discuss this conjecture, as well as a related conjecture concerning
curvature blow up, in Subsection 5.2. We end the section by an overview of results
that have obtained concerning strong cosmic censorship.

Stability. One problem of central importance in general relativity is to verify the
stability of the highly symmetric solutions that are normally used to model the
universe or isolated systems. We turn to this problem in Section 6. For natural
reasons, the first spacetime one would like to prove stability of is Minkowski space.
We give an overview of some of the results that have been obtained concerning this
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topic, and give a rough idea of the methods of proof used in the different approaches.
As a next step, it would be of interest to prove stability of the Kerr family. So far,
this has turned out to be a very difficult problem. However, there is an extensive
literature on the topic of linear equations on black hole backgrounds, written with
the aim of serving as a basis for a future stability proof. We give a brief overview
of the corresponding results. Turning to cosmological spacetimes, we discuss some
of the stability results that have been obtained in Subsection 6.3.

Omissions. The three fields of research discussed in Sections 4–6 only give a very
limited idea of the impact of the work of Yvonne Choquet-Bruhat. For instance,
we say nothing about the constraint equations (cf. [98, 13, 29] and references cited
therein), the Penrose inequality (cf. [124] and references cited therein), numerical
relativity (cf. [22], Ulrich Sperhake’s contribution to the present volume, as well
as references cited therein) etc. The reason for these omissions is related to the
limited ability of the author to do the corresponding subjects justice.

2. Causality, gravitational waves and the notion of uniqueness of
solutions to Einstein’s equations

The purpose of the present section is to give a rough historical overview of some
of the ideas that preceded [78]. Interestingly, questions related to the work of
Choquet-Bruhat appeared as early as 1916, in Einstein’s study of the question of
the speed of propagation of gravitational waves.

Speed of propagation of gravitational waves. In the early days of general
relativity, the answers to many fundamental questions were unclear. One such
question was: does the gravitational field propagate at the speed of light? Already
in 1916, Einstein wrote a paper to address this issue, see [74]. Note, however, that
for reasons associated with shortcomings in the presentation in [74], he returned to
this topic in his 1918 paper [75]. Considering a situation in which the metric is close
to that of Minkowski space, he, in practice, studied the linearized problem. Using a
special choice of coordinates (on a linearized level), he derived a wave equation for
the perturbation, a result he used to justify the statement that the gravitational
field propagates at the speed of light. This line of reasoning is also to be found
in, for example, the presentations of Weyl and Eddington; cf. [177, pp. 213–216]
and [71, pp. 128–131]. For a modern presentation of this material, see, e.g., [178,
pp. 74–76]. The arguments of Einstein give an indication that, in some respects,
the field equations of general relativity are a system of wave equations, and that
the natural problem to pose on the mathematical level is the initial value problem.
Nevertheless, the role of the choice of coordinates was not entirely clear at the time.
In fact, Eddington [71, pp. 130–131] made the following comments concerning
Einstein’s justification (following the presentation of Einstein’s argument):

The statement that in the relativity theory gravitational waves are
propagated with the speed of light has, I believe, been based entirely
on the foregoing investigation; but it will be seen that it is only
true in a very conventional sense. If coordinates are chosen so as
to satisfy a certain condition which has no very clear geometrical
importance, the speed is that of light; if the coordinates are slightly
different the speed is altogether different from that of light. The
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result stands or falls by the choice of coordinates and, so far as can
be judged, the coordinates here used were purposely introduced in
order to obtain the simplification which results from representing
the propagation as occurring with the speed of light. The argument
thus follows a vicious circle.

The role of the coordinate freedom. That the diffeomorphism invariance of
the equations makes it more complicated to assign a meaning to the notion of
determinism (and to prove that it holds) was clear to Einstein already prior to his
publication of the field equations. These complications are also discussed by Hilbert
in [95]. In particular, Hilbert constructs two smooth coordinate systems on R4 that
coincide for t ≤ 0, but are different for t > 0. Considering a special solution
to the Einstein-Maxwell system, he concludes that the corresponding coordinate
representations of the solution coincide for t ≤ 0, but not for t > 0. In particular,
note that the two coordinate representations (and all their derivatives) coincide
on the t = 0 hypersurface, even though they do not coincide in a neighbourhood
of the t = 0 hypersurface. From this point of view, it is thus not possible to
uniquely determine the solution on the basis of information of what it and its
partial derivatives are at present.

One way to approach the objections of Eddington is to argue that gravitational
waves propagate at the speed of light without appealing to a specific choice of
coordinates. This perspective was taken by Vessiot in [173], a paper in which it is
argued that the desired statement follows from the observation that discontinuities
in the derivatives of the metric of order strictly higher than one are only allowed
along null hypersurfaces. Note, however, that since [173] appeared before [71],
Vessiot’s work should not be thought of as an answer to Eddington’s comments.

In a related development, de Donder observed that the coordinate choice of Einstein
is the linearized version of the requirement that

(1) gστ (∂αgστ − 2∂τgασ) = 0;

cf. [68, p. 40], in particular [68, (117)1, p. 40]. Moreover, he noted that for
coordinates satisfying (1), Einstein’s vacuum equations take the form

gαβ∂α∂βgµν = Lµν ,

where Lµν depends on the metric components and on their first derivatives, but
not on their second derivatives; cf. [68, pp. 40–41]. This form of the equations
makes it very plausible that the gravitational field propagates at the speed of light.
However, the objections of Eddington apply equally well to de Donder’s choice of
coordinates. Interestingly, the same coordinates were also introduced one year later
in the work of Lanczos [109]. Moreover, the slightly different perspective taken in
[109] later led Darmois to the observation that (1) corresponds to the requirement
that the coordinates satisfy the scalar wave equation with respect to the metric
under consideration; cf. [67, pp. 16–17].

On the notion of initial data. In the truly remarkable paper [66], Georges
Darmois poses the problem of studying Einstein’s vacuum equations in the neigh-
bourhood of a hypersurface. In his discussion of it, he addresses the freedom in
choosing lapse and shift and the propagation of the constraints. Moreover, he iden-
tifies the induced metric and second fundamental form as natural initial data, and
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he points out that the initial data are limited by the requirement that the constraint
equations be satisfied. An actual formulation of the constraint equations, based on
the use of Gaussian coordinates, can be found in [67, pp. 8–9].

Combining the ideas. A general discussion, synthesizing the above observations,
is to be found in [67]. In particular, in [67, Chapter 2], Darmois considers the ques-
tion of recovering all the derivatives of the metric on a hypersurface, given the metric
on the hypersurface, as well as its first normal derivative; cf. the above description
of Vessiot’s work [173]. On the basis of this analysis, he argues that characteristic
hypersurfaces play a special role in the process of solving the equations (in that one
cannot recover all the derivatives), leading to the above mentioned conclusion of
Vessiot. One particular consequence of Darmois’ analysis is that given the metric
and its first normal derivative on a spacelike hypersurface, all the derivatives of
the metric are determined on the hypersurface. Needless to say, this yields a local
uniqueness result in the real analytic setting; cf. Subsection 4.1 below. Moreover,
he notes that there is a linear homogeneous system of equations for the components
of the Ricci tensor corresponding to the constraints. On the basis of this observa-
tion, he argues that it is not only necessary, but also sufficient, that the constraints
be satisfied in order for there to be a real analytic solution to Einstein’s equations
(recall, however, the limitations associated with the real analytic setting illustrated
by Hilbert’s example described above). Darmois then goes on, in [67, Chapter 3],
to address the question of why the coordinates used by Einstein are successful
in demonstrating that the gravitational fields propagate at the speed of light. In
order to do this in the general, non-perturbative regime, he first refers to the coor-
dinate choice of de Donder [68] mentioned above. Darmois calls these coordinates
isothermal, though the corresponding gauge choice is sometimes also referred to as
harmonic, wave-coordinates or de Donder gauge. The reason for introducing this
terminology is Darmois’ observation that isothermal coordinates satisfy the wave
equation associated with the metric: a function u solving the Laplace equation in
the Euclidean setting can be thought of as corresponding to a static solution to the
heat equation, and the surfaces of constant u are thus isothermal; thinking of the
wave equation associated with the metric as the analogue of the Laplace equation,
surfaces on which an isothermal coordinate is constant are thus ’isothermal’ with
respect to that coordinate. In addition, the property that they satisfy the scalar
wave equation justifies, in Darmois’ opinion, the naturalness of the coordinates, or,
to use Darmois’ own words (cf. [67, p. 18]):

Nous avons donc la solution complète du problème posé, et nous
voyons bien que ce n’est pas hasard si notre système de coordonnées
présente sous une forme simple la propagation des potentiels. C’est
parce qu’il est lié, de la manière la plus nette, à cette propagation
elle-mème.

A geometric uniqueness proof. In spite of Darmois’ optimistic assessment
quoted above, a fundamental question remains. Given a solution to, say, Ein-
stein’s vacuum equations, there are two notions of causality. First, there is the
causality associated with the metric, and, second, there is the notion of domain
of dependence associated with solving Einstein’s equations considered as a partial
differential equation (PDE) (keeping the complications associated with the diffeo-
morphism invariance in mind). It is then of interest to know if these two notions
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coincide. This question was addressed by Stellmacher in [161] (on the suggestion
of Friedrichs), as a part of his dissertation. Note that it cannot be addressed in
the real analytic setting, since real analytic functions have the unique continuation
property; cf. Subsection 4.1 below.

Stellmacher’s argument is based on the use of isothermal coordinates. In fact, given
two solutions to the Einstein-Maxwell equations (whose initial data coincide on a
spacelike hypersurface), Stellmacher constructs isothermal coordinates (or ’de Don-
dersche Koordinatensysteme’, as Stellmacher puts it) such that the PDE techniques
of Friedrichs and Lewy can be applied. The conclusion is then that the solutions
coincide up to a coordinate transformation. An important observation, which fol-
lows from Stellmacher’s work, is that not only is it possible to construct isothermal
coordinates, there is also a certain amount of free data that can be specified on a
spacelike hypersurface.

Note, in particular, that Stellmacher’s work constitutes a justification of the stat-
ment that the gravitational field propagates at a speed bounded by that of light.
Moreover, the argument is such that Eddington’s objections do not apply.

Rough formulation of the initial value problem. In the first chapter of [111],
Lichnerowicz recapitulates much of the progress made. In a section entitled ’The
exterior problem’ [111, pp. 14–17], he states the initial value problem as that of
finding the solution to Einstein’s equations on the basis of the metric and its first
derivatives on a hypersuface. He then solves the problem in the real analytic setting
for spacelike hypersurfaces (using arguments going back to Darmois), and notes the
importance of the constraints. Acknowledging the results of Stellmacher, he goes
on to point out that it would be extremely important to similarly generalize the
existence result to the non-real analytic setting; cf. [111, p. 17]. This is of course
the problem solved by Yvonne Choquet-Bruhat.

Concluding remarks. Needless to say, the above presentation is incomplete.
A more extensive description of the same material (from a somewhat different
perspective) is given in [160].

3. The result of Yvonne Choquet-Bruhat

The seminal paper of Yvonne Choquet-Bruhat [78] represents the resolution of the
problem posed by Lichnerowicz in [111, p. 17]. In other words, not only does local
uniqueness hold in the class of Ck-functions (k times continuously differentiable
functions) for k large enough (as demonstrated by Stellmacher [161]); given initial
data, there is a unique local solution. As a consequence, [78] puts the Cauchy
problem in general relativity on a solid footing in the Ck-setting. It is then natural
to ask: why is the specific regularity class of importance? Why is it not sufficient
to consider the case of real analytic functions? Since this is a somewhat technical
topic, we discuss it separately in Subsection 4.1.

Turning to a more detailed description of the paper, a large part of the difficulty in
obtaining the desired result lies in proving local existence of solutions to Einstein’s
equations in the prescribed regularity. Moreover, in order for the PDE methods
to apply, it is necessary to use coordinates with respect to which the equations
become hyperbolic (Choquet-Bruhat uses the isothermal coordinates introduced
by de Donder [68]). Finally, it is necessary to connect the problem of solving the
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reduced equations (which only a posteriori correspond to Einstein’s equations with
respect to a specific choice of coordinates) with the constraint equations and the
problem of solving Einstein’s equations. It is important to note that the last step
leads to problems that do not appear in the study of uniqueness.

The PDE aspect of the problem. The PDE that needs to be dealt with when
solving Einstein’s equations is of the form

(2) Aλµ
∂2Ws

∂xλ∂xµ
+ fs = 0,

where the Aλν depend on the unknowns Ws, and fs depends on the unknowns and
their first derivatives. In addition, the Aλν are assumed to satisfy the algebraic
conditions that A00 < 0 and that Aij , i, j = 1, 2, 3, are the components of a
positive definite matrix (Choquet-Bruhat’s conventions are somewhat different, but
her requirements are effectively the same); needless to say, more conditions need
to be imposed, but we omit them for the sake of brevity. In reality, Choquet-
Bruhat studies the more general case when the Aλν are allowed to depend on the
first derivatives of the unknowns Ws. The problem of solving (2) for given initial
data is quite complicated and occupies some 74 pages of the paper. The first step
involves considering linear equations. In particular, Choquet-Bruhat demonstrates
that solutions to the relevant type of linear equations solve a system of integral
equations; cf. [78, (20.2), p. 173].

Turning to the non-linear problem, it would be desirable to set up an iteration of
the following form: given a function W ′s, solve (2) with appropriate initial data and
with Aλν and fs replaced by the corresponding functions (of the coordinates only)
obtained by composing Aλν and fs with W ′s and its first derivatives. This yields a
function Ws, which can be considered to be the image of W ′s under a map, say φ.
Solving the Cauchy problem then turns into the problem of finding a fixed point
of the map φ. In order to prove the existence of a fixed point, it is necessary to
prove that φ has certain properties. In particular, there has to be an appropriate
function space which is preserved by the map. In [78], a Ck solution is sought,
and consequently, the relevant function space should consist of Ck functions. In
particular, the map thus has to preserve the Ck class. Unfortunately, the above
perspective leads to a loss of derivatives, so that φ cannot be used as desired. In
order to overcome this difficulty, it is necessary to proceed somewhat differently.
Differentiating (2) k times leads to an equation of the form

(3) Aλµ
∂2US
∂xλ∂xµ

+BTλS
∂UT
∂xλ

+ FS = 0,

where US collects all derivatives of Ws of order k, and Aλν , BTλS and FS depend on
at most one, two and k derivatives of Ws respectively; cf. [78, p. 183]. In particular,
assuming Ws to be k+ 2-times continuously differentiable, the coefficients Aλν and
BTλS are at least k+1 and k times differentiable respectively. For a suitable choice of
k, the idea is then to consider the integral equations corresponding to (3); to define
a map similar to φ based on these equations (cf. the above); and to prove that this
map has a fixed point. Unfortunately, it turns out that this perspective can only
be applied if the Aλν do not depend on the first derivatives of Ws. However, by
first differentiating the equation (2) once, and then proceeding as above, the more
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complicated case can also be handled. Needless to say, the above is a very rough
sketch of the argument. The reader interested in more details is referred to [78].

The main PDE result is summarized in [78, pp. 218–219]. It is of interest to record
the regularity requirements on the initial data: at the t = 0 hypersurface, Ws and
∂tWs are assumed to be five and four times continuously differentiable respectively.
On the other hand, the solution obtained is only four times continuously differ-
entiable. In other words, the initial data induced on a t = t0 hypersurface, with
t0 6= 0, do not necessarily have the same degree of regularity as the original initial
data. We discuss this topic further below.

Solving Einstein’s equations. In [78, pp. 219–224], Choquet-Bruhat describes
how to construct solutions to Einstein’s vacuum equations, given initial data. One
way to write the vacuum equations is

Sλµ = 0,

where

Sλµ = Rλµ − 1

2
Rgλµ,

Rλµ are the components of the Ricci tensor of the metric g and R is the scalar
curvature. Referring to the metric and its first derivatives on a spacelike hypersur-
face as the “initial data” for the equation, Choquet-Bruhat notes that the initial
data have to satisfy the constraint equations. In order to be able to use isothermal
coordinates, the initial data are also assumed to be such that

Fµ :=
1√
−g

∂(
√
−ggλµ)

∂xµ
= 0

for t = 0; cf. [78, (2.2), p. 220]; this can in fact be assumed without loss of generality.

The next step is to solve the hyperbolic system of equations Einstein’s equations
reduce to when assuming the coordinates to be isothermal. In particular, one
is, a priori, not solving Einstein’s equations. Due to the properties of isothermal
coordinates, the problem of solving the relevant equations can be handled using the
methods developed in [78, Chapters I–III]. Next, Choquet-Bruhat argues that since
the Fµ are zero initially, and since the constraint equations are satisfied initially,
the first order derivatives of the Fµ are zero initially. Finally, using the Bianchi
identities, she demonstrates that the Fµ satisfy a homogeneous wave equation.
By uniqueness, it then follows that the Fµ are zero, so that the coordinates are
isothermal and the metric satisfies Einstein’s vacuum equations. In short, this line
of reasoning yields local existence of solutions. To end the paper, there is a proof of
uniqueness on [78, pp. 223-224]. The final sentence of the paper is the statement of
the main theorem, namely that there is a unique solution corresponding to initial
data.

Comparing the formulation of the results with more recent versions, it is of interest
to note that the definition of the initial data is not geometric in nature (the metric
and its first derivatives are referred to as initial data, not the induced metric and
second fundamental form). Moreover, the statement that there is a unique solution
should be understood as saying that there is a unique local solution. Global issues
are not addressed.
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4. Regularity notions, local existence, and continuation criteria

As noted above, one central improvement obtained in [78] in comparison with earlier
results is that real analyticity of the initial data is not required. In Subsection 4.1,
we justify the importance of this improvement by defining real analyticity and
arguing that the corresponding function class is inappropriate in the study of general
relativity. Even though the class of functions used by Choquet-Bruhat does not
suffer from the same deficiencies as the real analytic class, it is problematic if one is
interested in taking the step from local to global considerations; cf. Subsection 4.2.
The reason for this is closely related to the notion of a continuation criterion, which
we discuss briefly in Subsection 4.3. We then return to the topic of proving local
existence of solutions with a view towards obtaining results that might be useful in
studying global questions; this is the subject of Subsection 4.4. In particular, for
those readers unfamiliar with Sobolev spaces, we motivate why they are natural in
the study of equations of the type (2). We end the section by a giving a description
of some developments in the subject of local existence that have taken place since
[78]. However, it should be said that the selection is not intended to be complete or
to provide the correct reference concerning who was the first to obtain a result of a
given kind; our ambition is only to give a rough idea of some of the developments.

4.1. Real analyticity. Let U be an open connected subset of Rd, where d ∈ N. A
function f : U → R is said to be real analytic in U if

• f has continuous derivatives of all orders in U , and if,
• for each x0 ∈ U , there is an R > 0 such that the Taylor series expansion of
f around x0 converges and equals f in BR(x0).

Here BR(x0) denotes the open ball of radius R centered at x0, and we tacitly assume
that BR(x0) ⊂ U . It is very important to note that real analytic functions have
the so-called unique continuation property. There are various ways of defining this
notion, depending on the context, but for the purposes of the present discussion,
we take it to mean the following: Let f and g be two real analytic functions on
U , all of whose derivatives agree at one point of U . Then f = g on all of U .
In order to prove the statement, let A denote the set of points x ∈ U such that
∂αf(x) = ∂αg(x) for all multiindices α. By assumption, A is non-empty. Since
f and g are continuously differentiable to all orders, A is closed. Finally, due to
the defining property of real analytic functions, A is open. However, since U is
connected, we know that any non-empty, open and closed subset of U equals U . As
a consequence, A = U and f = g on all of U . One particular consequence of the
unique continuation property is that if f = g on an open subset of U , then f = g
on all of U .

The reason it is of importance to note that real analytic functions have the unique
continuation property is that there is a tension between this property and the
notion of finite speed of propagation (which is, of course, central in both special
and general relativity). In order to illustrate this tension in the context of the initial
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value problem, consider

�u =0,(4)

u(0, x) =f(x),(5)

ut(0, x) =g(x),(6)

where � is the ordinary wave operator on d + 1-dimensional Minkowski space. In
order to discuss the propagation of information, we want the set up to be flexible
enough that we can modify the initial data on some ball BR(x0) in the initial
hypersurface, and to study the influence of that change. Letting u1 be the solution
to the wave equation corresponding to the modified initial data, we then expect u to
equal u1 in the complement of the union of the causal future and the causal past of
{0}×BR(x0). However, then u and u1 would coincide on an open set. If they were
real analytic, they would thus have to coincide everywhere. In fact, the real analytic
class is so rigid that it is not even possible to make a non-trivial modification of the
initial data on a ball BR(x0) while keeping the data the same outside the ball. For
this reason, it is not meaningful to speak of finite speed of propagation or to discuss
the notion of causality in the real analytic class of functions. As a consequence, it
is clear that working with real analytic functions is not compatible with special or
general relativity.

In the context of the above discussion, it is of interest to note that solutions to the
constraint equations are often obtained using the conformal method. This method
involves solving a non-linear elliptic equation for a scalar function; cf., e.g., [97,
pp. 2250–2251]. As a consequence, there is a problem in changing the initial data
locally when using this method. Could it then be that the constraint equations
are such that no local changes are allowed? That the answer to this question is
no follows from the results obtained in [47]. In this paper, Corvino demonstrates
that, given asymptotically flat initial data and an asymptotically flat end, it is
possible to modify the data so that they are identically Schwarzschild outside a
ball (in the specified asymptotically flat end) and so that they are identical to the
original initial data inside a smaller ball. Results of a similar flavour are obtained
in [28, 30, 48]. Moreover, an interesting recent related result is [23]. In this paper,
the authors demonstrate that there are solutions to the constraint equations which
are identical to Minkowski initial data outside of a cone. As a consequence of the
existence of these data, it is possible to construct initial data for N bodies that do
not interact for some finite amount of time. To conclude, there is no problem of
principle in modifying solutions to Einstein’s constraint equations locally.

4.2. The space of k times continuously differentiable functions. In the re-
sult of Choquet-Bruhat, the initial data for the metric and its first derivative are
assumed to be five and four times continuously differentiable respectively. The cor-
responding class of functions is flexible enough that the notions of causality and
finite speed of propagation make sense. As a consequence, the paper of Choquet-
Bruhat is the first providing a proof of local existence and uniqueness of solutions to
Einstein’s vacuum equations in a setting in which the general theory of relativity is
meaningful. On the other hand, one drawback of the result is that the solution ob-
tained is only four times continuously differentiable, as noted above. In particular,
the initial data induced on a hypersurface different from the original one need not
have the same regularity as the original initial data. As far as local considerations
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are concerned, this is not an important problem. However, if one is interested in
global issues, it is a problem. Ideally, one would like to have

• a norm such that if the solution blows up at some finite time T+, then the
norm of the initial data on constant-t hypersurfaces blows up as t→ T+,
• a local existence theory which is powerful enough to guarantee that the

norm remains bounded on hypersurfaces close to the intial one (i.e., locally).

The criterion corresponding to the norm being bounded is often referred to as a
continuation criterion. The reason for this is that the above statement can be
reformulated in the following way: as long as the continuation criterion is fulfilled,
the solution can be continued. The use of the above information in the study
of global questions is that, first of all, it makes it sufficient to control the norm
corresponding to the continuation criterion in order to prove that the solution does
not blow up in finite time. Moreover, if the continuation criterion is good enough,
it might give useful information concerning the nature of the blow up, if it occurs.
The second point above ensures that controlling the norm is at least possible locally.

In the case of [78], keeping control of the C5 × C4 norm of the initial data is
sufficient to guarantee that the solution can be continued (though, strictly speaking,
[78] does not contain the statement that the size of the time period on which the
solution exists only depends on the norm of the initial data, a statement that
would be needed in order to obtain the desired conclusion). On the other hand,
the local theory is not sufficiently strong to demonstrate that the required norm
remains bounded even locally. However, this is not a deficiency of the arguments of
Choquet-Bruhat; it is a property of hyperbolic equations. In fact, considering the
initial value problem (4)–(6) with Ck+1 × Ck initial data, the solution is typically
not Ck+1 (if the spatial dimension is 2 or greater); cf., e.g., [158, Theorem 1.1,
p. 6]. This is an indication that Ck-spaces are not appropriate in the study of the
Cauchy problem for hyperbolic equations.

The above discussion is a bit brief, and we shall therefore devote the next two sub-
sections to giving examples of continuation criteria and describing function spaces
that are better suited in the study of Einstein’s equations.

4.3. The notion of a continuation criterion. In order to give an example of a
continuation criterion, it is useful to begin with a simple setting. Let us therefore
consider an autonomous system of ordinary differential equations. The correspond-
ing initial value problem consists of the equations

dx

dt
=f ◦ x,(7)

x(0) =x0,(8)

where f is, say, a smooth function from Rd to itself, d ∈ N and x0 ∈ Rd. By standard
theory, there is a unique solution to (7) and (8). Moreover, there is a natural notion
of a maximal interval of existence (take the union of all the intervals of existence
corresponding to all solutions to (7) and (8); by uniqueness, the corresponding
solutions coincide on the intersection of the existence intervals). However, none of
these observations yield any conclusions concerning the global behaviour. Does the
solution blow up in finite time? What are the asymptotics? In order to answer
the first question, it is of interest to note that there is a continuation criterion for
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equations of the form (7). If x is a solution to (7) and (8), and I = (t−, t+) is the
corresponding maximal interval of existence, then either t+ =∞ or

lim
t→t+−

|x(t)| =∞.

There is a similar statement concerning t−. In order to illustrate the use of this
continuation criterion, let us consider a specific example.

Example. Consider the equation

ÿ + yk = 0,

where k ≥ 1 is an odd integer. Introducing x1 = y, x2 = ẏ and x = (x1, x2), it is
clear that x satisfies an autonomous system of equations. Moreover,

E =
1

2
x22 +

1

k + 1
xk+1
1

is a conserved quantity. As a consequence, |x| cannot blow up in finite time, and
the continuation criterion implies that the solution exists globally.

The above example is a special case of a general principle: if a differential equation
has an associated conserved quantity strong enough to bound the norm involved in
the continuation criterion, then solutions cannot blow up in finite time (so that
they exist globally). When it is applicable, this principle is clearly very powerful.
It is obviously of interest to find conserved (or, possibly, monotone) quantities and
to find a continuation criterion which involves as weak a norm as possible. The
existence of conserved or monotone quantities often follows from the existence of a
natural energy for the system of equations under consideration; we shall not discuss
this issue further. The problem of finding a continuation criterion which involves
as weak a norm as possible is strongly related with the problem of proving local
existence in as low a regularity as possible. Note that in the case of Einstein’s
equations, a general result saying that solutions do not blow up in finite time is
not to be expected. In certain circumstances, global existence is, however, to be
expected (in the study of stability of Minkowski or de Sitter space, for example).
Moreover, even if global existence is not obtained, the weaker the norm involved in
the continuation criterion, the stronger the conclusions concerning the character of
the blow up.

4.4. Local existence. Let us now turn to the developments concerning the issue
of local existence, the goal being to find as good a continuation criterion as possible.
A complete description would be very long and complicated, and it is not within
our field of competence to do the subject full justice. For that reason, we shall only
briefly describe some developments we consider to be important.

Sobolev spaces. In the work of Choquet-Bruhat, the function space used for the
initial data is C5 × C4. As mentioned above, this regularity class is not preserved
by the evolution. It is consequently inappropriate. The real analytic class we have
already discarded on the basis of incompatibility with the fundamental ideas of
special and general relativity. Starting with smooth initial data, it can be demon-
strated that there is a smooth local solution. However, the associated continuation
criterion is much too strong. In order to arrive at a more reasonable class of func-
tions, it is natural to turn to the wave equation (4). Associated with a solution
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to this equation (corresponding, say, to initial data that vanish outside a ball of a
certain radius), there is an energy

(9) E(t) =
1

2

∫
Rd

[|ut(t, x)|2 + |∇u(t, x)|2]dx.

Differentiating under the integral sign and integrating by parts leads to the conclu-
sion that E is conserved. Sometimes it is of interest to control the function itself,
and not only its derivatives (as in (9)). It is then natural to consider, e.g.,

(10) E(t) =
1

2

∫
Rd

[|ut(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2]dx.

If u is a solution to the wave equation, the quantity E is typically not conserved.
However, E(t) ≤ e|t|E(0). In this sense, E(0) controls E(t) at later times. In
particular, E cannot go from being finite to being infinite in finite time (in contrast
with the Ck+1 × Ck-norm). If α is a d-multiindex (corresponding to the d spatial
dimensions), then ∂αu is also a solution of (4), since ∂α and � commute. As a
consequence, it is natural to consider

Ek(t) =
1

2

∑
|α|≤k

∫
Rd

[|∂αut(t, x)|2 + |∇∂αu(t, x)|2 + |∂αu(t, x)|2]dx.

This quantity also has the property that Ek(t) ≤ e|t|Ek(0). Thus Ek(t) remains
bounded if it is initially bounded. The above observations suggest that it is ap-
propriate to make requirements of the following form: the Hk+1-norm of u|t=0 is
bounded, and the Hk-norm of ut|t=0 is bounded. Here, the Hk-norm of a function
v on Rd is defined as follows:

‖v‖Hk =

∑
|α|≤k

∫
Rd

|∂αv(x)|2dx

1/2

.

An important question in this context is: what is the natural class of functions for
which the Hk-norm is defined? Clearly, if v is k times continuously differentiable,
and if it vanishes outside a ball of a fixed radius, then the Hk-norm is well defined.
However, these requirements are too restrictive. The reason for this is partly that
Ck-type regularity is not preserved by the evolution. However, the main reason
is that it is of central importance for the corresponding space to be complete, a
notion we now define.

Complete function spaces. Proofs of existence of solutions to non-linear equa-
tions often proceed by constructing a sequence of approximations. The goal is to
prove that the sequence converges to a solution. On the other hand, the best one
can hope to prove concerning the sequence, say un, is that ‖un − um‖ converges
to zero when n and m tend to infinity (where ‖ · ‖ is the relevant norm in the
argument under consideration); a sequence un with this property is said to be a
Cauchy sequence with respect to the norm ‖ · ‖. From this knowledge, one would
like to draw the conclusion that there is a function u such that un converges to u
(and then to prove that u is a solution to the equation under consideration). If the
norm ‖ · ‖ is defined on a space X such that every Cauchy sequence converges in
this sense, then the space X with the norm ‖ · ‖ is said to be complete. In order to
obtain completeness in the case of the Hk-norm, it is natural to define the associ-
ated space, denoted Hk(Rd), to be the set of k-times weakly differentiable functions
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on Rd whose derivatives of order up to and including k are square integrable (we
omit the technical definition of weak differentiability, and refer the interested reader
to books on PDE; cf., e.g., [147, Definition 5.2, p. 36]). The spaces Hk(Rd) are
referred to as Sobolev spaces, and they are complete.

Fractional Sobolev spaces. In certain circumstances, it is of interest to define
Sobolev spaces for indices k that are not non-negative integers. One way of doing
so is by observing that there is a characterization of Sobolev spaces in terms of the
Fourier transform. In fact,

(2π)−d
∑
|α|≤k

∫
Rd

ξ2α|v̂(ξ)|2dξ = ‖v‖2Hk ,

where v̂ denotes the Fourier transform of v. As a consequence, it can be argued
that there are constants Ci,k > 0, i = 1, 2, such that

C1,k

∫
Rd

(1 + |ξ|2)k|v̂(ξ)|2dξ ≤ ‖v‖2Hk ≤ C2,k

∫
Rd

(1 + |ξ|2)k|v̂(ξ)|2dξ.

Using this inequality, there is an alternate definition of the Sobolev norm, namely

‖v‖Hs
=

(∫
Rd

(1 + |ξ|2)s|v̂(ξ)|2dξ
)1/2

,

which makes sense for all real numbers s. If k is a non-negative integer, then the
Hk-norm is equivalent to the Hk-norm. However, the Hs-norm makes sense for all
real numbers s (and a corresponding space can be defined such that it is complete).
Let us now return to the topic of local existence.

Local existence results. Even prior to the work of Choquet-Bruhat, authors
such as Friedrichs, Lewy, Hadamard, Schauder and many others made important
contributions to the subject of solving the intial value problem for hyperbolic PDE’s.
Going forward in time to the early 50’s, one very important reference is [110]. In this
book, Leray obtains far reaching conclusions concerning local existence of solutions
to quite general systems of equations. However, the results of [110] suffer from
the same deficiency as that of Choquet-Bruhat; more regularity is assumed of the
initial data than is obtained for the solution. In the 60’s, results of the desired
type were, nevertheless, obtained; cf. [69, 157]. In fact, the theorem stated on [157,
p. 222] constitutes a local existence result for a second order quasi-linear equation.
Moreover, the initial data induced on constant-t hypersurfaces different from the
original one have the same degree of regularity as the original initial data. Sobolev
undoubtedly obtained this result much earlier; in [69], Dionne refers to a paper
of Sobolev’s in the mid 50’s, which, according to Dionne, deals with the case of
second order equations. In the work of Dionne, cf. [69, Theorem 8, p. 8] and [69,
Theorem 5, p. 9], similar results are obtained for more general classes of equations.

An important related question concerning the preservation of regularity is the fol-
lowing: given C∞ (infinitely differentiable) initial data, does one obtain a C∞ local
solution? Since one obtains a local Ck solution for each k, there might, naively, not
seem to be a problem. However, the size of the region on which the Ck solution
is obtained might depend on k, and as k tends to infinity, the region might shrink
to the initial hypersurface (so that, in the end, there is no region on which there
is a C∞ solution). It is quite interesting to note that the question of existence of
smooth solutions was addressed as late as 1971; cf. [25].
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Symmetric hyperbolic systems. A different perspective on the problem of solving
Einstein’s equations is to be found in [76, 96]. In [76, 96], the authors reformulate
equations of the form (2) to symmetric hyperbolic systems; in particular, to first
order systems. Once that step has been taken, the equations can be thought of as
first order ODE’s in a Banach space (and at that stage, the theory of semigroups
can be applied). Refining the work of previous authors (such as Friedrichs, Lax,
Kato and many others), they obtain local existence results in a lower degree of
regularity. Moreover, the regularity they obtain for the solutions is of the form

(11) C0([0, T ], Hs+1(Rd,RN )) ∩ C1([0, T ], Hs(Rd,RN )),

given that the initial data are in

Hs+1(Rd,RN )×Hs(Rd,RN ),

where s > d/2 + 1; cf. [96, Theorem III, p. 282]. As a consequence, the initial data
induced at later times have the same degree of regularity as the original initial data.
However, it is interesting to note that the formulation of [96, Theorem III, p. 282]
does not include an explicit statement of a continuation criterion, even though it is
concievable that the authors could have derived one using their methods.

Continuation criterion. A very interesting proof of local existence of solutions
to systems of conservation laws is to be found in [123, Chapter 2]. The proof
is elementary in nature in that it simply consists of proving that a sequence of
solutions to a sequence of linear equations converges to a solution of the non-linear
equation. Moreover, it does not appeal to the semi-group theory used by Kato and
his collaborators, but is simply based on energy estimates. Nevertheless, Majda
demonstrates that the solution has regularity of the form (11). Finally, he proves a
continuation criterion which essentially states that for any s > d/2 (where d is the
spatial dimension), the maximal interval [0, T ) on which a solution with regularity
(11) exists is either such that T =∞ or such that

lim sup
t→T−

(‖ut(t, ·)‖∞ + ‖∇u(t, ·)‖∞) =∞.

In short: as long as the first derivatives do not blow up, the solution can be contin-
ued. Note that since the continuation criterion is independent of s, local existence
of smooth solutions (given smooth initial data) is immediate.

Recent developments, the bounded L2-curvature theorem. In the late 90’s and early
00’s, a significant amount of progress was made on the problem of decreasing the
degree of regularity required of the initial data for quasi-linear wave equations; cf.,
e.g., [11, 12, 168, 104, 105, 155] and references cited therein (see also [174, 175]
for related work in the case of constant mean curvature foliations). In particular,
combining the results of [155] with the the counterexamples obtained in [1, 116, 117]
yields the conclusion that for equations of the form

(12) gαβ(u)∂α∂βu = qαβ(u)∂αu∂βu

on R3+1,

• the initial value problem is locally well posed for initial data in Hs+1 ×Hs

(where s > 1),
• there are equations of the form (12) for which the initial value problem is

not locally well posed for initial data in H2 ×H1.
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In view of this fact, it is remarkable that Einstein’s equations admit local solu-
tions, given initial data in H2 × H1. The corresponding result, referred to as
the bounded L2-curvature theorem, demonstrates that the non-linearity in Ein-
stein’s equations has a better structure than general equations of the form (12);
cf. [107, 108, 163, 164, 165, 166, 167]. The statement of the main theorem is to
be found on [108, p. 8], and it is concerned with maximal foliations of solutions to
Einstein’s vacuum equations in the asymptotically flat setting. The corresponding
continuation criterion states that as long as the L2-norm of the Ricci curvature and
the L2-norm of the gradient of the second fundamental form remain bounded, then
the solution can be continued (strictly speaking, a condition concerning the volume
radius also needs to be imposed; cf. [108, p. 8] for the details).

5. Global uniqueness, strong cosmic censorship

The work [78] of Yvonne Choquet-Bruhat constitutes a fundamental first step in
putting the Cauchy problem in general relativity on a solid footing. However, it
is in some respects incomplete. As a consequence of [78], we know that there is a
local solution, given initial data. Moreover, we know that two local solutions are
locally the same. On the other hand, we neither have information about global
uniqueness, nor about global behaviour. To expect information about the global
behaviour in general is too optimistic. However, if the general theory of relativity
is supposed to be deterministic, there should be a global uniqueness result. A very
important step in that direction was taken in [24]; in a sense, the full depth and
importance of the work of Yvonne Choquet-Bruhat on the Cauchy problem only
becomes apparent when taking both [78] and [24] into account. For that reason,
we begin the present section with a description of the results of [24].

5.1. Existence of a maximal globally hyperbolic development. In order to
obtain a uniqueness result, it is necessary to demand some type of maximality of
the development. It turns out that demanding maximality in the class of all devel-
opments does not yield uniqueness (see below for a motivation of this statement).
However, demanding maximality in the class of globally hyperbolic developments
of the initial data does. In order to state the main result of [24], it is necessary to
introduce the terminology used in [24]. First of all, the authors study Einstein’s
vacuum equations (even though this is not an essential restriction), and they define
an initial data set to be a 3-dimensional manifold Σ on which a Riemannian metric
ḡ and a symmetric covariant 2-tensor field k̄ are defined, where ḡ and k̄ satisfy the
vacuum constraint equations. Already here, it is of interest to note the contrast
with the formulation in [78]; in [78], initial data are taken to be the metric and
the first derivative of the metric restricted to the initial hypersurface (clearly, a
non-geometric formulation). In contrast, the definition of an initial data set in [24]
is geometric in nature, and it is intrinsic to the initial hypersurface. In [24], the
notion of a development of initial data is defined by the following:

• a manifold M with a Lorentz metric g satisfying Einstein’s vacuum equa-
tions,
• an embedding i : Σ → M such that if κ is the second fundamental form

induced on S := i(Σ), then i∗g = ḡ and i∗κ = k̄ (where i∗ denotes the
pull-back),
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• S is a Cauchy hypersurface in (M, g) (so that (M, g) is a globally hyperbolic
manifold).

Again, in contrast with [78], the formulation of the notion of a development is
geometric in nature. Whether one should include the third requirement (i.e., that
S be a Cauchy hypersurface) is debatable. Sometimes this requirement is not
included, and then a development in the sense of [24] is referred to as a globally
hyperbolic development. Since we wish to contrast the case of globally hyperbolic
developments with developments that are not globally hyperbolic, we here do not
a priori assume developments to be globally hyperbolic, and state explicitly when
they are.

Given the above definitions, the authors of [24] note that the local existence of
solutions to Einstein’s equations can be formulated as follows: given an initial data
set, there is a corresponding globally hyperbolic development; cf. [24, Theorem 1,
p. 331]. Strictly speaking, in order to take the step from [78] to this form of local
existence, it is necessary to construct initial data appropriate for appealing to the
result of [78], given an initial data set in the sense of [24]; to prove that the local
solutions constructed in [78] can be patched together to a yield a globally hyperbolic
development etc.

Another important ingredient needed in order to prove the main theorem of [24]
is a local uniqueness result. It is not completely obvious what the corresponding
statement should be. In the case of two solutions to (7) and (8), say, it is natural
to compare them on the intersection of their intervals of existence, and to prove
that they equal there. Given two globally hyperbolic developments of a given initial
data set, it is less clear how to make the comparison.

In order to phrase a geometric local uniqueness result, the authors of [24] introduce
the following terminology: if (M, g) and (M ′, g′) (with corresponding embeddings
i and i′ respectively) are globally hyperbolic developments of the same initial data
set (Σ, ḡ, k̄), then (M, g) is said to be an extension of (M ′, g′) if there is a map
ψ : M ′ → M which is a diffeomorphism onto its image, and which is such that
ψ∗g = g′ and ψ ◦ i′ = i. Given this definition, local uniqueness can be formulated
as follows: any two globally hyperbolic developments (of the same initial data set)
are the extensions of a common development; cf. [24, Theorem 2, p. 331]. Again, in
order to prove this result, it is necessary to patch up the local coordinate changes
constructed in [78] in order to produce the map ψ. A more recent presentation of the
proofs of [24, Theorems 1–2, p. 331] is to be found in [147]; cf. [147, Theorem 14.2,
p. 156] and [147, Theorem 14.3, p. 158].

Based on these two observations, the main result of [24] is [24, Theorem 3, p. 332].
Using our terminology, it can be phrased as follows:

Theorem 1. Let (Σ, ḡ, k̄) be an initial data set. Then there is a globally hyperbolic
development of (Σ, ḡ, k̄) which is an extension of every other globally hyperbolic
development of (Σ, ḡ, k̄). This development is unique (up to isometry).

The relevant development is sometimes referred to as the maximal globally hyper-
bolic development or maximal Cauchy development. The proof can be divided into
two steps. First, the authors prove that there is a globally hyperbolic development
which is maximal in the sense that it cannot be extended; this step largely consists
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of an application of Zorn’s lemma. The second step is more difficult, and consists
of proving that given two globally hyperbolic developments, there is a common
extension. The method of proof in the second step is largely Lorentz geometric
in nature. The proof is quite intricate, and the presentation in [24] is a bit terse;
[150, Chapter 23] contains a more detailed exposition (the proof in [150] is in the
Einstein-Vlasov-non-linear scalar field setting, but, as mentioned, this does not have
a significant effect on the argument). Let us also note that the problem of how to
remove the use of Zorn’s lemma in the proof has been addressed in [154].

Importance of the result. The main reason why Theorem 1 is so important is the
following. Due to [78], there is a development, given an initial data set. However, if
there is not a preferred development which is uniquely singled out by the initial data
(and, possibly, some additional criterion), then the initial value problem does not
make sense; cf. the introduction. Theorem 1 guarantees that in the class of glob-
ally hyperbolic developments, there is a preferred member: the maximal Cauchy
development. In some respects, this restriction to globally hyperbolic developments
is natural; if (M, g) is a development of an initial data set, it is not to be expected
that the initial data control the behaviour of the solution in the complement of the
domain of dependence of the initial hypersurface (and if the development is not
globally hyperbolic, this complement is non-empty), so that uniqueness beyond the
domain of dependence of the initial hypersurface is not to be expected.

Even though Theorem 1 is an important result, it does lead to a new question: are
there initial data sets such that the corresponding maximal Cauchy development
is extendible? Could there be many different extensions of the maximal Cauchy
development? Unfortunately, the answer to both of these questions is yes, and this
leads us to the strong cosmic censorship conjecture.

5.2. Strong cosmic censorship. That the maximal Cauchy development is some-
times extendible can be seen by a very simple example. Consider the hyperboloid
in Minkowski space consisting of the set of future directed unit timelike vectors.
This set is a spacelike hypersurface. Let (Σ, ḡ, k̄) denote the corresponding initial
data set. The corresponding maximal Cauchy development is the timelike future
of the origin in Minkowski space, denoted I+(0). Clearly, this Lorentz manifold
can be extended to all of Minkowski space. Moreover, by removing points from the
complement of I+(0) in Minkowski space, inequivalent extensions of the maximal
Cauchy development are obtained. However, these extensions are, in some respects,
unnatural. One reason for this is that the extensions obtained by removing points
are not maximal. It is of greater interest to know if there are inequivalent maximal
extensions to the maximal Cauchy development (in case the maximal extension of
the maximal Cauchy development is uniquely determined, the problem of deter-
minism is resolved in a satisfactory manner). Moreover, it is more natural to limit
one’s attention to the following physically relevant situations: the isolated systems
setting and the cosmological setting. Here, we take the isolated systems setting to
correspond to asymptotically flat initial data, and we take the cosmological setting
to correspond to initial data (Σ, ḡ, k̄) such that Σ is a closed manifold. One could
also consider the case of initial data sets that are asymptotically hyperboloidal (as
in the example above). However, one should then keep in mind that extendibility
is to be expected to the past, and that the region of interest is the future.
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In order to develop some intuition concerning what can go wrong, it is instructive to
discuss some examples. We begin by describing the so-called Taub-NUT spacetimes.

Taub-NUT. The Taub spacetimes are the maximal Cauchy developments of left
invariant and locally rotationally symmetric vacuum initial data on SU(2); cf. [45]
or [147] for details. It turns out that these spacetimes are past and future causally
geodesically incomplete; cf. [115]. Moreover, considering the hypersurfaces of spa-
tial homogeneity, they start from zero volume, increase to a maximal volume, and
then shrink again to zero volume. In this respect, there is a big bang and a big
crunch. However, the curvature remains bounded as one approaches the boundary
of the spacetime, and it turns out that the maximal Cauchy developments are ex-
tendible. Considering a globally hyperbolic Taub region in a maximal extension,
it can be seen that the boundary of the globally hyperbolic region consists of two
null hypersurfaces, beyond which there are closed timelike curves. Proving that
there are two inequivalent maximal extensions is difficult. However, this result was
obtained in [45]. A somewhat more detailed argument, based on the ideas in [45], is
to be found in [147]. It is of interest to note that the proof given in [45] is crucially
dependent on the fact that the Cauchy horizon has two components.

Polarized T3-Gowdy. There is a geometric characterization of the polarized T3-
Gowdy spacetimes. However, for the purposes of the present discussion, it is more
convenient to define them to be metrics of the form

g = e−2U [e2A(−dt2 + dθ2) + t2dy2] + e2Udx2

on M = (0,∞) × T3, where t ∈ (0,∞) and (θ, x, y) ∈ T3; cf. [45, (32), p. 1622].
In this expression, U and A are functions of t and θ only. Moreover, it is of
interest to note that Einstein’s vacuum equations imply that U satisfies a linear
wave equation and that A can be obtained by integrating expressions in U ; cf.
[45, (33), p. 1622]. For this class of spacetimes, t = 0 is expected to correspond
to a big bang singularity, and t = ∞ is expected to correspond to an expanding
direction. In fact, one can prove that polarized T3-Gowdy spacetimes are future
causally geodesically complete and past causally geodesically incomplete. On the
other hand, by setting U = A = 0, one obtains the flat Kasner solution (which is
simply a quotient of a part of Minkowski space). Moreover, the flat Kasner solution
is extendible; it is the basic example extendibility in the class of polarized T3-Gowdy
spacetimes. However, more interesting solutions can be obtained by using the fact
that spatial variation in θ is allowed. In particular, solutions can be constructed
with the properties that

• they can be extended beyond two disjoint intervals Ii, i = 1, 2, (in θ) in the
t = 0 hypersurface,
• they cannot be extended through the complement of these intervals.

A solution with these properties can be extended, and the Cauchy horizon consists
of two disjoint components. Moreover, in [45] it is demonstrated that there are two
inequivalent maximal extensions of such a solution. Interestingly, this procedure
can be generalized. Taking N disjoint intervals, with properties similar to the
above, yields 2N−1 inequivalent maximal extensions. As a consequence, there is
no bound to the number of inequivalent maximal extensions that might exist. The
above description is a bit brief, and we refer the reader to [45] for a more detailed
discussion.
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Formulation of the conjecture. The above examples illustrate that there might be
several inequivalent maximal extensions corresponding to a given initial data set.
As a consequence, it might seem that determinism is lost. On the other hand, it
is clear that the solutions that admit inequivalent maximal extensions are quite
special. It is thus tempting to make the following conjecture.

Conjecture 1 (Strong cosmic censorship). For generic vacuum initial data sets
(Σ, ḡ, k̄) which are either

• asymptotically flat, or
• such that Σ is a closed manifold,

the corresponding maximal Cauchy development is inextendible.

Remark 1. Similar formulations can also be made in the presence of matter.

Given the above discussion, this formulation (which is essentially the same as the
one to be found in [44, Section 1.3]) is quite natural. However, it was preceded
by slightly different perspectives; cf. [70] and [128]; see also [40] (which includes a
discussion of weak cosmic censorship).

The formulation of the conjecture is problematic in many ways. First of all, the
meaning of the words “generic” and “inextendible” is not completely clear. In the
case of an ODE, we could take a set of initial data to be generic if the complement
has zero measure. However, this notion becomes more problematic in the infinite
dimensional setting. Another perspective would be to say that a set is generic if it is
open and dense with respect to some suitable topology (there are also more technical
notions in the same vein; dense Gδ set, for example). In the ideal situation, it is
possible to prove that the set of initial data leading to extendible maximal Cauchy
developments has positive codimension. Nevertheless, which definition of the term
“generic” is most appropriate depends on the context. In the general formulation
of the conjecture, the term is therefore left unspecified.

The word “inextendible” can also be interpreted in many ways. For (M ′, g′) to be an
extension of (M, g), it is clear that both M and M ′ should be connected manifolds
of the same dimension. Moreover, there should be a map φ : M → M ′ which is a
diffeomorphism onto its image and which is such that φ∗g′ = g (and such that the
relevant matter fields are preserved similarly). Finally, it is clear that φ(M) 6= M ′

should hold. However, it is not obvious that these criteria are enough. One could,
for example, also demand that Einstein’s equations (together with possible matter
equations) should hold. In addition to this, there is the question of regularity; what
degree of regularity should we demand of the extension (M ′, g′)? Is mere continuity
enough? In what sense should we demand that the equations hold? Should we
demand the existence of classical solutions, or is it enough to demand that (M ′, g′)
is a weak solution? Again, several suggestions exist. As a consequence, these
issues need to be discussed in each individual case. However, there is an interesting
connection to the question of curvature blow up, which we discuss next.

Curvature blow up. Due to the work of Hawking and Penrose, we know that the
existence of singularities (in the sense of causal geodesic incompleteness) is generic;
cf., e.g., [88, 89, 127, 90, 178, 126] and the contribution of David Garfinkle and
José Senovilla to this volume. However, as the Taub-NUT and polarized T3-Gowdy
examples illustrate, the fact that there is a singularity in the sense of causal geodesic
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incompleteness does not guarantee the existence of a singularity in the sense of
curvature blow up. In analogy with the above, it is thus tempting to make the
following conjecture.

Conjecture 2 (Curvature blow up). For generic vacuum initial data sets (Σ, ḡ, k̄)
which are either

• asymptotically flat, or
• such that Σ is a closed manifold,

the Kretschmann scalar RαβγδRαβγδ is unbounded in the incomplete directions of
causal geodesics.

Again, one could of course formulate the same conjecture in the presence of matter.
Conjecture 2 actually implies the strong cosmic censorship conjecture. However,
it is then necessary to take extendibility to mean C2-extendibility. That not all
authors consider this to be the most natural degree of regularity is illustrated by
[40, p. A26]. Nevertheless, Conjecture 2 is of great interest in its own right.

Next we turn to a brief discussion of some results that have been obtained in the
past.

5.3. Results, strong cosmic censorship. The literature on the strong cosmic
censorship conjecture is quite extensive. We shall therefore limit our discussion
of the results to a few examples. Conjecture 1 has not yet been addressed in full
generality. The only results that exist concern the analogous problem obtained by
imposing symmetry conditions. The idea is thus to first specify a setting (cosmo-
logical or isolated systems setting, for example); then to specify a matter model
(such as vacuum or a scalar field); and, finally, to specify a symmetry requirement
(spherical symmetry, Bianchi type VIII spacetimes etc.). Given these choices, there
is a statement analogous to Conjecture 1. From a logical point of view, the corre-
sponding statement is unrelated to Conjecture 1 (since symmetric initial data are
non-generic). However, the hope is that the resolution of the resulting problems
might shed some light on how to proceed in the general case. Moreover, considering
the special solutions described above (for which the maximal Cauchy development
is extendible), it is of interest to prove that they are unstable in some larger class
of solutions. In what follows, we discuss the isolated systems setting and the cos-
mological setting separately.

Isolated systems. In the case of asymptotically flat initial data, the most natural
symmetry class is that of spherical symmetry. However, the only spherically sym-
metric vacuum solutions to Einstein’s equations that are asymptotically flat are
the Schwarzschild spacetimes. As a consequence, it is necessary to add some form
of matter in order to obtain an interesting problem. This was done in the work
of Christodoulou (cf. [32, 33, 34, 35, 36, 37, 38, 39]), who considered matter of
scalar field type; cf. [40, p. A29] for a motivation of the choice. The sequence of
papers stretches from a proof of global existence and dispersion for small data; a
study of the formation of trapped surfaces; via a proof of the existence of naked
singularities; to a proof of the fact that the naked singularities are non-generic.
The exact notion of genericity used in the result is clarified in the statement of [39,
Theorem 4.1, p. 216]. Roughly speaking, the result says that the set of initial data
leading to naked singularities has positive codimension. The above description is



THE CAUCHY PROBLEM IN GENERAL RELATIVITY 23

very brief, and the readers interested in a more detailed discussion (which is still of
an overview character) are referred to [40].

Another interesting sequence of results that have been obtained in the asymptoti-
cally flat setting are represented by [49, 50]. In these papers, Dafermos considers the
Einstein-Maxwell-scalar field equations. The motivation for considering this partic-
ular matter model is the following. Ideally, it would be of interest to consider what
happens in a symmetry class which allows the Kerr metrics as a special case. How-
ever, proving strong cosmic censorship in the axially symmetric setting currently
seems too difficult. However, as is argued in [49], Maxwell’s equations can work
as a substitute. Interestingly, the results of [49] demonstrate that there is an open
set of initial data such that the future boundary of the maximal Cauchy develop-
ment contains a null component with the property that the metric can be extended
continuously beyond it. However, the curvature blows up along the boundary, and
the metric is C1-inextendible. In this respect, the conclusion concerning strong
cosmic censorship depends on the notion of extendibility used in the formulation.
The results of [49] are based on the characteristic initial value problem. However,
combining [49] with [50, 56], the extendibility of the maximal Cauchy development
is obtained for a large set of asymptotically flat initial data sets in the relevant sym-
metry class. More recently, the results of [51] demonstrate that there is an open set
of initial data for which the boundary of the maximal Cauchy development has no
spacelike component at all (and that the metric is continuously extendible across
the boundary).

So far, proving strong cosmic censorship in the isolated systems setting under less
stringent symmetry conditions than spherical symmetry appears difficult. However,
it is of interest to note that, recently, a large class of solutions has been constructed
which conjecturally gives a general picture of what to expect concerning the interior
of black holes, cf. [122].

The cosmological setting. In cosmology, the spatially homogeneous spacetimes are
a natural class in which to start studying the issue of strong cosmic censorship.
For a given time direction (future or past), it is to be expected that all causal
geodesics are complete, or that all causal geodesics are incomplete. Since it is not
possible to extend the maximal Cauchy development in directions in which the
causal geodesics are complete, it is natural to focus on the incomplete directions
(we refer to the corresponding asymptotic regions as singularities). In case there
is matter present, there are typically curvature invariants that become unbounded
as one approaches a singularity; cf. [132]. As a consequence, C2-inextendibility
follows under quite general circumstances. In the absence of matter, the situation
is, however, more subtle. Considering, for example, the Bianchi class A spacetimes,
the locally rotationally symmetric vacuum solutions are such that the maximal
Cauchy development can be extended (in the case of Bianchi IX, there are even
inequivalent maximal extensions, as noted above). This led Chruściel and Rendall
to consider the question of strong cosmic censorship in the spatially homogeneous
vacuum setting; cf. [46]. In particular, the authors prove strong cosmic censorship
for Bianchi IX vacuum solutions, assuming the spatial topology is, for example,
spherical. Interestingly, the authors do not approach the problem by analyzing the
asymptotics of solutions in general. Instead, they start by assuming that, say, a
Bianchi IX solution has a Cauchy horizon, and then prove that this implies that the
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solution has more symmetries than general Bianchi IX solutions. Nevertheless, the
results of [46] leave the issue of curvature blow up unanswered. This led Rendall
to return to this question in [133]. In this reference, Rendall demonstrates that
for all the Bianchi class A spacetimes (except types VIII and IX), there are two
possibilities:

• either the maximal Cauchy development is extendible (this occurs in the
locally rotationally symmetric cases, as mentioned above), or
• the Kretschmann scalar blows up in the incomplete directions of causal

geodesics.

The remaining classes (VIII and IX) exhibit more complicated behaviour in the
direction of the singularity. Nevertheless, the same conclusion concerning Bianchi
type VIII and IX vacuum spacetimes was obtained in [139]; cf. also [140] which
contains more detailed information concerning the asymptotics. A full statement
of the relevant result is to be found in [147, Theorem 24.12, p. 258]. Note, in
particular, that the Taub spacetimes are exceptional in the Bianchi IX class.

Taking a step away from spatial homogeneity, it is natural to consider the case
that there is a 2-dimensional group of isometries. In fact, given the above examples
of inequivalent maximal extensions in the case of polarized Gowdy solutions, it is
of interest to consider the issue of strong cosmic censorship in that setting. This
was done in [43], in which the authors verify that for generic initial data in the
relevant symmetry class, the curvature is unbounded in the incomplete directions
of causal geodesics. Even though there is a large class of solutions for which the
maximal Cauchy development has several inequivalent maximal extensions, this
class is thus non-generic. One aspect which simplifies the analysis in the case of
polarized T3-Gowdy vacuum spacetimes is the fact that the equation for one of
the metric components is linear, and that the remaining components are obtained
by integrating expressions in the solution to the linear equation. In the case of
general T3-Gowdy vacuum spacetimes, one obtains a system of non-linear wave
equations instead of a linear scalar equation. Nevertheless, it can be demonstrated
that strong cosmic censorship holds in this case as well; cf. [141, 142, 143, 144, 145].
In fact, for a set of initial data which is open and dense in the C∞-topology, detailed
information concerning the asymptotics is obtained (both in the expanding direction
and in the direction towards the singularity), including curvature blow up in the
incomplete directions of causal geodesics. The above description is somewhat brief,
and the interested reader is referred to [149] for a more extensive overview of the
topic of strong cosmic censorship in the case of Gowdy spacetimes. Finally, let us
note that there are related results in the presence of matter; cf. [53, 54, 55, 156].

6. Stability results

In most applications of general relativity, a few highly symmetric solutions to Ein-
stein’s equations play a central role; Schwarzschild and Kerr in the case of isolated
systems, and spatially homogeneous and isotropic solutions in the case of cosmol-
ogy. Clearly, these solutions are very important. However, they are highly idealized,
and it is of importance to prove that they are robust. This observation naturally
leads to the question of stability, which is meaningful thanks to the work of Yvonne
Choquet-Bruhat [78]. In order to give a rough formulation of what we mean by
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stability, let us assume that (Σ, ḡ, k̄) are initial data of the solution, say (M, g), we
want to prove stability of (in case there is matter present, initial data for the matter
fields should be added as well). A stability result would then be a statement of the
form: given initial data on Σ close enough to (ḡ, k̄), the corresponding solution is
globally similar. The formulation is here intentionally vague. The exact meaning
of the words “close” and “globally similar” depends on the context. In fact, there
are several proofs of the stability of Minkowski space, but they are not equivalent;
the assumptions and conclusions are quite different. For that reason, a precise
definition of the ingredients of the statement has to be given in each individual
result.

Due to the central role played by Minkowski space in general relativity, we begin
the present section by discussing its stability; cf. Subsection 6.1. As a next step,
it would be of interest to prove that the Kerr family is stable. Unfortunately, this
problem seems to be too difficult at present (even though important and very inter-
esting results on the problem of demonstrating the formation of trapped surfaces,
given initial data far from containing trapped surfaces, have recently appeared; cf.,
e.g., [41, 106, 103, 2]). Nevertheless, significant progress has been made concern-
ing associated linear problems, and we discuss this work briefly in Subsection 6.2.
Finally, in Subsection 6.3, we turn to the question of stability in the cosmological
setting.

6.1. Minkowski space. The problem of proving stability of Minkowski space has
been approached from several different perspectives. To begin with, one could
choose the metric and second fundamental form induced on

• the t = 0 hypersurface, or
• on the standard hyperboloid (consisting of the future directed unit timelike

vectors)

as the initial data to be perturbed. To distinguish between these two cases, we
below speak of asymptotically flat and asymptotically hyperboloidal initial data
respectively. The exact meaning of these words depends on the context, and we refer
to the references given for precise definitions. Note that in the case of asymptotically
flat initial data, one can hope to prove stability of Minkowski space. In the case of
asymptotically hyperboloidal initial data, one can only hope to prove stability to
the future of the hyperboloid (it would typically be possible to go some distance
into the past, but not far enough for the information obtained to be of interest).
Let us begin by discussing the asymptotically hyperboloidal perspective.

The conformal approach of Helmut Friedrich. When taking the hyperboloidal per-
spective, it is important to note that Minkowski space can be be embedded into
the Einstein cosmos; cf., e.g., [82, p. 23] for details. By rescaling the embedded
Minkowski metric by the square of a conformal factor, say Ω, the resulting met-
ric equals that of the Einstein cosmos. In particular, the rescaled metric can be
extended to the boundary of the image of Minkowski space in the Einstein cos-
mos. Moreover, the boundary consists of two 3-dimensional manifolds I ± and
three points i0 and i±. The sets I ± correspond to the future (+) and past (−)
endpoints of null geodesics. They are therefore called future and past null infinity
respectively. The points i± are similarly called future and past timelike infinity,
and the point i0 is referred to as spacelike infinity. Adding I ± to the image of
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Minkowski space in the Einstein cosmos yields a smooth manifold with boundary.
Moreover, the conformal factor Ω extends smoothly to the boundary in such a way
that Ω > 0 on the region corresponding to Minkowski space, Ω = 0 on the boundary,
but dΩ 6= 0 on the boundary (these conditions correspond to part of the require-
ments defining an asymptotically simple spacetime; cf., e.g., [82, Definition 1.1,
pp. 24-25]). Below, we refer to the boundary as the conformal boundary. The idea
is then to try to extend Einstein’s equations to include a conformal factor, and in
such a way that the evolution can be extended beyond the conformal boundary.
The point of this idea is that, in the conformal picture, the region to the future of
the closure of the standard hyperboloid in Minkowski space is actually compact.
If the extended equations (after suitable gauge fixing) are hyperbolic, the problem
of proving stability is then reduced to Cauchy stability for a finite time interval
(which is a standard result for hyperbolic PDE’s). When taking this perspective,
all the difficulty is thus in finding the right equations. This was done by Helmut
Friedrich; cf. [79, 80, 82, 81]. As a consequence, future stability of Minkowski space
is obtained. Moreover, the perspective yields very detailed information concerning
the asymptotics. On the other hand, it is clearly necessary to make specific require-
ments of the asymptotically hyperboloidal initial data in order for the method to
apply. Relating these requirements to requirements on asymptotically flat initial
data turns out to be a subtle issue. We shall not discuss it here, but rather refer
the interested reader to [83, 172, 84] and references cited therein. For a general
overview of the perspective described above, the reader is referred to [82].

The Christodoulou-Klainerman approach. Let us now turn to the case of asymptot-
ically flat initial data, starting with the methods developed by Christodoulou and
Klainerman; cf. [42]. In [42], the authors do not use conformal rescalings, so that
it is necessary to prove global existence of solutions to Einstein’s vacuum equations
for small data. The proof is based on energy estimates. Specifically, the so-called
Bel-Robinson tensor plays a central role in the argument. Given a tensor field W
with the symmetries of the Weyl tensor (we shall refer to such tensor fields as Weyl
fields), the Bel-Robinson tensor Q is a quadratic expression in the Weyl field and
its dual. Two important properties of the Bel-Robinson tensor are

• E = Q(T1, T2, T3, T4) ≥ 0, if Ti, i = 1, . . . , 4, are future directed timelike
vectors (below, we refer to expressions such as E as Bel-Robinson energy
densities),
• if W satisfies the Bianchi equations, then Q is divergence free.

In order to obtain suitable energies, it is necessary to integrate Bel-Robinson energy
densities over appropriate spacelike hypersurfaces. Moreover, it is not sufficient to
only consider the Bel-Robinson tensor associated with the Weyl tensor of the solu-
tion; it is necessary to control higher order derivatives. Since higher order deriva-
tives are obtained by applying derivative operators (associated with certain vector
fields) to the Weyl tensor, the main problem is that of constructing appropriate
foliations and appropriate vector fields. In [42], the authors construct two folia-
tions; one spacelike foliation consisting of maximal hypersurfaces (so that the mean
curvature of the leaves vanishes) and one null foliation associated with a solution
u to the eikonal equation. The energies are obtained by integrating appropriate
Bel-Robinson energy densities over the leaves of the maximal foliation. The vec-
tor fields are obtained by constructing approximate Killing and conformal Killing
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vector fields. On the background (Minkowski space), there are of course many
conformal Killing vector fields, but the perturbed solution typically has none. On
the other hand, since the solution is close to Minkowski space, there are approxi-
mate conformal Killing fields. However, constructing them is a delicate issue. In
the end, all of the above issues are tied together in the proof which consists of a
bootstrap argument involving the foliations, the construction of the vector fields,
the energies etc. The asymptotic information obtained as a result is less detailed
than that of Friedrich, but stability (and not only future stability) is obtained, as
well as detailed information concerning the asymptotics. Moreover, it is not clear
that the results of Friedrich can be applied to initial data of the degree of general-
ity considered in [42]; in order for this to be true, it would be necessary to relate
asymptotically flat initial data with asymptotically hyperboloidal initial data (cf.
the above discussion).

The methods of Christodoulou and Klainerman have turned out to be of use in many
different contexts. In particular, Nina Zipser proved stability of Minkowski space in
the Einstein-Maxwell setting; cf. [179, 180]. Moreover, Lydia Bieri proved stability
of Minkowski space under weaker assumptions on the initial data; cf. [17, 18]. In
particular, Bieri requires control of one less derivative of the initial data, and allows
a worse decay rate (one less power of r) in the definition of asymptotic flatness.
As a consequence, she obtains less detailed information concerning the asymptotic
behaviour. On the other hand, since it is sufficient to improve weaker bootstrap
assumptions in the argument, it turns out that some of the constructions of almost
conformal Killing fields become unnecessary, which simplifies the proof. As a final
comment, it is of interest to note that the results [42, 18, 180] only concern matter
models with conformal invariance properties.

The Lindblad-Rodnianski approach. In [118, 119], Lindblad and Rodnianski develop
a very different approach to proving stability of Minkowski space. In particular,
they consider Einstein’s equations with respect to the isothermal coordinates in-
troduced by de Donder, just as Choquet-Bruhat did in [78]. However, as opposed
to the work of Choquet-Bruhat, the isothermal coordinates are here used to settle
global issues. A central role in the argument is played by the so-called weak null
condition. In order to justify the terminology, it is natural to consider the equations

�u =− u2t ,(13)

�u =− u2t + |∇u|2(14)

in 3 + 1-dimensions, where � is the Minkowski space wave operator. Both (13) and
(14) admit u = 0 as a solution, but the stability properties of this solution is different
for the two equations. In fact, u = 0 is a stable solution of (14), but it is an unstable
solution of (13); cf., e.g., [99] and [158, Chapter II]. The reason for this is that (14)
satisfies the so-called null-condition, whereas (13) does not; cf. [158, Chapter II]
for a definition of this notion. The null-condition can be defined for a wide class
of equations, and there are quite general stability results for solutions to equations
satisfying the null-condition; cf. [101, 31, 102]. Unfortunately, Einstein’s equations,
expressed using isothermal coordinates, do not satisfy the null-condition. However,
the authors of [118, 119] devised a way for extracting an asymptotic system from the
equations (it is obtained by neglecting derivatives that are tangential to the light
cone as well as cubic terms (such terms can be expected to decay faster)), and the
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equations are said to satisfy the weak null condition if the asymptotic system admits
global solutions. It turns out that Einstein’s vacuum equations, when expressed
with respect to isothermal coordinates, satisfy the weak null condition.

Just as in [42], the proof of stability consists of a bootstrap argument based on
energy estimates. As opposed to [42], it is, however, sufficient to use the conformal
Killing vector fields of Minkowski space in order to prove stability (which signifi-
cantly simplifies the argument). The way the weak null condition manifests itself
in the bootstrap argument is that the equations have a hierarchical structure; it is
possible to first improve the bootstrap assumptions for some of the components of
the metric; this information can then be fed into the equations for the remaining
components; and the desired conclusion follows.

Clearly, the above discussion only gives a very rough idea of the argument. The
reader interested in more details is referred to [118, 119]. There are two clear
advantages of [118, 119]. First of all, the argument is substantially shorter than
that of [42]. Moreover, the methods can be used to prove stability for matter
models that do not have conformal invariance properties. On the other hand, the
conclusions obtained concerning the solution are not as detailed as those of [42].

6.2. Linear equations on black hole backgrounds. After proving the stability
of Minkowski space, the natural next step is to consider the Schwarzschild and
Kerr spacetimes. In fact, for reasons related to physical intuition and uniqueness
results characterizing the Kerr family, the Kerr solutions are expected to be the
natural end states of gravitational collapse to a black hole. In order to justify
this picture, it is, at the very least, necessary to prove that the Kerr family is
stable. In other words, to prove that perturbed Kerr data give rise to a maximal
Cauchy development which asymptotes to a member of the Kerr family. Needless
to say, giving precise definitions of what it means for initial data to be “close” to a
member of the Kerr family, and what it means for a solution to “asymptote” to a
member of this family is a part of the problem. So far, proving stability of Kerr has
turned out to be too difficult; there are no results. As a consequence, researchers
have focused on associated linear problems. The most natural linear equations to
consider, in view of the above observations, are the linearized Einstein equations
on a Kerr background. However, due to the degree of complication of this system,
it turns out to be inappropriate to start by trying to analyze the asymptotics of
its solutions. A simpler problem would be to consider the ordinary wave equation
on Kerr. As this also turns out to be quite complicated, researchers interested
in proving stability of Kerr started by considering the linear wave equation on a
Schwarzschild background; cf., e.g., [100, 10, 19, 20, 21, 57, 58]. There are various
ways to approach the problem, but the method of using vector fields and energies
(as in [42]) is currently the most prominent one. In order to describe one way of
constructing energies, let φ be a solution to the wave equation

�gφ = 0,

where g is a Schwarzschild metric. Then the associated stress energy tensor,

Tµν = ∇µφ∇νφ−
1

2
gµν∇αφ∇αφ,
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is divergence free. If X is a vector field, contracting the stress energy tensor with
X yields a current

JXµ = TµνX
ν

with divergence

∇µJXµ = (X)πµνT
µν ,

where
(X)πµν =

1

2
(LXg)µν .

Note, in particular, that if X is a Killing field, then the associated current is diver-
gence free. Given the above constructions, it is of course natural to appeal to the
divergence theorem. The corresponding equality can be used to relate the bound-
ary terms and the bulk term. Given a priori information concerning the bulk and
boundary terms (for instance that the bulk term vanishes (in case X is a Killing
field, this is true), that one of the boundary terms is controlled by the initial data,
that the bulk or boundary terms have suitable signs etc.), the equality can be used
to control the bulk term or some of the boundary terms. In Schwarzschild, it is
natural to start with the ∂t vectorfield, since it, in particular, is Killing. In this
case, the bulk term vanishes, and (for a natural choice of region) there are three
boundary terms. One boundary term corresponds to an energy at the initial hyper-
surface, another corresponds to an energy at a later time, and the final boundary
term corresponds to the part of the horizon in between them. In particular, the
equality leads to a bound on the energy at later times in terms of the initial en-
ergy. Away from the horizon, this leads to a bound on the solution. However, near
the horizon, the energy degenerates, and it has to be replaced by something else.
Fortunately, it turns out that a vector field capturing the red shift effect can be
used to control the solution near the horizon. Another complication that appears
in Schwarzschild is associated with the presence of trapped null geodesics. How-
ever, it again turns out that this problem can be addressed using similar methods.
The results concerning Schwarzschild represent a progression from bounds on the
solution in the early works, to decay in the later contributions. The exact decay
statements are somewhat technical and are strongly dependent on the geometry.

Turning to the case of Kerr, an additional complication which arises is the fact
that the ∂t vector field becomes spacelike in the ergoregion. Nevertheless, the
questions of boundedness and decay have also been analyzed for solutions to the
wave equation on Kerr backgrounds; cf., e.g., [59, 60, 61, 169, 5] for the case of
|a| �M and [62] for the case |a| < M . The literature on linear wave equations on
black hole backgrounds is vast, and we have only given a few references. The reader
interested in an introduction to the subject which is fairly up to date is referred to
[60].

Recently, Dafermos, Holzegel and Rodnianski have announced that linear stability
of Schwarzschild holds; cf. [52]. Due to this result, proving stability of black hole
spacetimes now seems to be within reach.

6.3. Stability, cosmological setting. The model solutions in the cosmological
setting are spatially homogeneous and isotropic; i.e., they satisfy the cosmologi-
cal principle. However, as opposed to the standard black hole spacetimes, they
nomally include matter. For a long time, it was taken for granted that it is only
meaningful to include matter models satisfying the strong and dominant energy
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conditions, and that the cosmological constant is zero. Due to the observations
of supernovae of type Ia carried out in ’98-’99, cf. [138, 129], this perspective has
changed. In fact, most current models of the universe include a mechanism which
induces accelerated expansion; cf. [134, 135, 136, 137] and references cited therein
for some of the possibilities. Historically, the main focus was thus on the case of
a vanishing cosmological constant, but recently, the case of a positive cosmological
constant has attracted more attention. We here discuss both cases. This is partly
due to the fact that the cosmological constant has come and gone several times in
the history of general relativity. However, it is mainly due to the following point of
view: since the conclusion that there is accelerated expansion is based on fitting a
very limited class of models to the observations, it is of interest to develop a feeling
for more general solutions (with and without a positive cosmological constant).

Cosmology, the case of non-accelerated expansion. To our knowledge, the first
stability result concerning a cosmological solution without accelerated expansion is
[6]. In [6], the authors prove future stability of the Milne model, which is a vacuum
solution of the form

gM = −dt2 + t2ḡH ,

where ḡH is a hyperbolic metric on a closed manifold. The Milne model can be
thought of as a quotient of the timelike future of the origin in Minkowski space. The
stability proof includes the construction of a future global CMC foliation; it guar-
antees future causal geodesic completeness; and it contains a demonstration of the
fact that, after an appropriate rescaling, the metric and second fundamental form
of the CMC leaves converge to those of the background. In this respect, the Milne
model can be considered to be an attractor of the Einstein flow. The argument is
based on the use of energies associated with the Bel-Robinson tensor. However, in
a later work, cf. [7], the authors generalize the results to higher dimensions and
more general situations using a rougher type of energy estimates.

It is very important to note that the results of [6, 7] fit into a much bigger context.
In fact, there is a conjecture relating the future asymptotic behaviour of solutions
to Einstein’s vacuum equations in the cosmological setting with the geometriza-
tion of 3-manifolds. Moreover, one fundamental aspect of the conjecture is that
the parts of the manifold corresponding to the hyperbolic pieces in the geometric
decomposition should dominate asymptotically (in the sense that the fraction of
the volume contained in the non-hyperbolic regions should tend to zero). The first
step in verifying this conjecture is of course to verify that it holds for the Milne
model itself. This is achieved in [6, 7]. Since it would be out of place to discuss
the conjecture mentioned above in detail here, we refer the interested reader to
[3, 77, 130, 131] and references cited therein for more information.

One important rule of thumb that indicates that the study of the stability properties
of the Milne model (as opposed to some other spacetime) is the most natural first
step is the following: spatial hypersurfaces with hyperbolic geometry maximize the
expansion (which leads to maximal decay of perturbations and makes it easier to
prove stability). This rule of thumb should of course be taken with a large grain
of salt. However, an additional indication of its use is given by [26, 27]. In these
papers, the authors demonstrate future stability in the U(1) symmetric setting,
provided the 2-dimensional hypersurface in which spatial variation is allowed is a
higher genus surface.
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Cosmology, the case of accelerated expansion. The simplest setting in which to
consider cosmological solutions with accelerated expansion is Einstein’s vacuum
equations with a positive cosmological constant. Moreover, the model solution in
this case is de Sitter space. That de Sitter space is stable was demonstrated in
[80]. Similarly to the proof of the stability of Minkowski space to the future of a
standard hyperboloid, the method of proof is based on the conformal field equa-
tions developed by Helmut Friedrich. Later on, the results were extended to include
matter of Maxwell and Yang-Mills type; cf. [81]. While Friedrich only considers
3 + 1-dimensional spacetimes, Michael Anderson proves stability of de Sitter space
in arbitrary even spacetime dimensions in [4]. On the other hand, the methods
used by Anderson are similar in spirit to those of Friedrich. Interestingly, it turns
out that the results of Anderson are useful in the proof of stability of solutions to
the Einstein-non-linear scalar field equations in 3 + 1-dimensions in the case of an
exponential potential; cf. [91]. In this case, the proof is based on a combination of
Anderson’s result and Kaluza-Klein reduction techniques. More recently, the con-
formal perspective has been used to address the stability of cosmological solutions
to Einstein’s equations with a positive cosmological constant and a radiation fluid;
cf. [120]. Moreover, Friedrich proved stability of solutions to the Einstein-non-
linear scalar field system (cf. [85]), assuming that a specific relation between the
cosmological constant and the mass holds.

In spite of the successes of the conformal perspective, it does not seem suited to
settle the issue of stability for all the matter models of physical interest. The prob-
lem of proving stability of de Sitter space was, for this reason, revisited in [146].
In this paper, the author demonstrates stability of de Sitter space in all spacetime
dimensions. Moreover, the stability of solutions to the Einstein-non-linear scalar
field system is demonstrated under more general circumstances than those consid-
ered in [85]. The method used in [146] is based on expressing the equations with
respect to coordinates similar to the isothermal coordinates of de Donder. However,
instead of demanding that the contracted Christoffel symbols vanish, they are here
required to equal prescribed functions of the metric components and of the coor-
dinates. The prescribed functions are referred to as gauge source functions, and
the idea of introducing this additional freedom goes back to [86]. Unfortunately,
it is not sufficient to only introduce appropriate gauge source functions. It is also
necessary to add additional terms (that vanish when the gauge source functions
equal the contracted Christoffel symbols) to the equations in order to obtain a sys-
tem with good properties. In order to analyze the behaviour of solutions to the
resulting system, energy methods can be used. However, it is of interest to note
that in order to close the bootstrap argument, it is necessary to consider the energy
associated with the different metric components separately. The reason for this is
that it is possible to derive a system of differential inequalities for the energies asso-
ciated with the different components, and it is necessary to improve the bootstrap
assumptions concerning the different energies in a hierarchical fashion.

Following [146], several results using similar methods have been obtained. For
instance, the case of the Einstein-non-linear scalar field with an exponential po-
tential is considered in [148] (under more general circumstances than those con-
sidered in [91]). The Einstein-Maxwell-non-linear scalar field case is considered in
[162, 121]. Turning to perfect fluids, there is a sequence of papers on this topic; cf.
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[151, 159, 87]. Finally, the problem of proving stability in the case of the Einstein-
Vlasov equations with a positive cosmological constant is discussed in [150]; cf. also
[9, 125, 170]. For each of the matter models coupled to Einstein’s equations, there
are, needless to say, additional complications that need to be dealt with. However,
we shall refrain from saying anything about the details here, and simply refer the
reader interested in more information to the above references.

Cosmology, the direction of the singularity. All of the above results concern the
future stability of cosmological solutions. It would also be of interest to prove
stability in the direction of the singularity. However, the behaviour in that direction
can in general be expected to be quite complicated. In particular, it is expected
to be oscillatory, as can already be seen in the spatially homogeneous setting; cf.,
e.g., [139, 140, 176, 92, 93, 113, 14, 114]. The latter results are also consistent with
a general picture concerning how the behaviour close to the singularity should be.
This picture goes back to Belinskii, Khalatnikov and Lifschitz (cf., e.g., [15, 16]),
and has later been developed further; cf., e.g., [64, 65, 94, 171] and references cited
therein. However, for special types of matter models, the behaviour can be expected
to be less complicated. In particular, the presence of a scalar field or a stiff fluid
is expected to suppress the oscillations. The resulting behaviour is for that reason
referred to as quiescent. In the spatially homogeneous setting, this expectation
can be confirmed in some cases; cf. [140]. Moreover, using so-called Fuchsian
techniques, large classes of solutions with quiescent singularities can be constructed;
cf. [8, 63]. Even though the results obtained in [8, 63] are important, they suffer
from two deficiencies. First of all, the solutions are real analytic. Moreover, the
construction is based on prescribing the asymptotic behaviour. In that respect, the
results correspond to specifying initial data at the singularity. It would be preferable
to start with initial data on an ordinary Cauchy hypersurface, and to prove stability
of the quiescent behaviour. Recently, this question has been addressed in [152, 153].
In fact, [153] constitutes the first stability result in the direction of the singularity.
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Foundation, the Göran Gustafsson Foundation for Research in Natural Sciences
and Medicine, and the Swedish Research Council.

References

[1] Alinhac, S.: Blowup for nonlinear hyperbolic equations. Progress in Nonlinear Differential

Equations and their Applications, 17. Birkhuser Boston, Inc., Boston, MA, (1995)

[2] An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation.
Preprint, arXiv:1409.6270

[3] Anderson, M. T.: On Long-Time Evolution in General Relativity and Geometrization of 3-

Manifolds. Commun. Math. Phys., 222, no. 3, 533–567 (2001)
[4] Anderson, M. T.: Existence and Stability of even-dimensional asymptotically de Sitter spaces.

Ann. Henri Poincaré 6, 801–820 (2005)
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[7] Andersson, L., Moncrief, V.: Einstein spaces as attractors for the Einstein flow. Journal Diff.
Geom. 89, Number 1, 1–47 (2011)

[8] Andersson, L., Rendall, A. D.: Quiescent cosmological singularities. Commun. Math. Phys.

218, 479–511 (2001)
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