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Abstract. In the late 90’s, the standard perspective on how to model the
universe changed dramatically; observational data concerning supernovae, ob-

tained in 98–99, indicate that our universe is expanding at an accelerated rate.
As a consequence, it is of interest to prove that cosmological solutions to Ein-

stein’s equations with accelerated expansion are future stable. That is the

topic of the present contribution. The current standard models of the universe
include different types of matter, but it turns out that many of the essential

difficulties appear already in the vacuum setting. As a consequence, we here

focus on giving a rough outline of how to prove future stability in the case of
Einstein’s vacuum equations with a positive cosmological constant. However,

we also wish to give an overview of the stability results that have been obtained

more generally, and to give an idea of how to arrive at the conclusion that the
universe is expanding at an accelerated rate on the basis of observations.

1. Introduction

In the presence of a cosmological constant Λ, Einstein’s equations read

(1) G+ Λg = T,

where G is the Einstein tensor, T is the stress energy tensor, and g is the met-
ric. In Einstein’s heuristic derivation of his equations (based on an analogy with
the Poisson equation), there is no reason to prefer a specific value of Λ. Even
though certain non-zero values (ranges) have been preferred by various commu-
nities in the last hundred years, Λ = 0 has been the default choice for most of
this period. However, due to the observational data collected in the late 90’s, the
situation has changed. Even though cosmologists need not necessarily include a
cosmological constant in their models, a mechanism for inducing accelerated ex-
pansion is currently a standard ingredient when describing the universe. Due to
the corresponding shift towards solutions to Einstein’s equations with accelerated
expansion, it is of interest to address the question of stability in that setting. In the
present contribution, we wish to give an overview of results that have been obtained
on this topic. However, our main purpose is to give a sketch of the proof of future
stability in the case of Einstein’s vacuum equations with a positive cosmological
constant. It turns out that many of the essential difficulties arise already in this
setting. Due to the central role played by the supernova observations in justifying
the currently preferred models, we also devote one section to describing in what
sense the observations lead to the conclusion that the universe is expanding at an
accelerated rate.

1



2 HANS RINGSTRÖM

The outline of this contribution is as follows. In Section 2, we describe how the
observations of supernovae of type Ia can be used to limit the class of models con-
sistent with observations. In Section 3, we then describe previous results that have
been obtained on the topic of future stability in the case of accelerated expansion.
Finally, most of the contribution is devoted to a description of how to prove future
stability in the case of Einstein’s vacuum equations with a positive cosmological
constant. This is the subject of Section 4.

2. Observations

Background solutions. In order to be able to draw conclusions from the observa-
tions, it is necessary to first select a class of models in which the observations are to
be interpreted. In cosmology, the starting point is always the assumption of spatial
homogeneity and isotropy (i.e., the cosmological principle). However, it is also nec-
essary to specify the matter content in order to be able to proceed. Currently, the
preferred ingredients are ordinary matter (such as dust and radiation), dark matter
and dark energy. However, in practice, it is common to model the matter by dust, a
radiation fluid and a positive cosmological constant. Moreover, if one is interested
in the early universe, the radiation dominates over the dust (due to the relevant
scaling of the energy densities), so that one normally ignores the dust. Similarly, if
one is interested in the late time behaviour, the dust dominates over the radiation,
so that the radiation is normally ignored. The supernova observations are made in
the late time regime, so that it is common to ignore the radiation. To summarize,
the relevant metrics take the form

(2) g = −dt2 + a2(t)ḡΣ,

on M = I×Σ. Here I is an open interval, Σ is R3, H3 or S3 (or a quotient thereof),
and ḡΣ is the standard metric on Σ. The matter is modelled by dust (a perfect
fluid with vanishing pressure):

(3) T = ρmdt⊗ dt.

The associated matter equation is obtained by requiring that T be divergence free
with respect to the metric (2). The final ingredient of the model is a positive
cosmological constant Λ, so that the relevant form of Einstein’s equations is (1).

Drawing conclusions from the observations. The reason it is of interest to
study supernovae of type Ia is that they are expected to be standard candles.
What this means is that supernovae of type Ia have (approximately) a fixed peak
luminosity (amount of energy they emit per unit time in the form of electromagnetic
radiation when they are at their brightest), say L. Considering a supernova, it is
natural to measure its radiant flux (the electromagnetic energy that crosses a unit
area perpendicular to the line of sight per unit time) on earth, say F . Given these
quantities, one can define the luminosity distance according to

dL =

√
L

4πF
.

Given the above class of background solutions, it turns out to be possible to derive
an expression for dL in terms of

• H0 (the present value of the Hubble parameter),
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• the redshift of the supernova, and
• two parameters describing the matter content, say Ωm,0 and ΩΛ,0;

cf. [16, Chapter 5]. Here Ωm = c0ρm/H
2, where ρm is the energy density associated

with the dust, H = ȧ/a is the Hubble parameter, and c0 is an appropriately chosen
constant. Moreover, ΩΛ = c1Λ/H2, where c1 is a constant. The relevant values
of c0 and c1 are to be found in [16, Chapter 5]; they depend on the speed of light
and the gravitational constant, which we, for simplicity, have set equal to 1 here.
Finally, Ωm,0 and ΩΛ,0 denote the present values of Ωm and ΩΛ. In fact, there is,
for every Ωm,0 and ΩΛ,0, a function FΩm,0,ΩΛ,0

such that

(4) H0dL = FΩm,0,ΩΛ,0(z),

where z is the redshift of the emitting object. The observations can be used to
determine H0dL and z. Combining this information with (4) yields a curve in the
Ωm,0,ΩΛ,0-plane. However, the curves are different for different redshifts. Observ-
ing supernovae at different redshifts and using (4) then yields a limited region of
the Ωm,0,ΩΛ,0-plane which is consistent with observations.

On the basis of arguments of the above type, one is led to prefer models with a
positive cosmological constant and Euclidean spatial geometry. It should of course
be noted that there are other observational data supporting this conclusion. The
above description is somewhat brief, and the reader interested in more details is
referred to [16, Chapter 5].

3. Previous results

In the study of Einstein’s equations with a positive cosmological constant, de Sitter
space plays a prominent role due to its high degree of symmetry. Moreover, it
expands both to the future and to the past. It is therefore natural to begin by
proving that de Sitter space is stable (and not only future stable). In the case of
3 + 1 dimensions, this was done in the work of Helmut Friedrich; cf. [3]. Later,
he extended his results to include matter of Maxwell and Yang-Mills type; cf.
[4]. The arguments used to prove the results are based on Friedrich’s conformal
field equations. Since the conformal field equations and their uses are described
elsewhere in this volume, we shall not discuss this perspective further here. Even
though the relevant ideas are very elegant, they do not seem to be well adapted
to the problem of proving future stability in the presence of matter which does
not have nice conformal invariance properties. Moreover, there seems to be an
unnatural restriction on the dimension; even though the results of Friedrich have
been extended to higher dimensions in the work of Michael Anderson, cf. [1], there
is still the requirement that the spacetime dimension be even.

The current contribution is based on the ideas which were developed in [13] in the
hope of obtaining more robust methods. The particular case considered in [13] was
that of Einstein’s equations coupled to a non-linear scalar field. There were two
main reasons for considering this particular case. First of all, Einstein’s equation
with a positive cosmological constant are included as a special case. Since that
case had already been dealt with using the conformal methods of Friedrich, it was,
however, of interest to consider something more general. From a physics point of
view, non-linear scalar fields are a natural class of matter models. The reason for
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this is that even though the observations indicate the the universe is expanding at
an accelerated rate, various mechanisms are conceivable. A positive cosmological
constant is one possibility, but one can also use a non-linear scalar field to explain
the accelerated expansion. In the end, the methods developed in [13] turn out to
be quite robust (cf. the examples of generalizations given below), and since the
essential ideas are most easily explained in the case of Einstein’s vacuum equations
with a positive cosmological constant, we shall do so in Section 4.

3.1. The Einstein–non–linear scalar field system. Before proceeding, let us
write down the Einstein–non–linear scalar field system. It is given by

G =T,(5)

∇α∇αφ− V ′ ◦ φ =0,(6)

where T is the stress energy tensor associated with the non–linear scalar field:

Tαβ = ∇αφ∇βφ−
[

1

2
∇γφ∇γφ+ V ◦ φ

]
gαβ .

In the above expressions, V is a smooth function from R to itself, referred to as the
potential. In order to be able to proceed, it is necessary to make assumptions con-
cerning the potential. Various choices are of interest (cf. [11, 12] for a discussion),
but we shall here mainly be interested in the following cases.

Potentials with a positive non-degenerate minimum at the origin. Potentials of this
type are characterized by the conditions that V (0) > 0, V ′(0) = 0 and V ′′(0) > 0.
They were studied, e.g., in [13]. Note that by demanding that φ = 0, one obtains
Einstein’s vacuum equations with a positive comological constant. In order to have
something with which to compare, it is useful to write down a model solution. One
simple example is given by

φ =0,(7)

g =− dt2 + e2Htḡ,(8)

where g and φ are defined on R× Tn, ḡ is the standard metric on Tn, and

(9) H =

(
2V0

n(n− 1)

)1/2

.

For future reference, it is also of interest to introduce the terminology

(10) χ = V ′′(0)/H2.

In particular, solutions typically exhibit exponential expansion in this setting. As
is clear from the above, we do not require the spacetime dimension to be 4. The
reason for this is that some of the results hold for all spatial dimensions n ≥ 3, in
contrast with the arguments based on conformal methods.

Exponential potentials. Potentials of this type are characterized by the conditions
that

(11) V (φ) = V0e
−λφ,

where V0 > 0 and λ are constants, and

(12) 0 < λ < 2(n− 1)−1/2,
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where n is the space dimension. They were studied, e.g., in [7, 15]. In this case, a
natural model solution is given by

g = −dt2 + t2pḡ(13)

φ =
2

λ
ln t− 1

λ
c0,(14)

on R+ × Tn, where R+ = (0,∞), p > 1 is a constant and

λ =
2

[(n− 1)p]1/2
,(15)

c0 = ln

[
(n− 1)(np− 1)p

2V0

]
.(16)

Note that one obtains power law expansion, and that the restriction (12) has been
chosen so that the scale factor a(t) of the spatially homogeneous model solution
equals tp, with p > 1; in particular, 1/a is integrable.

3.2. Prototype results. In order to have something with which to compare, let
us give a rough formulation of a prototype result in the case of a potential with
a positive non-degenerate minimum at the origin. Before stating the result, note
that if γ(t) = [t, γ̄(t)] is a causal curve in R× Tn with respect to (8), then

−1 + e2Ht| ˙̄γ(t)|2 ≤ 0.

In particular

d[γ̄(0), γ̄(t)] ≤ 1

H

for t ≥ 0, where d denotes the standard topological metric on Tn. In particular,
there is a bound on how far an observer can travel in the spatial directions. As a
consequence, it is possible to obtain results which only involve local assumptions in
space, but yield global conclusions in time. To be more specific, let us assume the
following:

• We are given initial data to the Einstein–non–linear scalar field system
(Σ, ḡ, k̄, φ̄0, φ̄1); here Σ is an n-dimensional manifold; ḡ and k̄ are a Rie-
mannian metric and a symmetric covariant 2-tensor field on Σ respectively;
and φ̄0, φ̄1 are smooth functions on Σ. Moreover, these objects satisfy the
relevant constraint equations.
• On a sufficiently large ball, say B4r0(p), the initial data (expressed with

respect to suitable coordinates) are close enough to those of the model
solution defined by (7) and (8).

Let (M, g, φ) be the maximal globally hyperbolic development of the initial data
and i : Σ → M be the corresponding embedding. Then we obtain the following
conclusions:

• The causal geodesics in (M, g) which start in i[Br0(p)] are future complete.
• There is a region U , containing J+{i[Br0(p)]}, in which it is possible to

write down detailed asymptotics for the metric, second fundamental form,
and the scalar field.
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Clearly, the above is a rough formulation. Readers interested in a mathematically
precise statement are referred to [13, Theorem 2, pp. 131–132]. Finally, let us point
out that there are results of this type for general spatial dimensions n ≥ 3.

In the case of an exponential potential, it is still true that causal curves can only
travel a finite distance in the spatial directions (given the condition (12)). As a
consequence, there is a similar result in that case; cf. [15, Theorem 2, pp. 160–161].

Stability of spatially homogeneous solutions. Combining results of the above type
with an analysis of spatially homogeneous solutions and Cauchy stability, it is
possible to derive stability results for spatially locally homogeneous solutions. To
give an example of results of this type, let us state a slightly reformulated version
of [13, Theorem 4, pp. 134–135]:

Theorem 1. Let V be a smooth function such that V (0) = V0 > 0, V ′(0) = 0
and V ′′(0) > 0. Let H, χ > 0 be defined by (9) and (10) respectively, let M
be a connected and simply connected 3-dimensional manifold and let (M, g, k) be
initial data to Einstein’s equations with a positive cosmological constant Λ = 3H2.
Assume, furthermore, that one of the following conditions are satisfied:

• M is a unimodular Lie group different from SU(2) and g and k are left
invariant under the action of this group.
• M = H3, where H3 is 3-dimensional hyperbolic space, and the initial data

are invariant under the full isometry group of the standard metric on H3.
• M = H2×R and the initial data are invariant under the full isometry group

of the standard metric on H2 × R.

Assume finally that trgk > 0. Let Γ be a cocompact subgroup of M in the case
that M is a unimodular Lie group and a cocompact subgroup of the isometry group
otherwise. Let Σ be the compact quotient. Then (Σ, g, k) are initial data. Make a
choice of Sobolev norms ‖ · ‖Hl on tensorfields on Σ. Then there is an ε > 0 such
that if (Σ, ρ, κ, φ0, φ1) are initial data for (5) and (6) satisfying

‖ρ− g‖H4 + ‖k − κ‖H3 + ‖φ0‖H4 + ‖φ1‖H3 ≤ ε,
then the maximal globally hyperbolic development corresponding to (Σ, ρ, κ, φ1, φ0)
is future causally geodesically complete and there are expansions of the form given
in the statement of [13, Theorem 2, pp. 131–132] to the future.

Remark 1. The restriction that the spatial dimension be 3 is due to the fact that
the proof is based on a 3 + 1-dimensional result concerning the future asymptotics
of spatially homogeneous solutions. Given sufficient information concerning the
future asymptotics of a spatially homogeneous solution in higher dimensions, we
would obtain an analogous stability result concerning that solution.

Remark 2. The reader interested in an explanation for the additional restrictions
imposed (that M not be isomorphic to SU(2) etc.) is referred to [13].

3.3. Previous results. We are now in a position to describe results that have
been obtained in the past. To begin with, there are the results by Friedrich and
Anderson [1, 3, 4] which we have already discussed (see also Friedrich’s contribution
to the present volume). In the case of a potential with a positive non-degenerate
minimum, we have desribed the main results in Subsection 3.2. When the potential
has special properties, the conformal methods of Friedrich also apply to this case;
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cf. [5]. Results analogous to those described in Subsection 3.2 hold in the case of an
exponential potential; cf. [15, Theorem 2, pp. 160–161] and [15, Theorem 3, p. 162].
However, it is of interest to note that stability results in this setting have also been
obtained in [7] (prior to the appearance of [15]); cf., in particular, [7, Theorem 1,
pp. 2-3]. The results of [7] are based on a combination of Kaluza-Klein reduction
and appealing to the stability of higher dimensional de Sitter spaces (cf. [1]). In
other words, the methods are very different from those used in [15]. However, there
is an associated restriction; the methods of [7] only apply for a discrete set of λ-
values (cf. (11) and [7, (6), p. 2]), whereas [15] applies for all λ of the form (15)
with p > 1.

The Einstein–Maxwell–non–linear scalar field setting. It is of interest to prove
results of the type described in Subsection 3.2 in the case of the Einstein–Maxwell–
non–linear scalar field system. In the case of a potential with a positive non-
degenerate local minimum, this is done in [19]. The case of an exponential potential
is considered in [9].

The Einstein–Euler system. The study of the Einstein–Euler system with a positive
cosmological constant was initiated in [17]. In this paper, the authors study the
irrotational case under the assumption that the equation of state takes the form
p = cρ, where 0 < c < 1/3; here p is the pressure and ρ is the energy density. In
particular, dust (corresponding to p = 0) and radiation (p = ρ/3) are excluded. In
the case of T3 spatial topology, the authors prove future global non-linear stability
of spatially homogeneous and isotropic solutions. In particular, it is of interest to
note that no shocks form in the evolution. The authors do not prove results similar
to those described in Subsection 3.2, but by combining ideas from [17] and [13], it
should be possible to do so. The method of proof used in [17] is partly based on [13]
(as far as dealing with the metric components is concerned). However, the analysis
of the matter requires new ideas. In the irrotational case, the matter is described
by one scalar function Φ, but the equation for Φ has a different symbol than the
equations for the metric components. Moreover, it is a non-trivial issue to verify
that the symbol does not degenerate in the course of the evolution.

It is of interest to ask if similar results can be obtained in the general case. That
the answer to this question is yes is demonstrated in [18]. In the general setting,
the relevant equations are a system of wave equations for the metric components,
coupled to a system of first order equations for the matter fields. Nevertheless, it
turns out to be possible to construct suitable energy currents in order to deal with
the matter fields.

As mentioned earlier, dust and radiation fluids are excluded in the results described
above. However, such fluids are important in the solutions physicists use to model
the universe. Interestingly, the case of a radiation fluid is suited to a treatment
using conformal methods. In fact, future stability of the FLRW models has been
demonstrated in the case of Einstein’s equations with a positive cosmological con-
stant, coupled to a radiation fluid; cf. [8]. Finally, the case of dust and a positive
cosmological constant has been treated in [6]. Note that of all the matter models
discussed above, dust is the most relevant; the matter content is expected to behave
as dust in the expanding direction.
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The Einstein–Vlasov–non–linear scalar field system. Results analogous to those
described in Subsection 3.2 have also been obtained in the case of the Einstein–
Vlasov–non–linear scalar field system; cf. [16]. The relevant type of potential
to which the results apply is one with a positive non–degenerate local minimum.
In particular, the Einstein–Vlasov system with a positive comological constant is
contained as a special case. Moreover, it is possible to use Vlasov matter to ap-
proximate dust and radiation fluids; cf. [16, Chapter 28]. As a consequence, future
stability of models consistent with observations is contained as a special case of the
results of [16]. A separate topic which is discussed in [16] is that of the restric-
tions on the topology of the universe imposed by observations. Given the current
preference for spatially flat model solutions, the constructions provided in [16] in-
dicate that there are no restrictions. Since we have discussed this topic at length
elsewhere, we shall not do so here, but rather refer the reader interested in more
details to [16, Section 7.9].

Stability of spatially inhomogeneous solutions, the cosmic no–hair conjecture. The
above results yield future stability of large classes of spatially homogeneous so-
lutions. However, it is also of interest to consider inhomogeneous solutions. In
the case of the Einstein–Vlasov equations with a positive cosmological constant, it
turns out to be possible to analyze the future asymptotics under the assumption of
surface symmetry and under the assumption of T3-Gowdy type symmetry; cf. [20]
and [2]. Moreover, [2] contains a proof of future stability of the T3-Gowdy sym-
metric solutions in the class of all solutions. The analogous problem in the case of
surface symmetry is considered in [10]. One reason results of this type are interest-
ing is that the relevant symmetry classes are such that both significant anisotropies
and significant spatial inhomogeneities are allowed. However, due to the results of
[20, 2], these anisotropies and spatial inhomogeneities vanish asymptotically from
the point of view of observers. In fact, the solutions appear de Sitter like to late
time observers. Moreover, the stability results indicate that this is not just a feature
of the symmetric solutions, since it persists under perturbations. In particular, the
evolution associated with Einstein’s equations is such that the solutions tend to
homogenize and isotropize from the point of view of the observers. This is clearly
a desirable feature, given that the currently preferred models of the universe are
spatially homogeneous and isotropic. Finally, let us point out that the expectation
that solutions to Einstein’s equations with a positive cosmological constant should
appear de Sitter like to late time observers goes under the name of the cosmic
no–hair conjecture; cf., e.g., [2] for a precise formulation of the conjecture.

4. Sketch of proof of future stability, vacuum setting

Let us now sketch the proof of stability of the solution

g = −dt2 + e2Htḡ

to Einstein’s vacuum equations with a cosmological constant Λ = n(n − 1)H2/2;
here ḡ is the standard flat metric on Tn, H > 0 is a constant, and the metric is
defined on R×Tn. In order to obtain a hyperbolic system of equations to which the
appropriate analysis tools can be applied, it is necessary to make a gauge choice.
There are of course many ways of doing so, but we shall here use gauge source
functions. The idea underlying this perspective is the following. Note, first of all,
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that the Ricci tensor can be written

(17) Rµν = −1

2
gαβ∂α∂βgµν +∇(µΓν) +gαβgγδ[ΓαγµΓβδν +ΓαγµΓβνδ+ΓαγνΓβµδ].

In this equation,

Γαγβ =
1

2
(∂αgβγ + ∂βgαγ − ∂γgαβ),

Γν =gαβΓανβ ,

∇µΓν =∂µΓν − ΓαµνΓα.

Moreover, a parenthesis denotes symmetrization. In other words,

∇(µΓν) =
1

2
(∇µΓν +∇νΓµ).

The equation we wish to solve is (1) with T = 0. This equation can be reformulated
to

(18) Rµν =
2

n− 1
Λgµν .

Considering (17), it is clear that if the second term on the right hand side were
absent, then (18) would be a system of hyperbolic partial differential equation
for the metric components. The idea of using gauge source functions is then the
following:

• Replace the Γν appearing in (17) by some other functions, say Fν ; we shall
refer to the functions Fν as the gauge source functions. Assuming the Fν
only to depend on the spacetime coordinates and the metric components
(but not on their derivatives), the corresponding modified Ricci tensor is a
hyperbolic differential operator acting on the components of the metric, so
that (18) is a hyperbolic system of equations.

• Let R̂µν denote the object obtained when replacing Γν by Fν in (17). In
other words,

R̂µν = Rµν +∇(µDν),

where

Dµ = Fµ − Γµ.

• Due to the assumptions concerning Fν , solving the equation

(19) R̂µν =
2

n− 1
Λgµν

locally is a matter of standard PDE theory.
• The equation (19) and the Bianchi identities imply that Dν satisfies a ho-

mogeneous wave equation.
• Setting up the initial data for (19) correctly (appropriate requirements are

that Dν should vanish initially and that the constraint equations should be
satisfied initially), it can be verified that the initial data for Dν vanish; note
that Dµ could vanish initially without the normal derivative of Dµ vanishing
initially. Since Dν satisfies a homogeneous wave equation, we conclude that
Dν = 0 whenever the solution to (19) is defined. As a consequence, we
obtain a solution to (18).
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The above description is a bit brief. The reader interested in a somewhat longer
explanation (of an overview character) is referred to [16, Chapter 2]. Readers
interested in the technical details are referred to [14, Chapter 14].

Global considerations. As far as local considerations are concerned, the particu-
lar choice of gauge source functions is not important. However, we are interested in
proving future global existence, and in that context, the choice is important. There
are of course many possibilities, but the most naive possibility would be to choose
the gauge source functions to be the contracted Christoffel symbols of the back-
ground. Even so, there are, however, two different choices; we could choose equality
with indices upstairs or with indices downstairs. It turns out to be convenient to
choose equality with indices downstairs; i.e.,

(20) Fν = nHg0ν .

The reason this choice is convenient is that it gives rise to a damping term in the
equations. The question is then: are the equations (19), given the choice (20) of
gauge source functions, appropriate for proving future stability? In order to develop
some intuition concerning this question, it is useful to consider the equations that
arise when the terms in the equations containing two or more factors that vanish on
the background have been removed. Considering, for example, the 00-component
of (19), it reads

−1

2
gαβ∂α∂βg00 +

1

2
nH∂0g00 + nH2 −Hgij∂0gij + 2Hgij∂igj0 + ∆A,00 = nH2g00,

where ∆A,00 consists of terms that are quadratic in expressions that vanish on the
background; cf. [13, pp. 154–157]. Clearly, it would be preferable to have a simpler
equation. Moreover, if we replace gαβ by the background metric in the first term,
replace gij , g

ij and gj0 by their background values in the fourth and fifth terms,
and if we remove ∆A,00, then the resulting equation reads

1

2
∂2

0g00 −
1

2
e−2Ht∆g00 +

1

2
nH∂0g00 − nH2(g00 + 1) = 0,

where ∆ denotes the standard Laplacian on Tn. This equation can be rewritten

∂2
0(g00 + 1)− e−2Ht∆(g00 + 1) + nH∂0(g00 + 1)− 2nH2(g00 + 1) = 0.

Note that there are exponentially growing spatially homogeneous solutions to this
equation. On the other hand, we would like g00 + 1 to converge to zero (preferably
exponentially). To conclude, to choose the equation (19) does not seem to be a good
idea. However, there is still a freedom in modifying the equations. In particular,
adding multiples of Dν to the equations is allowed. It turns out to be convenient
to consider

R̂µν −
2

n− 1
Λgµν +Mµν = 0,

where

M00 = −2Hg0λDλ, M0i = 2HDi, Mij = 0.

With this choice, it turns out that the equations can be written

−gαβ∂α∂βu+ (n+ 2)H∂0u+ 2nH2u+ ∆00 =0(21)

−gαβ∂α∂βg0m + nH∂0g0m + 2(n− 2)H2g0m − 2HgijΓimj + ∆0m =0(22)

−gαβ∂α∂βhij + nH∂0hij + ∆ij =0,(23)
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where ∆µν are quadratic in terms that vanish on the background, u = g00 + 1 and
hij = e−2Htgij ; cf. [13, Lemma 14, p. 171]. Replacing gαβ with the corresponding
object for the background, and removing ∆00, the equation (21) becomes

∂2
0u− e−2Ht∆u+ (n+ 2)H∂0u+ 2nH2u = 0.

It can quite easily be demonstrated that solutions to this equation decay to zero
exponentially. Modifying (23) similarly, one concludes that hij converges expo-
nentially. Finally, modifying (22) similarly, and assuming hij to converge at the
appropriate rate, one can conclude that g0m converges exponentially. On this naive
level, the choice (21)–(23) thus seems to be appropriate.

Bootstrap argument. The essence of the proof of future stability is a bootstrap
argument; assuming that certain bootstrap assumptions are fulfilled (concerning u,
g0m and hij) on a time interval, say [0, T ], the idea is to improve the bootstrap
assumptions on this time interval (given that the initial data are close enough to
those of the background). If it is possible to improve the bootstrap assumptions, it
follows that they hold for the entire future. In particular, the argument yields future
global existence. Moreover, the knowledge concerning the asymptotics can later on
be improved in order to obtain detailed information concerning the behaviour of
solutions.

The bootstrap assumptions can be divided into two groups. The first group consists
of assumptions concerning the metric gµν in the supremum norm. To begin with,
it is important to make sure that gµν are the components of a Lorentz metric in
the course of the evolution. However, it is also natural to make assumptions that
are adapted to the expected asymptotic behaviour. Judging by the background
solution, u should be small and gij should expand as e2Ht. Moreover, g0m should
be small. In the end, it turns out that g0m converges, but that only follows by a
rather complicated argument carried out a posteriori. Moreover, it is not natural
to assume that g0m is bounded (as part of the bootstrap assumptions). The reason
for this is that there is a natural scaling associated with the number of downstairs
spatial indices in the expressions that have to be estimated; it is natural to associate
a factor of eHt with each downstairs spatial index. The natural way to state that
g0m is small is to say that e−Htg0m is small; in practice this corresponds to saying
that gijg0ig0j is small, or that the one form field g(∂t, ·) is small relative to the
Riemannian metric induced on the constant t hypersurfaces by g. To summarize,
the first group of bootstrap assumptions consists of the requirements that u be
small, that hij remain equivalent to the Kronecker delta δij , and that e−Htg0m be
small (in fact, we require e−Htg0m not only to be small, but also to be exponentially
decaying).

The second group of bootstrap assumptions consists of the requirements that certain
energies associated with u, g0m and hij are small. The relevant energies for u and
g0m are given by

El,k =
1

2

∑
|α|≤k

∫
Tn

{(∂α∂tu)2 + gij∂α∂iu∂
α∂ju+H2(∂αu)2}dx,(24)

Es,k =
1

2

∑
|α|≤k

∑
i

∫
Tn

[(∂α∂tg0i)
2 + glm∂α∂lg0i∂

α∂mg0i +H2(∂αg0i)
2]dx.(25)
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The energy for hij is somewhat different, since hij is expected to converge. Note
that in order for these energies to make sense it is necessary to make assumptions
concerning the metric; this is one of the reasons for dividing the bootstrap assump-
tions into two groups. The second group of bootstrap assumptions concerning u
and g0m then consists of the requirement that

(26) e2aHtEl,k + e−2Ht+2aHtEs,k ≤ ε2

for some small parameter ε, where a > 0 is an appropriately chosen parameter.
The assumption concerning hij is somewhat more technical, but it is similar in
character.

Enery estimates. The main step in improving the bootstrap assumptions consists
of improving the estimates for the energies. In order to do so, we need to construct
energies that are roughly of the form (24) and (25), but which are adapted to the
equations (21)–(23). For appropriate choices of constants γ and δ, it turns out that
basic energies of the form

(27) Eγ,δ[v] =
1

2

∫
Tn

[−g00(∂0v)2 + gij∂iv∂jv − 2γHg00v∂0v + δH2v2]dx

are appropriate. In fact, if v satisfies the equation

(28) −gαβ∂α∂βv + αH∂0v + βH2v = F,

where α, β > 0, then the constants γ and δ can be chosen so that Eγ,δ[v] is equivalent
to ∫

Tn

[(∂0v)2 + gij∂iv∂jv +H2v2]dx.

Moreover,

dEγ,δ
dt
≤ −ηHEγ,δ +

∫
Tn

{(∂0v + γHv)F + ∆E,γ,δ[v]}dx,

where η > 0 is a constant, and ∆E,γ,δ[v] is an ’error term’ which can be controlled
(see below). In the process of improving the bootstrap assumptions, we need to
take higher derivatives into account, and then we need to consider

Ek =
∑
|α|≤k

Eγ,δ[∂αv].

However, up to a commutator term,

[gαβ∂α∂β , ∂
γ ]v,

∂γv satisfies the same equation as v, so that the same energy estimates can be
applied. In fact,

dEk
dt
≤− ηHEk +

∑
|α|≤k

∫
Tn

{(∂0∂
αv + γH∂αv)(∂αF + [−gµν∂µ∂ν , ∂α]v)

+ ∆E,γ,δ[∂
αv]}dx.

(29)

Estimates. As mentioned above, the main step in improving the bootstrap as-
sumptions consists of improving the estimates for the energies. The main tool in
obtaining this improvement is (29). In order to be able to use this estimate, we
need to estimate

‖∆E,γ,δ[∂
αv]‖L1 , ‖[−gµν∂µ∂ν , ∂α]v‖L2 , ‖∂α∆µν‖L2 ,
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where ∆µν is the ’error term’ that appears in (21)–(23). In these expressions, v is
one of u, g0m or hij . It turns out that the terms that need to be estimated are quite
involved; cf. [13, pp. 154–158] for details. Moreover, the different metric compo-
nents (and derivatives thereof) that appear in the expressions have very different
asymptotic behaviour; g00 should be expected to tend to −1 exponentially, g0m

should a priori be expected to tend to infinity exponentially, and gij should tend to
infinity as e2Ht. Due to the sheer number of terms in the expressions that need to
be dealt with, it is extremely important to develop a systematic way of estimating
them. There are several aspects to this problem. One aspect is the specific appear-
ance of the terms; this is not something that much can be done about. Another
aspect is the choice of bootstrap assumptions. As mentioned earlier, it is in the
end possible to prove that u converges to zero exponentially, that g0m converges
to a (typically non-zero) limit exponentially to the future, and that hij converges
exponentially. However, the estimates for the ’error terms’ become quite compli-
cated if one phrases the bootstrap assumptions in a way that naturally incorporates
such asymptotics (moreover, it is very difficult to improve bootstrap assumptions
for g0i that involve a bound; i.e., no exponential growth). In the end, the choice of
bootstrap assumptions is such as to make a systematic estimate of the ’error terms’
as easy as possible. In particular, the choice is not motivated by a desire to obtain
the correct asymptotics immediately from the bootstrap assumptions.

System of differential inequalities. Once the terms ∆µν etc. have been esti-
mated and the relevant energies have been defined, it is possible to derive a system
of differential inequalities for the energies. The system one obtains is the following
(assuming that the bootstrap assumptions hold):

dĤl,k

dt
≤− 4aHĤl,k + CHεe−aHtĤ

1/2
k Ĥ

1/2
l,k ,(30)

dĤs,k

dt
≤− 4aHĤs,k + CHĤ

1/2
m,kĤ

1/2
s,k + CHεe−aHtĤ

1/2
k Ĥ

1/2
s,k ,(31)

dĤm,k

dt
≤He−aHtĤm,k + CHεe−aHtĤ

1/2
k Ĥ

1/2
m,k.(32)

In these inequalities, a and ε are the same parameters that appear in the bootstrap
assumption (26). In order to define the energies Ĥl,k and Ĥs,k, one proceeds as
follows. Consider (21) and (22). These equations are of the form (28). As a
consequence, it is possible to associate appropriate γ’s and δ’s with them and to
construct energies Ek as described above. The Ĥl,k and Ĥs,k are then appropriately
rescaled versions of these energies. In particular, if γl and δl are the constants
associated with (21) according to the above scheme, then

Ĥl,k = H−2e2aHt
∑
|α|≤k

Eγl,δl [∂
αu].

Similarly,

Ĥs,k = H−2e−2Ht+2aHt
∑
i

∑
|α|≤k

Eγs,δs [∂
αui].

The definition of the energy Ĥm,k is slightly different, but similar. Finally,

Ĥk = Ĥl,k + Ĥs,k + Ĥm,k.
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In order to develop some intuition for the differential inequalities, it is useful to
compare them with the equations (21)–(23). Considering (21), this equation should
yield exponential decay (up to some ’error terms’). This intuition should be com-
pared with (30); the first term on the right hand side corresponds to the expected
exponential decay. However, there is an error term, corresponding to the second
term on the right hand side. Consider (22). If it were not for the second to last
term on the left hand side of this equation, we would expect the same structure in
the differential inequality for Ĥs,k. However, the term −2HgijΓimj does make a
difference. In fact, it gives rise to the second term on the right hand side of (31).
Note that this is the most problematic term in the system of differential inequalities;
if we were not to distinguish between the different components of the energy, this
term would read CHĤk, and it would make it impossible to improve the bootstrap
assumptions. Finally, consider (23). This equation is such that one does not expect
convergence to zero of hij . However, one does expect the energy to converge to a
non-zero number. This expectation fits well with (32).

Proving future stability; improving the bootstrap assumptions. The main
step in proving future global non-linear stability consists of improving the bootstrap
assumptions. Moreover, the main bootstrap assumption is essentially equivalent to

(33) Ĥk0
(t) ≤ ε2

on some time interval, say [0, T ]; here k0 is an integer strictly larger than n/2 + 1.
In other words, this is the estimate we need to improve. In order for this to be
possible, we clearly have to have a strict inequality at t = 0. In fact, we shall
assume

Ĥk0(0) ≤ c20ε2

for some constant c0 ∈ (0, 1). The tool relevant for improving the bootstrap as-
sumptions is the system of differential inequalities (30)–(32). The most naive way to
proceed would be to add the differential inequalities in order to obtain a differential
inequality for Ĥk. However, the resulting inequality would be of the form

dĤk

dt
≤ CĤk,

where C ≥ 0 is an unknown constant. Clearly, this is not useful in improving the
bootstrap assumptions. On the other hand, combining the differential inequality
for Ĥl,k with the bootstrap assumption yields

dĤl,k0

dt
≤ CHε3e−aHt.

This inequality can be integrated to

Ĥl,k0
(t) ≤ Ĥl,k0

(0) + Ca−1ε3 ≤ c20ε2 + Ca−1ε3.

Clearly, we can thus assume Ĥl,k0
to be as small a factor as we wish times ε2

(by assuming c0 and ε to be small enough). Similarly, it is possible to improve

the estimates for Ĥm,k0 . Finally, once these improvements have been obtained,

it is possible to use (31) in order to improve the estimate for Ĥs,k0
. Adding up

arguments of the above type yields an improvement of the bootstrap assumptions,
and as a consequence future global existence follows. Moreover, using the fact that
the bootstrap assumptions hold for the entire future, it is possible to derive more
detailed asymptotics. However, we omit the details.
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