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Abstract

In the subject of cosmology, spatially homogeneous solutions are often used to model the
universe. It is therefore of interest to ask what happens when perturbing into the spatially
inhomogeneous regime. To this end, we, in the present paper, study the future asymptotics of
solutions to Einstein’s vacuum equations in the case of T2-symmetry. It turns out that in this
setting, whether the solution is spatially homogeneous or not can be characterized in terms
of the asymptotics of one variable appearing in the equations; there is a monotonic function
such that if its limit is finite, then the solution is spatially homogeneous and if the limit is
infinite, then the solution is spatially inhomogeneous. In particular, regardless of how small
the initial perturbation away from spatial homogeneity is, the resulting asymptotics are very
different. Using spatially homogeneous solutions as models is therefore, in this class, hard to
justify.

1 Introduction

Let us proceed directly to a formulation of the equations we are interested in and then describe the
results; the reader interested in a motivation of the choice of equations is referred to Subsection 1.1.

The T2-symmetric spacetimes. There are various geometric ways of imposing T2-symmetry;
cf., e.g., [7]. However, we shall here simply take the metric form and the equations as given in [7]
as a starting point. Setting the constant λ appearing in [7, (2.3), p. 120] to 1 (which can be done
without loss of generality), the metric can be written

g = e2(ν−U)(−αdt2+dθ2)+e2U [dx+Qdy+(G+QH)dθ+(M+QN)dt]2+e−2U t2(dy+Hdθ+Ndt)2;

cf. [7, (2.3), p. 120] (in which we have renamed some of the variables; A to Q etc.). We shall
here prefer to use P and λ instead of U and ν, the relation between the different variables being
e2U = teP and αe2(ν−U) = t−1/2eλ/2. The metric then takes the form

g = t−1/2eλ/2(−dt2+α−1dθ2)+teP [dx+Qdy+(G+QH)dθ+(M+QN)dt]2+te−P (dy+Hdθ+Ndt)2

(1)
on I × T3. Here I is an open interval contained in (0,∞), t ∈ I and (θ, x, y) ∈ T3. Moreover,
the functions appearing only depend on t and θ. In particular, there is a T2-group of isometries
obtained by translation in x and y. The time coordinate t is referred to as an areal coordinate,
since the area of the orbit obtained by applying the T2-action to (t, θ, x, y) is proportional to t.
There are several subclasses of this class of metrics. To begin with, the set of T3-Gowdy symmetric
metrics are obtained by setting H = G = M = N = 0 and α = 1 (in fact, M and N can be set
to zero in general). Moreover, the set of polarised metrics are obtained by setting Q = 0 (this
corresponds to ∂x and ∂y being orthogonal). Note that the future asymptotics of the T3-Gowdy
vacuum solutions have already been analysed in some detail in [24]. In the present paper, we shall
therefore focus on the general T2-symmetric case.
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Equations. In vacuum, Einstein’s equations take the form

Ptt +
1

t
Pt − αPθθ =

αθ
2
Pθ +

αt
2α
Pt + e2P (Q2

t − αQ2
θ)−

eP+λ/2K2

2t7/2
, (2)

Qtt +
1

t
Qt − αQθθ =

αθQθ
2

+
αtQt
2α
− 2 (QtPt − αQθPθ) , (3)

αt
α

= −e
P+λ/2K2

t5/2
, (4)

λt = t[P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)]−
eP+λ/2K2

t5/2
, (5)

λθ = 2t(PtPθ + e2PQtQθ), (6)

∂t

[
tα−1/2

(
λt − 2

αt
α
− 3

t

)]
= ∂θ(tα

1/2λθ)− tα−1/2[P 2
t + e2PQ2

t − α(P 2
θ + e2PQ2

θ)] (7)

−2α−1/2 e
P+λ/2K2

t5/2
+ α−1/2λt,

where K is a constant (and K = 0 corresponds to T3–Gowdy); cf. [7, (2.4) and (2.5), p. 120]. In
addition

Nθ = Ht −
α−1/2eP+λ/2K

t5/2
, (8)

Mθ = Gt +Q(Ht −Nθ); (9)

cf. [7, (2.6), p. 120]. In (8) and (9), M and N can be considered to be given, and H and G are
obtained by integrating the equations.

Considering (2)–(7), it can be verified that (7) is a consequence of (2)–(6). We shall therefore
consider (2)–(6) to be the fundamental equations. It is also of interest to note that if we let h be
the left hand side of (6) minus the right hand side, and if we assume (2)–(5) to hold, then

∂th =
1

2

αt
α
h.

In other words, if we solve (2)–(5) with initial data satisfying (6), then (2)–(6) are satisfied on the
maximal interval of existence. In this sense, (6) can be thought of as a constraint. Due to the
results of [7], it is known that the existence interval of solutions to (2)–(6) are of the form (t0,∞),
where t0 ≥ 0.

Pseudo-homogeneity. Considering the equations (2)–(6), it is natural to slightly generalise the
notion of spatial homogeneity. In fact, we say that a solution to (2)–(6) is pseudo-homogeneous
if P , Q and λ are independent of θ; note that α only enters the equations for P , Q and λ in
the combination αt/α (assuming Pθ and Qθ to be zero), and that αt/α can be expressed solely in
terms of P , λ, K and t. In addition, multiplying α in a pseudo-homogeneous solution by a positive
function depending only on θ yields a new pseudo-homogeneous solution. In fact, every pseudo-
homogeneous solution can be obtained from a spatially homogeneous solution by performing such
an operation; given a pseudo-homogeneous solution, α can be written α(t, θ) = f1(θ)f2(t) for two
positive functions f1 : S1 → R+ and f2 : (t0,∞)→ R+, where R+ = (0,∞).

Results. The main result of the paper is a characterisation of the pseudo-homogeneous solutions
with K 6= 0 in terms of the asymptotics. One particular consequence of the characterisation
is that the pseudo-homogeneous solutions are unstable in the class of all solutions. However,
before giving a precise formulation of the result, let us put it into context by first describing
some subclasses of solutions. To begin with, let us focus on the polarised setting, and let us start
with the easiest possible subcase of the above equations: the polarised, spatially homogeneous
T3-Gowdy symmetric setting; i.e., α = 1, Q = 0, K = 0, G = H = M = N = 0 and vanishing
spatial variation. The relevant equation for P is then ∂t(tPt) = 0, with the solutions P = a ln t+b,
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where a, b ∈ R. Adding spatial variation, the relevant equation for P is

Ptt +
1

t
Pt − Pθθ = 0. (10)

A solution to this equation can be written

P (t, θ) = a ln t+ b+ t−1/2ν(t, θ) + ψ(t, θ), (11)

where a, b ∈ R, ν is a solution to the flat space wave equation with zero average, i.e.,

νtt − νθθ = 0,

∫
S1
ν(·, θ)dθ = 0,

and ψ and all its derivatives are O(t−3/2). Moreover, ψ has zero average. It is also of interest
to note that, given a, b and ν satisfying the above conditions, there is a unique solution to (10)
with asymptotics of the form (11). In other words, a, b, and ν can be thought of as ’data at
future infinity’. The interested reader is referred to [18, 22] for a justification of these statements.
In short, the leading order behaviour in the solution (the spatially homogeneous behaviour) is
the same, which is not so surprising. However, as we shall explain below, the seemingly minor
difference in P causes a significant difference in λ. Turning to the polarised T2-solutions, the
relevant equations are given by (2) and (4)–(6) with Q set to zero. Given a pseudo-homogeneous
solution to these equations, there are cP , cλ ∈ R, α∞ ∈ C∞(S1,R+) and r∞ ∈ (−3, 1) such that

lim
t→∞

α(t, θ) = α∞(θ), lim
t→∞

|P (t)− r∞ ln t− cP | = 0, lim
t→∞

|λ(t)− r2
∞ ln t− cλ| = 0;

cf. Lemma 11. Moreover, this asymptotic information uniquely determines a corresponding po-
larised pseudo-homogeneous solution; cf. Proposition 14. It is of interest to know what happens
when one perturbs the initial data corresponding to a pseudo-homogeneous solution. Unfortu-
nately, we have been unable to derive complete asymptotics, but we have obtained the following
partial results.

Proposition 1. Let (Pbg, αbg, λbg) be a pseudo-homogeneous polarised solution to (2) and (4)–
(6) with K 6= 0. Assuming that the relevant existence interval is (t0,∞) for some t0 ≥ 0, fix
ta ∈ (t0,∞). Let C be the set consisting of non-pseudo-homogeneous polarised solutions (P, α, λ)
to (2) and (4)–(6) such that

• (P, α, λ) has the same K 6= 0 as (Pbg, αbg, λbg),

• ta belongs the existence interval of (P, α, λ).

Then there is an ε > 0 such that if (P, α, λ) ∈ C satisfies

‖(P − Pbg)(ta, ·)‖C1 + ‖∂t(P − Pbg)(ta, ·)‖C0 + ‖(α− αbg)(ta, ·)‖C1 + ‖(λ− λbg)(ta, ·)‖C0 ≤ ε,

then there is a time sequence tk →∞, k = 1, 2, . . . , such that

lim
t→∞

‖α(t, ·)‖C0 = 0, (12)

lim
t→∞

∥∥∥∥P (t, ·)
ln t

+ 1

∥∥∥∥
C0

= 0, (13)

lim
k→∞

∥∥∥∥λ(tk, ·)
ln tk

− 5

∥∥∥∥
C0

= 0. (14)

Remark 2. In related work, Philippe G. LeFloch and Jacques Smulevici have found more de-
tailed asymptotics for solutions in the polarised setting, assuming one starts close enough to the
asymptotic regime [19].
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The proof of the proposition is to be found at the end of Section 13.

In other words, regardless of how close the initial data are to those of the background, the
asymptotic behaviour is quite different (assuming that the initial data are not those of a pseudo-
homogeneous solution). It is also of interest to note that if the limit of P/ ln t is r∞ for a pseudo-
homogeneous solution, then the limit of λ/ ln t is r2

∞. Considering (13) and (14), it is clear that
the perturbed solutions exhibit quite different behaviour. However, the difference which is, in our
opinion, the most important, is that α converges to zero uniformly. It would be desirable to prove
that this is a general feature of (not necessarily polarised) solutions to (2)–(6). Unfortunately, we
have not been able to obtain such a result. However, we have been able to prove that 〈α−1/2〉 → ∞
as t → ∞, assuming that the solution is non-pseudo-homogeneous; cf. Remark 4 below for an
explanation of the notation. In fact, the main result of the paper is the following.

Theorem 3. Consider a solution to (2)–(6) on (t0,∞) with K 6= 0. If 〈α−1/2〉 is bounded, the
solution is pseudo-homogeneous.

Remark 4. In the statement of the theorem, we use the notation

〈f〉 =
1

2π

∫
S1
f(θ)dθ (15)

for functions on S1. If f is a function on (t0,∞)× S1, we use the same notation, and consider the
result to be a function on (t0,∞).

Remark 5. Since 〈α−1/2(t, ·)〉 increases with t, we conclude (in the non-pseudo-homogeneous
case) that this quantity converges to ∞ as t→∞.

Remark 6. This result clearly separates the pseudo-homogeneous solutions from the remaining
solutions (in the K 6= 0 case). It also separates the T3-Gowdy symmetric solutions from the
general T2-symmetric solutions.

Remark 7. In the case of a positive cosmological constant, it is very easy to prove that α converges
to zero (with an optimal rate); cf. [6].

The proof is to be found at the end of Subsection 12.3.

It is of interest to summarise the conclusions concerning stability that have been obtained in
the T3-Gowdy and T2-symmetric settings. In the spatially homogeneous T3-Gowdy symmetric
setting, |P | and |λ| cannot grow faster than logarithmically, and Q remains bounded. Considering
the metric (1), the various metric components thus decay/grow polynomially, and there is no
particular component which is preferred in that the expansion/contraction is significantly larger
than that of any other (cf. the case of the Kasner metrics). Turning on the slightest bit of spatial
variation, however, λ tends to infinity linearly, whereas |P | cannot grow faster than logarithmically.
In the inhomogeneous setting, Q can tend to infinity, but not faster than polynomially. Considering
(1), it is thus clear that all the expansion is in the θ direction, i.e., the direction in which there
is spatial variation (note that G = H = M = N = 0 in the T3-Gowdy symmetric setting). In
particular, the spatially homogeneous solutions are an unstable subset of the general solutions,
and they can be characterised by the asymptotic behaviour of λ. The reader interested in a
justification of these statements is referred to [23, 24]. Considering the general T2-symmetric
setting (K 6= 0), the pseudo-homogeneous solutions exhibit a behaviour which is similar to that
of spatially homogeneous T3-Gowdy symmetric solutions. However, there are some limitations on
the values of the limit of P/ ln t, say r∞, that are allowed. Changing K from zero to small (but
non-zero) could thus, depending on the solution, lead to a significant difference in the asymptotic
value of P/ ln t. Finally, it is clear that the non-pseudo-homogeneous solutions with K 6= 0
exhibit conceptually different asymptotic behaviour from any of the classes of solutions discussed
previously. In short, the above, somewhat incomplete, discussion indicates that these classes of
solutions are characterised by instabilities.
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Comparison with numerics. It is of interest to compare the above results with recent numerical
studies of the expanding direction of T2-symmetric spacetimes; cf. [9]. In the polarised setting,
there is a conserved quantity

A =

∫
S1
tα−1/2

(
Pt +

1

t

)
dθ.

Since α−1/2 tends to infinity on average, this equality would seem to suggest that tPt + 1 is small
on average. As a consequence, it would seem natural to expect P to roughly equal − ln t; this is
exactly what is observed in the numerical simulations; cf. also Proposition 1. Turning to (4), it
would then seem natural to expect λ to be roughly 5 ln t. The reason for this is that if λ were
significantly smaller, then 〈α−1/2〉 could not tend to infinity, and if it were significantly larger, α
would tend to zero too quickly (there is of course also the possibility that λ/ ln t might oscillate).
Again, this seems to be consistent with numerics, as well as Proposition 1. On the other hand,
combining all of this information with (5), it is clear that there are some subtleties; either tP 2

t

has to be larger than 1/t on average, or tαP 2
θ has to be larger than tP 2

t on average. This would
seem to suggest that there are oscillations present that separate the averages of the derivatives
(possibly weighted with powers of α) from the L2-norms, just as in the T3-Gowdy setting.

1.1 Motivation

The study of the class of T2-symmetric spacetimes goes back to the work of Chruściel; cf. [12],
in which he introduced it and discussed its basic properties. In [7], the existence of a preferred
(areal) foliation of the maximal Cauchy development was then demonstrated in the vacuum set-
ting. However, the understanding of the asymptotics is quite limited. There are constructions of
polarised solutions with prescribed asymptotics in the past direction [17, 1], but, to the best of
our knowledge, there are no mathematical results concerning the asymptotic behaviour of general
T2-symmetric solutions in the vacuum setting (though there are results concerning inextendibility
to the future [13]). On the other hand, several authors have studied the problem numerically;
cf., e.g., [8, 20, 16, 9] and references cited therein. One reason why this class of spacetimes has
attracted so much attention is that it is on the borderline of what can be done; the issue of strong
cosmic censorship, curvature blow up, etc. has been settled in the case of T3-Gowdy symmetric
vacuum solutions (cf. [25] and references cited therein), but it remains open for T2-symmetric
solutions. However, the perhaps main reason why the T2-symmetric case has attracted so much
attention is that it is expected to be the simplest model in which all the features of the so called
BKL conjecture appear; the singularity is ’local’, ’spacelike’ and ’oscillatory’. This expectation is,
roughly speaking, supported by the numerical evidence. Our motivation for studying this class of
spacetimes is, however, quite different. The subject of the present paper is the expanding direc-
tion, and the motivation for taking an interest in it goes back to a general conjecture concerning
the future asymptotics of solutions to Einstein’s vacuum equations, which we now describe.

Due to the work of Arthur Fischer and Vincent Moncrief on the one hand, and Michael Anderson
on the other, there is a general conjecture concerning the future asymptotic behaviour of vacuum
solutions to Einstein’s equations in the cosmological setting. In order to formulate the conjecture,
assume (M, g) to be a globally hyperbolic solution to Einstein’s vacuum equations, foliated by
compact constant mean curvature (CMC) hypersurfaces exhausting an interval [τ0, 0). Assume,
moreover, the interval [τ0, 0) to correspond to the future Cauchy development of the Cauchy hy-
persurface with constant mean curvature τ0 and (M, g) to be future causally geodesically complete.
Denote the hypersurface of constant mean curvature τ ∈ [τ0, 0) by Στ and denote the Riemannian
metric induced on Στ by gτ . Without rescaling, it is to be expected that the curvature of the
metrics gτ decays to zero and the volume goes to infinity. In order to obtain interesting behaviour,
it is therefore natural to rescale the metrics. Fischer and Moncrief consider the metrics τ2gτ and
Anderson considers t−2

τ gτ , where
tτ = sup

p∈Στ

d(p,Στ0)
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and d(p,Στ0) denotes the supremum of the length of causal curves from p to Στ0 . In addition,
Fischer and Moncrief define a quantity which is decaying along the Einstein flow, the so-called
reduced Hamiltonian: Hred = |τ |3volΣτ , and Anderson defines the quantity

volΣτ
t3τ

,

which also decays along the flow. It is of interest to ask: what are the consequences of assuming
one of these monotone quantities to be constant on a time interval, say (τ1, τ2)? It turns out that
then the solution has to be the Milne model, −dt2 + t2gH , on (0,∞)×H, where H is a compact
hyperbolic manifold. This solution can be interpreted as a fixed point of the flow. In fact, due to
the work of Lars Andersson and Vincent Moncrief, cf. [4], the Milne model is an attractor of the
flow; see also [5] for a generalisation of this result to higher dimensions. In order to formulate the
conjecture, let us focus on the rescaled family ĝτ = t−2

τ gτ mentioned above, which we shall think of
as being defined on a fixed manifold Σ; all of the Στ are diffeomorphic. The expectation is then that
Σ can be divided into two pieces, H and G, where H is a finite collection of complete hyperbolic
manifolds and G is a finite collection of graph manifolds, and the union is along 2-tori. Moreover,
ĝτ (or at least suitable subsequences) are then expected to converge to finite volume complete
hyperbolic metrics on H and to collapse on G. One interesting aspect of this conjecture is that
it yields isotropisation and homogenisation in an averaged sense; normally, physicists impose the
assumption of spatial homogeneity and isotropy at the beginning of any discussion of cosmology,
but it would be preferable to deduce (a local version of) this conclusion from the evolution. Another
remarkable feature of the conjecture is that everything that is known concerning the expanding
direction of cosmological vacuum spacetimes fits into it. In particular, the result by Andersson
and Moncrief mentioned above demonstrates the stability of the Milne model. Yvonne Choquet-
Bruhat and Vincent Moncrief have also studied the case of U(1)-symmetry; cf. [10, 11]. In this
case, the topology of the spacetime is R× S1×Σk, where Σk is a higher genus surface. No spatial
variation is allowed in the S1-direction, and the authors impose a smallness assumption concerning
the initial data. They then prove that the corresponding solutions are future causally geodesically
complete and admit a CMC foliation of the above type. Rescaling the metrics induced on the
CMC hypersurfaces along the lines described above, they also obtain the expected collapse; note
that S1×Σk is a Seifert fibred space, and therefore, in particular, a graph manifold. Finally, there
are results in a higher degree of symmetry; cf. [23] and references cited therein for further details.
Even though the above results, in particular the stability of the Milne model, are of importance,
the following observation should be kept in mind: the results are either restricted to symmetric
situations or demonstrate stability of symmetric metrics. The initial hypersurface must thus admit
a symmetric metric. This is typically a severe topological restriction which excludes the possibility
of studying the situation where the above mentioned division into hyperbolic pieces and graph
manifold pieces is non-trivial. Another approach consists of imposing a priori assumptions on
the solution and then deducing the above picture. This has been done by Michael Anderson, see
[2]. See also [21]. The above description is a bit brief. We refer the interested reader to [3] for
a general description of the two perspectives and to [2, 14, 15] and references cited therein for
further details.

The relation of the present work to the above conjecture is the following. Clearly, in the case of
hyperbolic spatial geometry, there is a preferred model solution; the Milne model. However, it is
less clear if there are any appropriate model solutions in the Seifert fibred/graph manifold setting.
The proof of stability of the Milne model and the above mentioned studies of the U(1)-symmetric
case indicate that it is advantageous to have as much hyperbolic geometry as possible. However,
this is not something we can expect to have in general. For this reason, we here focus on T3-spatial
topology, and the long term goal is to find a model solution for the behaviour in this setting. In
spatial homogeneity, a natural class of solutions with such spatial topology is that of the so-called
Kasner metrics, defined by

−dt2 +

3∑
i=1

t2pidxi ⊗ dxi
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on (0,∞)× T3, where pi ∈ R and

3∑
i=1

pi = 1,

3∑
i=1

p2
i = 1.

However, the results of [24] indicate that the Kasner solutions are unstable in the set of T3-Gowdy
solutions. As a consequence, they are not good models of the behaviour of general solutions. The
T3-Gowdy symmetric solutions are, in their turn, a subset of the T2-symmetric solutions. However,
the results of the present paper indicate that the T3-Gowdy symmetric solutions constitute an
unstable subset of the general T2-symmetric solutions. In order to obtain a model, it would
therefore seem to be necessary to study more general solutions than the T3-Gowdy symmetric
ones. In fact, given the above mentioned instabilities, it would be optimistic to expect the T2-
symmetric solutions to be good models.

1.2 Outline of the argument

The proof of Theorem 3 consists of two steps. First, we prove that if α is bounded from below by
a positive constant, then the solution is pseudo-homogeneous; this is the main step, which requires
most of the effort. In the second step, we prove that if 〈α−1/2〉 is bounded, then α is bounded
from below by a positive constant. In order to develop a feeling for why a positive lower bound
on α should imply pseudo-homogeneity, let us first introduce the energy

Ĥ =

∫
S1

(
t2α−1/2

[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]

+ 3α−1/2 +
α−1/2eλ/2+PK2

t3/2

)
dθ. (16)

It can then be computed that ∂tĤ ≥ 0, but that ∂t(t
−2Ĥ) ≤ 0; note that (24) follows from (7).

On the other hand, letting

f = α−1/2eP+λ/2, g = P +
λ

2
− 1

2
lnα,

Jensen’s inequality implies that 〈f〉 = 〈eg〉 ≥ e〈g〉. Since the boundedness of t−2Ĥ implies that 〈f〉
can grow at worst polynomially, we conclude that 〈g〉 can grow at worst logarithmically (in these
arguments, we assume that K 6= 0; the Gowdy case is very different). Combining this observation
with the equations, one can deduce that there is a constant C such that∫

S1

∫ τ

t1

t
[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dtdθ ≤ C ln τ (17)

for all τ ≥ t1 = t0 + 2 (we here assume the solution to be defined on (t0,∞)× S1); cf. Lemma 18.
Note that this inequality already clearly distinguishes the T2-symmetric setting from the T3-
Gowdy symmetric setting; a T3-Gowdy symmetric solution satisfying (17) has to be spatially
homogeneous (note also that (17) holds in general; it is not dependent on the assumption that α
have a positive lower bound). Moreover, (17) implies that 〈λ〉 ≤ C ln t (an estimate which does
not hold for general T3-symmetric Gowdy solutions) and that |〈P 〉| ≤ C ln t for some constant C
and all t ≥ t1. Due to the positive lower bound on α, including a factor of α−1/2 in each of the
terms in the integrand of (17) yields a similar upper bound. In fact, it can also be argued that the
integral in space and time (as in (17)) of t−1 times the last two terms appearing in the integrand
in the definition of Ĥ can be bounded by C ln τ . As a consequence, there is a constant C such
that ∫ τ

t1

t−1Ĥ(t)dt ≤ C ln τ

for all τ ≥ t1. Since Ĥ is an increasing quantity, this estimate implies that Ĥ is bounded from
above, so that, in particular, ‖P − 〈P 〉‖C0 ≤ Ct−1 etc.; cf. Corollary 32. In other words, the
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spatial variation is small. It is more intricate to argue that the solution has pseudo-homogeneous
asymptotics, but using the boundedness of Ĥ, various monotonicity properties and the conserved
quantities A and B, see (22) and (23), it is possible to derive this conclusion. However, it is
unfortunately only possible to gradually progress towards the desired conclusion, and quite a large
number of steps is required, which makes the argument hard to summarise succinctly. Nevertheless,
once this conclusion has been obtained, it can be argued that there is a unique pseudo-homogeneous
solution with the corresponding asymptotics; cf. Proposition 14. We shall use a subscript hom to
denote this solution. Proving that the difference between the pseudo-homogeneous solution and
the original solution is zero is non-trivial, and as a consequence, it is useful to consider a simple
special case. Let us therefore discuss the polarised T3-Gowdy case. Then the relevant equation is
given by (10). Let P be a solution converging to a spatially homogeneous solution, say Phom; to
be more specific, assume that

lim
t→∞

∫
S1
t2[(Pt − ∂tPhom)2 + P 2

θ ]dθ = 0.

Note that t∂tPhom is constant for a spatially homogeneous solution. Defining the energy

ĤG = t2
∫
S1

(P 2
t + P 2

θ )dθ,

we have
dĤG

dt
= 2t

∫
S1
P 2
θ dθ.

Letting ĤG,hom be the (constant) energy of the spatially homogeneous solution, it is thus clear
that

ĤG(t) ≤ lim
t→∞

ĤG(t) = ĤG,hom. (18)

On the other hand, there is a conserved quantity:

A =

∫
S1
tPtdθ.

Due to the above assumptions, A has to be the same for P and Phom. Thus

2πĤG,hom =A2 = t2
(∫

S1
Ptdθ

)2

≤ 2πt2
∫
S1
P 2
t dθ

=2πĤG − 2πt2
∫
S1
P 2
θ dθ ≤ 2πĤG,hom − 2πt2

∫
S1
P 2
θ dθ,

(19)

where we used Hölder’s inequality in the third step and (18) in the fifth. Thus the original solution
is spatially homogeneous; a more general argument covering all the T3-Gowdy cases is to be found
in [24].

It would be of interest to generalise the above argument to the T2-symmetric setting. However,
we have not been able to do so; the fact that K 6= 0 seems to cause significant complications.
The argument that we present in this paper is therefore based on a quantitative version of the
above line of reasoning. In fact, we estimate the difference between the solution, say x, and the
uniquely associated pseudo-homogeneous solution, say xhom, using two different methods. First,
we prove that there are constants C1 and r1 such that a suitable energy, say E1, of the difference
between x and xhom satisfies E1(t) ≥ C1(t/ta)−r1E1(ta), where t1 = t0 + 2 and t ≥ ta ≥ t1.
This estimate is based on the equations and basic energy estimates; cf. Lemma 16. Since we
want to prove that E1 = 0, the idea is then to prove that E1(t) ≤ C2t

−r2 for some constants
C2 and r2 (where r2 > r1) and all t ≥ t1; such an estimate would imply that E1(t) = 0 for all
t ≥ t1 and would lead to the conclusion that x = xhom. In order to obtain this second estimate,
we use the monotonicity properties of the energy, the conserved quantities etc.; cf. the proofs of
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Lemmas 43 and 65. The idea is to argue similarly to the case of polarised Gowdy described above.
The difference is that instead of immediately obtaining the conclusion that the spatial variation
of P etc. is zero, we obtain an improved estimate of the spatial variation. In most cases, this
improvement is not sufficient in order to yield the desired conclusion. It is therefore necessary to
iterate the argument in order to improve, in parallel, the estimates for the difference x−xhom and
for the spatial variation of the solution. Naively, one might expect that there is no upper bound
to the amount of decay that can be obtained in this way. Unfortunately, this is not true; the
iteration yields a system of difference equations for the different decay rates, the asymptotics of
the solutions to this system of difference equations can be analysed, and the decay rates converge
to specific numbers. All of these argument are on the level of L2 estimates of derivatives etc.
However, in some stages of the argument, it is necessary to derive sup-norm estimates and to
derive improvements iteratively, analogously to the L2-case. Adding up the resulting estimates
leads to an estimate of the type E1(t) ≤ C2t

−r2 , cf. above, and we are allowed to conclude that
the solution is pseudo-homogeneous. The above description gives a rough idea of the first step of
the argument; in practice there are many more details that need to be addressed.

In the second step, we assume 〈α−1/2〉 to be bounded from above. We then argue that a certain
energy has to decay at a specific rate. As opposed to the rest of the arguments, in this case the
proof is quite similar to that of the corresponding statement in [24], though there are additional
complications. Using the energy decay, one can then conclude that either α decays to zero uni-
formly, or it is bounded from below by a positive constant. Due to the assumption that 〈α−1/2〉
is bounded, we conclude that α has a positive lower bound.

1.3 Outline of the paper

General observations. We begin by writing down the conserved quantities, stating Cauchy
stability etc. in Section 2. Turning to the actual analysis, we then describe the asymptotics
of the pseudo-homogeneous solutions. There are two main reasons for doing this. First of all,
this analysis forms the basis for the characterisation of pseudo-homogeneous solutions in terms
of their asymptotics. However, it is also useful to have a feeling for the asymptotics of the
pseudo-homogeneous solutions before proving that the solutions with a positive lower bound on
α have such asymptotics. The proof of the asymptotic characterisation of pseudo-homogeneous
solutions consists of two steps; first we derive a general, abstract result, and then we prove that
the equations of interest here are such that the abstract result applies; this is the subject of
Section 3. In Section 4, we then derive a lower bound on the decay of the energy of the difference
between a general solution and a pseudo-homogeneous solution (assuming that they have the
same asymptotics). In case the conserved quantity B, cf. (22), is zero, we restrict our attention
to polarised solutions; this restriction is only justified much later; cf. Lemma 57. In Section 5,
we proceed by deriving some general estimates, such as (17). We also derive some conclusions
concerning 〈P 〉 that will be important in taking the step from the assumption of a uniform positive
lower bound on α to an upper bound on 〈α−1/2〉.
Deriving pseudo-homogeneous asymptotics, given a positive lower bound on α. In
Section 6, we focus on deriving conclusions that are only dependent on the assumption that α
does not converge to zero uniformly. In particular, we demonstrate that it is possible to derive
uniform estimates using non-uniform ones, given suitable assumptions concerning the energy Ĥ.
In Section 7, we then start deriving conclusions based on the assumption that α is bounded from
below by a positive constant. In particular, we prove that for every C > 0, there is a T > t0
such that −3 ln t + C ≤ P (t, θ) ≤ ln t − C for all (t, θ) ∈ [T,∞) × S1. Moreover, we demonstrate
that Ĥ is bounded; cf. the above argument. As a first step in proving that the solution has
pseudo-homogeneous asymptotics, we prove that if B 6= 0, then Q converges, and P → ∞ as
t → ∞. In a step by step process, we then gradually improve our knowledge concerning P , Q, λ
and the energies. The essential tools in obtaining the conclusions are the conserved quantities, the
asymptotic behaviour of the energy, and the monotonicity properties of the energy. However, it is
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of interest to note that in some of the arguments, it is of crucial importance to keep track of the
direction from which certain asymptotic values are attained; estimating the size of the difference
is not sufficient in order to obtain the conclusions we need. This becomes particularly clear in the
proof of Lemma 35. In this lemma, we demonstrate that P/ ln t converges to a number, say r∞. It
is quite straightforward to prove that r∞ ∈ [−3, 1]. However, it is of crucial importance to know
that r∞ ∈ (−3, 1); this is where the direction from which P/ ln t approaches its limit comes into
play. In the end, we obtain quite detailed asymptotic information in Lemmas 39 and 46.

Associating a pseudo-homogeneous solution with the given solution. At this stage, it
would be desirable to prove that there is a unique pseudo-homogeneous solution with the same
asymptotics as the given solution. However, there is one technical problem; in case B = 0, we
need to know that the solution is polarised. In Section 8, we therefore derive C1-estimates. In
particular, we prove that tPt − r∞ = O(t−δ) for some δ > 0. Using this C1 information, it then
turns out to be possible to prove that, for B = 0, the energy

EQ =

∫
S1
α−1/2e2P (Q2

t + αQ2
θ)dθ

cannot decay faster to zero than t−1, unless it is zero. Since we have previously proven that it
does decay to zero faster than t−1, we conclude that EQ = 0, so that the solution is polarised.
Appealing to Proposition 14, we can then associate a unique pseudo-homogeneous solution with
the given solution.

Iterative improvement of the estimates. In Section 10, we give a general argument for how
given estimates of the difference between the solution and the pseudo-homogeneous solution can
be improved. The corresponding iteration leads to a system of difference equations for various
decay rates, and we analyse the asymptotics of solutions to this system in Subsection 10.1. In
Subsection 10.2, we then carry out similar arguments for the C1-estimates. The resulting decay
rates are such that the only way for them to be consistent with the estimates derived in Lemma 16
is that the difference between the solution and the pseudeo-homogeneous solution is zero. This
finishes the proof of the fact that solutions with an α bounded from below by a positive constant
are pseudo-homogeneous.

Characterising pseudo-homogeneous solutions by an upper bound on 〈α−1/2〉. In order
to prove that it is sufficent to assume that 〈α−1/2〉 is bounded from above in order to conclude
that the solution is pseudo-homogeneous, we need to derive energy estimates. The general idea is
to prove that if 〈α−1/2〉 is bounded, then Ĥ/t is bounded. Appealing to Lemma 26 then yields
the conclusion that α is bounded from below by a positive constant. In order to prove the desired
energy estimate, we consider the energy Ha; cf. (154). We would like to have an estimate of the
form H ′a ≤ −Ha/t. However, differentiating Ha does not lead to such an estimate; cf. (155). The
idea is then to introduce a ’correction’ term, say Γ, such that E = Ha + Γ satisfies an estimate
of this type, and such that E and Ha are equivalent. Assuming 〈α−1/2〉 to be bounded, it turns
out to be possible to prove that E and Ha are equivalent. However, the expression for E ′ is not
as transparent as one might wish; cf. (162). In order for this estimate to be of use, it is necessary
to know that Ha converges to zero. We prove that this is the case in Lemma 74. Combining
this information with the expression for E ′, it can then be argued that Ha ≤ Ct−1; however, it is
of interest to note that the integrability properties of 〈Pt〉 derived in Corollary 22 are of crucial
importance in the argument. Combining the resulting information, we conclude that if 〈α−1/2〉 is
bounded, then the solution is pseudo-homogeneous. Finally, in Section 13, we discuss the polarised
case. In particular, we prove Proposition 1.
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2 Basic computations and conventions

As already mentioned, the relevant equations are (2)–(6). As a consequence of these equations

∂t(tα
−1/2e2PQt) = ∂θ(tα

1/2e2PQθ), (20)

∂t(tα
−1/2Pt) = ∂θ(tα

1/2Pθ) + tα−1/2e2P (Q2
t − αQ2

θ)−
α−1/2eP+λ/2K2

2t5/2
. (21)

Conserved quantities. Due to (20), there is a constant B such that

B =

∫
S1
tα−1/2e2PQtdθ. (22)

Moreover, using (20), (21) and partial integration, it can be calculated that

∂t

∫
S1
tα−1/2(Pt − e2PQtQ)dθ = −

∫
S1

α−1/2eP+λ/2K2

2t5/2
dθ.

Due to (4), this equality implies that there is a constant A such that

A =

∫
S1
tα−1/2

(
Pt +

1

t
− e2PQtQ

)
dθ. (23)

Energies. Letting Ĥ be defined by (16), equation (7) implies that

dĤ

dt
= 2t

∫
S1
α1/2(P 2

θ + e2PQ2
θ)dθ. (24)

Light cone estimates. Let
A± = (∂±P )2 + e2P (∂±Q)2,

where ∂± is defined by
∂± = ∂t ± α1/2∂θ. (25)

In what follows, it is of interest to keep in mind that

∂±∂∓P = −1

t
Pt + e2P (Q2

t − αQ2
θ)−

eP+λ/2K2

2t7/2
+
αt
2α
∂∓P, (26)

∂±∂∓Q = −1

t
Qt − 2(QtPt − αQθPθ) +

αt
2α
∂∓Q, (27)

∂±A∓ = −
(

2

t
− αt
α

)
A∓ ∓

2

t

√
α
(
Pθ∂∓P + e2PQθ∂∓Q

)
− ∂∓P

eP+λ/2K2

t7/2
. (28)

Cauchy stability. For future reference, let us make the following observation.

Proposition 8. Consider a pseudo-homogeneous solution to (2)–(6), say (P1, Q1, α1, λ1), defined
on (t0,∞) × S1 for some t0 ≥ 0. Let [t1, t2] ⊂ (t0,∞) and let ε > 0. Then there is a δ > 0 such
that if (P2, Q2, α2, λ2) is a solution with the property that

‖p(t1, ·)‖C1 + ‖q(t1, ·)‖C1 + ‖∂tp(t1, ·)‖C0 + ‖∂tq(t1, ·)‖C0 + ‖%(t1, ·)‖C1 + ‖`(t1, ·)‖C0 ≤ δ, (29)

where (p, q, %, `) = (P2 − P1, Q2 − Q1, α2 − α1, λ2 − λ1), then the same estimate holds with t1
replaced by t2 and δ replaced by ε.

Remarks 9. Due to the equations and (29), it follows that ∂t%, ∂θ` and ∂t` are small initially.
The restriction to a pseudo-homogeneous ’background’ solution is not necessary.

Conventions. In this paper, we consider solutions to (2)–(6) on (t0,∞) × S1 for some t0 ≥ 0.
Since we are interested in the future asymptotics, we often wish to restrict our attention to some
subset which is bounded away from t0. Assuming a solution of the above type has been introduced,
we therefore, in what follows, speak of t1, and take for granted that t1 = t0 + 2. The reason for
making this choice is that t1 > t0 and that ln t ≥ ln 2 > 0 for t ≥ t1.
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3 Asymptotic characterisation of pseudo-homogeneous so-
lutions

Our first goal in this section is to derive asymptotics for pseudo-homogeneous solutions. However,
let us begin by making a technical observation on which some of the arguments are based.

Lemma 10. Consider a function f ∈ C1([T,∞),R) for some T ≥ 1 such that f(t) ≥ 0 and∫ ∞
T

t−1f(t)dt <∞. (30)

Assume that there is a constant C > 0 such that

tf ′(t) ≥ −C[1 + f2(t)] (31)

for all t ≥ T . Then
lim
t→∞

f(t) = 0.

Proof. Let us reformulate the statement in terms of the time τ = ln t. Let g(τ) = f(eτ ). Then∫ ∞
lnT

g(τ)dτ <∞

due to (30), and (31) translates into

g′(τ) ≥ −C[1 + f2(eτ )] = −C[1 + g2(τ)]. (32)

Assume, in order to get a contradiction, that there is an ε > 0 such that for all T0, there is a
τ > T0 such that g(τ) ≥ ε. Assuming there is a T1 such that g(τ) ≥ ε/2 for all τ ≥ T1 we get a
contradiction. As a consequence, we get an infinite number of disjoint intervals [T2,k, T1,k] such
that g(Ti,k) = iε/2 for i = 1, 2 and ε/2 ≤ g(τ) ≤ ε for τ ∈ [T2,k, T1,k]. Due to the estimate (32),
we conclude that

− ε
2

=

∫ T1,k

T2,k

g′(τ)dτ ≥ −C(1 + ε2)(T1,k − T2,k).

Thus
T1,k − T2,k ≥

ε

2C(1 + ε2)
.

Since g(τ) ≥ ε/2 in the interval, we obtain a contradiction to integrability. �

Let us now derive asymptotics for pseudo-homogeneous solutions.

Lemma 11. Consider a pseudo-homogeneous solution to (2)–(6) on (t0,∞) × S1 with K 6= 0.
Then there are constants A, B and cH such that

B = 2πt〈α−1/2〉e2PQt, (33)

A = 2π〈α−1/2〉(tPt + 1− te2PQtQ), (34)

cH = 2π〈α−1/2〉
(
t2P 2

t + t2e2PQ2
t +

eP+λ/2K2

t3/2
+ 3

)
, (35)

where 〈α−1/2〉 is defined in (15). Moreover, there is a smooth positive function α∞ on S1 such
that

lim
t→∞

‖α(t, ·)− α∞‖C0 = 0.

If B = 0, then Q is constant and if B 6= 0, then Q converges to a limit. In either case, there is a
constant q∞ such that

lim
t→∞

Q(t) = q∞.
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Let

r∞ =
A+Bq∞

2π〈α−1/2〉∞
− 1, (36)

where 〈α−1/2〉∞ denotes the limit of 〈α−1/2〉. Then r∞ ∈ (−3, 1) in case B = 0 and r∞ ∈ (0, 1)
in case B 6= 0. Moreover, there are constants cP and cλ such that

lim
t→∞

|P (t)− r∞ ln t− cP | = 0,

lim
t→∞

|λ(t)− r2
∞ ln t− cλ| = 0.

Finally,
cH = 2π〈α−1/2〉∞

(
r2
∞ + 3

)
.

Remark 12. Using the asymptotics of the lemma as a starting point, asymptotic expansions can
be derived. However, the above conclusions suffice for what we wish to acheive here.

Proof. That the right hand sides of (33)–(35) are independent of t is a consequence of (22), (23)
and (24). Since

∂t〈α−1/2〉 =
eP+λ/2K2

2t5/2
〈α−1/2〉,

it is clear that 〈α−1/2〉 is increasing. On the other hand, (35) implies that 〈α−1/2〉 is bounded.
Consequently, 〈α−1/2〉 converges; call the limit 〈α−1/2〉∞. Thus there is a smooth positive function
α∞ to which α converges in C0. Turning to Q, note that it is constant in case B = 0. Let us
therefore, for the moment, assume that B 6= 0. Note that (34) implies that

A+BQ = 2π〈α−1/2〉(tPt + 1). (37)

However, due to (35), the right hand side is bounded. Thus Q is bounded if B 6= 0. On the
other hand, (33) implies that Qt has a sign, assuming B 6= 0. Combining these observations, we
conclude that Q converges (a conclusion which holds regardless of whether B equals zero or not);
call the limit q∞. Turning to P , note that the fact that Q converges and the fact that (33) holds
imply that ∫ ∞

t1

1

t
e−2P dt <∞,

assuming B 6= 0. Combining this observation with Lemma 10, we conclude that P →∞ if B 6= 0.
In order to derive more detailed asymptotics, note that tPt converges; this is a consequence of the
fact that Q and 〈α−1/2〉 converge and the fact that (37) holds. Denote the limit r∞ and note that
it is given by (36). As a consequence,

P (t) = r∞ ln t+ o(ln t).

Note, for future reference, that r∞ ≥ 0 if B 6= 0. Note also that, due to (33) and the fact that
P → ∞, we know that tePQt → 0 in case B 6= 0; in case B = 0, we of course have tePQt = 0.
Thus

t2P 2
t + t2e2PQ2

t → r2
∞,

regardless of whether B equals zero or not. Combining this observation with (5) and the fact that
α converges to a positive function, we conclude that

λ(t) = r2
∞ ln t+ o(ln t).

Let us now derive restrictions on r∞. Note that

αt
α

= −K2 exp

(
1

2
r2
∞ ln t+ r∞ ln t− 5

2
ln t+ o(ln t)

)
.
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Since the right hand side is integrable, we have to have −3 ≤ r∞ ≤ 1 (and r∞ ≥ 0 if B 6= 0). It
is of interest to exclude the boundary cases.

Let us begin by considering the case B = 0, and let us assume that r∞ = 1. Since

tPt =
A

2π〈α−1/2〉
− 1, (38)

we have to have A > 0. Since 〈α−1/2〉 is an increasing function, we conclude that

tPt ≥
A

2π〈α−1/2〉∞
− 1 = r∞ = 1.

Thus P ≥ ln t+C. Similarly, λ ≥ ln t+C. However, this is not reconcilable with the integrability
of αt/α. We thus obtain a contradiction, so that r∞ < 1. Let us now assume that r∞ = −3. Then
A < 0, and (38) implies that

tPt ≤
A

2π〈α−1/2〉∞
− 1 = r∞ = −3.

Thus
1

2
λt + Pt −

5

2t
= t−1

(
1

2
t2P 2

t + tPt −
5

2

)
+
αt
2α
≥ −t−1 +

αt
2α
.

Again, this estimate is irreconcilable with the integrability of αt/α. Thus r∞ > −3.

Let us turn to the case B 6= 0. We know that 0 ≤ r∞ ≤ 1. In order to exclude the possibility
r∞ = 1, let us assume that this equality holds. Then A + Bq∞ > 0. Moreover (33) implies that
Qt = O(t−2). Thus Q− q∞ = O(t−1), so that

tPt =
A+BQ

2π〈α−1/2〉
− 1 =

A+Bq∞
2π〈α−1/2〉

− 1 +O(t−1) ≥ A+Bq∞
2π〈α−1/2〉∞

− 1 +O(t−1) = r∞ +O(t−1).

This estimate leads to a contradiction for reasons similar to ones given above. Thus r∞ < 1. In
order to exclude the case r∞ = 0, note that if r∞ = 0, then αt = O(t−2). Thus

tPt =
A+BQ

2π〈α−1/2〉
− 1 =

A+BQ

2π〈α−1/2〉∞
− 1 +O(t−1) ≤ A+Bq∞

2π〈α−1/2〉∞
− 1 +O(t−1) = O(t−1),

where we have used the fact that BQ is increasing; cf. (33). Thus P ≤ C for some constant C.
However, this estimate contradicts the fact that P tends to infinity. Thus r∞ > 0.

Turning to more detailed asymptotics, let us introduce the notation

γ = 2− 1

2
(r∞ + 1)2. (39)

Then γ > 0, and for every ε > 0, there is a Cε such that

|αt| ≤ Cεt−1−γ+ε

for t ≥ t1. In particular, α converges at a specific rate. Moreover, the same holds for Q in case
B 6= 0. Consequently, there is an η > 0 such that

tPt = r∞ +O(t−η). (40)

Thus the stated asymptotics for P hold. The argument concerning λ is similar.

In order to prove an asymptotic characterisation of the spatially homogeneous solutions, we need
the following abstract result.
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Lemma 13. Let η > 0 and t0 ≥ 0 be real numbers, n, m be positive integers, and

f : (t0,∞)× Bn2 (0)× Bm2 (0)→ Rn,
g : (t0,∞)× Bn2 (0)× Bm2 (0)→ Rm,
G : (t0,∞)× Bn2 (0)× Bm2 (0)→ Mm×n

be smooth functions, where Bnr (p) denotes the open ball in Rn of radius r > 0, centered at p ∈ Rn,
and Mn×m denotes the real n×m-matrices. Assume that f , g, G and their first derivatives with
respect to the last n+m variables are uniformly bounded on

[t1,∞)× Cn1 (0)× Cm1 (0), (41)

where Cnr (p) denotes the closed ball in Rn of radius r > 0, centered at p ∈ Rn, and t1 = t0 + 2.
Then there is a T > 0 and unique smooth functions

x : (T,∞)→ Cn1 (0), y : (T,∞)→ Cm1 (0)

solving the equations

tẋ = t−ηf(t, x, y), (42)

tẏ = G(t, x, y)x+ t−ηg(t, x, y) (43)

and satisfying the condition
lim
t→∞

x(t) = 0, lim
t→∞

y(t) = 0.

Proof. Let Cf be a constant such that the norm of f and of its first derivative with respect to
the last n+m variables is bounded by Cf in the set (41). Define Cg and CG similarly. Define an
iteration by x0 = 0, y0 = 0 and

tẋn+1 = t−ηf(t, xn, yn), tẏn+1 = G(t, xn, yn)xn+1 + t−ηg(t, xn, yn), (44)

where we demand that xn+1, yn+1 → 0 as t→∞ (from the arguments given below, it will become
clear that this sequence is well defined). Note that

|x1(t)| ≤ Cfη−1t−η, |y1(t)| ≤ CGCfη−2t−η + Cgη
−1t−η.

Let T be large enough that

Cfη
−1T−η ≤ 1, CGCfη

−2T−η + Cgη
−1T−η ≤ 1. (45)

Assume, inductively, that

|xn(t)| ≤ 1, |yn(t)| ≤ 1, |xn(t)| ≤ Cfη−1t−η (46)

on [T,∞). We know these assumptions to hold for n = 0, 1. Combining (44) with (46), we conclude
that

|ẋn+1| ≤ Cf t−1−η.

Combining this estimate with (45), we conclude that the conditions concerning xn in (46) hold
with n replaced by n+ 1. Thus

|ẏn+1| ≤ CGCfη−1t−1−η + Cgt
−1−η.

Combining this estimate with (45), we conclude that (46) holds with n replaced by n+1. In short,
(46) holds for all n. Let us use the notation

‖z‖CT = sup
t∈[T,∞)

|z(t)|
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for a continuous Rl-valued function z which is bounded on [T,∞). Note that

t|ẋn+2 − ẋn+1| ≤ Cf t−η(‖xn+1 − xn‖CT + ‖yn+1 − yn‖CT ).

Thus
|xn+2(t)− xn+1(t)| ≤ Cfη−1t−η(‖xn+1 − xn‖CT + ‖yn+1 − yn‖CT )

on [T,∞). Inserting this information into (44), we obtain

t|ẏn+2 − ẏn+1| ≤2CGCfη
−1t−η(‖xn+1 − xn‖CT + ‖yn+1 − yn‖CT )

+ Cgt
−η(‖xn+1 − xn‖CT + ‖yn+1 − yn‖CT ).

Thus

|yn+2(t)− yn+1(t)| ≤ (2CGCfη
−2 + Cgη

−1)t−η(‖xn+1 − xn‖CT + ‖yn+1 − yn‖CT )

on [T,∞). Letting T be large enough in the above estimates, we conclude that

‖xn+2 − xn+1‖CT + ‖yn+2 − yn+1‖CT ≤
1

2
(‖xn+1 − xn‖CT + ‖yn+1 − yn‖CT ).

Consequently, both xn and yn converge with respect to the norm ‖·‖CT . We thus obtain continuous
functions x and y on [T,∞) such that xn and yn converge to them. Since |xn(t)| ≤ Ct−η and
similarly for yn, where the constant does not depend on n, we conclude that x and y converge to
zero. Due to the definition of xn and yn, we conclude that x and y solve the original equations.
Since f , g and G are smooth, we conclude that x and y are smooth. Finally, uniqueness follows
by arguments similar to ones given above.

Finally, let us state the desired asymptotic characterisation.

Proposition 14. Let A, B and q∞ be constants and α∞ be a positive C0 function on S1. Let

〈α−1/2〉∞ = 〈α−1/2
∞ 〉, r∞ =

A+Bq∞
2π〈α−1/2〉∞

− 1.

Assume A, B, q∞ and α∞ to be such that r∞ ∈ (0, 1) in case B 6= 0 and such that r∞ ∈ (−3, 1)
in case B = 0. Finally, let cP and cλ be constants. Then there is a unique pseudo-homogeneous
solution (P,Q, α, λ) to (2)–(6) such that (33), (34) and

lim
t→∞

(
|α(t, θ)− α∞(θ)|+ |Q(t)− q∞|+ |P (t)− r∞ ln t− cP |+ |λ(t)− r2

∞ ln t− cλ|
)

= 0

hold.

Remark 15. The regularity of the solution is the following: P , Q and λ are smooth functions
and α is a smooth function of t times α∞.

Proof. The idea of the proof is to appeal to Lemma 13. To this end, we need to define suitable
variables and prove that they satisfy the required type of equations.

Step 1. Let us assume that we have a pseudo-homogeneous solution of the desired type, and let

Q̂ = Q− q∞,
P̂ = P − r∞ ln t− cP ,
λ̂ = λ− r2

∞ ln t− cλ,
α̂ = α〈α−1/2〉2∞.

Let, moreover, x = (Q̂, ln〈α̂−1/2〉)t and y = (P̂ , λ̂)t. Note that (33) can be written

tQ̂t =
Be−2P

2π〈α−1/2〉
=

Be−2cP

2π〈α−1/2〉∞
t−2r∞ exp

(
−2P̂ − ln〈α̂−1/2〉

)
.
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Let η = γ (where γ is defined by (39)) in case B = 0 and η = min{γ, 2r∞} in case B 6= 0. Then
we can write this equation

tQ̂t = t−ηf1(t, x, y),

where

f1(t, x, y) = tη−2r∞
Be−2cP

2π〈α−1/2〉∞
exp

(
−2P̂ − ln〈α̂−1/2〉

)
.

If B = 0, then f1 = 0, and there is nothing to prove. In case B 6= 0, it is clear that f1 satisfies the
requirements made in Lemma 13. Moreover, (4) implies

t∂t ln〈α̂−1/2〉 =
eP+λ/2K2

2t3/2
=

1

2
ecP+cλ/2K2t−γeP̂+λ̂/2.

This equation can be written
t∂t ln〈α̂−1/2〉 = t−ηf2(t, x, y),

where

f2(t, x, y) =
1

2
tη−γecP+cλ/2K2eP̂+λ̂/2.

Again, f2 satisfies the relevant conditions. Letting f = (f1, f2)t, it is therefore clear that x satisfies
an equation of the desired type. Turning to P̂ , note that (34) and (33) imply

tP̂t =
A+BQ

2π〈α−1/2〉
− 1− r∞ =

B

2π〈α−1/2〉
Q̂+

A+Bq∞
2π〈α−1/2〉∞

1

〈α̂−1/2〉
− 1− r∞

=
B

2π〈α−1/2〉
Q̂+ (r∞ + 1)[exp(− ln〈α̂−1/2〉)− 1].

Let

GP,Q =
B

2π〈α−1/2〉∞
exp

(
− ln〈α̂−1/2〉

)
, GP,α = (r∞ + 1)

exp(− ln〈α̂−1/2〉)− 1

ln〈α̂−1/2〉
.

Since GP,Q and GP,α are smooth functions of x only, it is clear that they have the required
properties. Letting g1 = 0, it is clear that g1 has the desired properties. Finally, (4), (5) and (33)
can be combined to yield

tλ̂t = t2P 2
t + t2e2PQ2

t + t
αt
α
− r2
∞ = t2P̂ 2

t + 2r∞tP̂t +
B2e−2P

4π2〈α−1/2〉2
− eP+λ/2K2

t3/2
.

Let

Gλ,Q = G2
P,QQ̂+ 2GP,QGP,α ln〈α̂−1/2〉+ 2r∞GP,Q, Gλ,α = G2

P,α ln〈α̂−1/2〉+ 2r∞GP,α

and

G =

(
GP,Q GP,α
Gλ,Q Gλ,α

)
.

Then G is a smooth matrix valued function of x only. It is consequently clear that G satisfies the
required conditions. Define

g2 =
B2e−2cP

4π2〈α−1/2〉2∞
tη−2r∞ exp

(
−2P̂ − 2 ln〈α̂−1/2〉

)
− tη−γecP+cλ/2K2eP̂+λ̂/2

and g = (g1, g2)t. Then y satisfies tẏ = G(t, x, y)x + t−ηg(t, x, y), and G and g have the desired
properties. Since two pseudo-homogeneous solutions satisfying the conditions of the lemma cor-
respond to solutions to (42) and (43) that converge to zero, Lemma 13 implies that they have to
coincide.
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Step 2. In step 1, we derived equations of the form (42) and (43), assuming we had a pseudo-
homogeneous solution. However, let us now use these equations in order to construct a solution.
Appealing to Lemma 13, we obtain a unique smooth solution such that x and y converge to zero.
Define P , Q, α and λ by

P = P̂ + r∞ ln t+ cP , Q = Q̂+ q∞, α = α∞〈α̂−1/2〉−2, λ = λ̂+ r2
∞ ln t+ cλ.

Then it is clear that P , Q, α and λ have the correct asymptotics. However, we also need to verify
that they satisfy the correct equations. It is clear that α satisfies the equation it should. Note
also that

〈α−1/2〉 = 〈α−1/2
∞ 〉〈α̂−1/2〉.

As a consequence, we know that (33) and (34) are satisfied. Moreover, λ satisfies the equation it
should. Turning to Q, note that

〈α−1/2〉te2PQt =
B

2π
.

Multiplying this equality with α
−1/2
∞ 〈α−1/2

∞ 〉−1, we obtain

tα−1/2e2PQt =
Bα
−1/2
∞

2π〈α−1/2
∞ 〉

. (47)

Time differentiating this equation, keeping in mind that the right hand side only depends on θ,
we obtain the equation for Q. Turning to P , we have

〈α−1/2〉 (tPt + 1) =
A+BQ

2π
.

Thus

α−1/2(tPt + 1) = α−1/2
∞ 〈α−1/2

∞ 〉−1A+BQ

2π
.

Differentiating with respect to time, we obtain

tα−1/2Ptt + α−1/2Pt −
αt

2α3/2
(tPt + 1) = Bα−1/2

∞ 〈α−1/2
∞ 〉−1 1

2π
Qt = tα−1/2e2PQ2

t ,

where we have used (47). Thus the equation for P holds. The lemma follows.

4 Asymptotically pseudo-homogeneous solutions

Lemma 16. Let (P,Q, α, λ) be a solution and (Phom, Qhom, αhom, λhom) a pseudo-homogeneous
solution to (2)–(6) on (t0,∞) × S1 with conserved quantities (A,B) and (Ahom, Bhom) respec-
tively; cf. (22) and (23). Assume that A = Ahom, B = Bhom and that the difference between
(Phom, λhom, lnαhom) and (P, λ, lnα) converges to zero (in the supremum norm) as t → ∞. As-
sume, moreover, that if B = 0, then Q = Qhom. Let

Ĥ =

∫
S1
α−1/2[P̂ 2

t + αP̂ 2
θ + e2P (Q̂2

t + αQ̂2
θ)]dθ +

1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ, (48)

where
P̂ = P − Phom, Q̂ = Q−Qhom, λ̂ = λ− λhom

and ρ > 0 is a constant satisfying ρ < 2γ in case B = 0 and ρ < 2 min{γ, r∞} in case B 6= 0;
here r∞ is given by (36), where the quantities appearing on the right hand side are determined by
the pseudo-homogeneous solution, and γ is given by (39). Then there is an r > 0 and a constant
C > 0 such that

(t/ta)rĤ(t) ≥ CĤ(ta) (49)

for t ≥ ta ≥ t1. If B 6= 0, then r can be chosen to equal 2(1 + r∞), and if B = 0, then r can be
chosen to equal 2 + ρ.
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Remark 17. The assumption that Q = Qhom in case B = 0 may seem unnatural. However, as
we shall see below, it follows from the other assumptions that if B = 0, then Q has to be constant;
cf. Lemma 57. In the end, this assumption is thus unnecessary.

Proof. Let X = (P, λ), x = (Phom, λhom), α̂ = α/αhom and X̂ = X − x. In what follows, it will be
useful to introduce the notation

x̂ = (Phom − r∞ ln t− cP , λhom − r2
∞ ln t− cλ),

where r∞, cP and cλ are the constants describing the asymptotics of Phom and λhom; cf. the
statement of Lemma 11. Then

αt
α
− ∂tαhom

αhom
=− eP+λ/2K2

t5/2
+
ePhom+λhom/2K2

t5/2
=
ePhom+λhom/2K2

t5/2

[
1− exp(P̂ + λ̂/2)

]
=t−1−γfα,1(x̂, X̂)(P̂ + λ̂/2),

(50)

where fα,1 is a smooth function (depending on cP , cλ and K) and γ is the constant defined in
(39). Moreover,

P̂tt +
1

t
P̂t − αP̂θθ =

αθ
2
P̂θ +

αt
2α
Pt −

∂tαhom

2αhom
∂tPhom + e2P (Q2

t − αQ2
θ)

− e2Phom [(∂tQhom)2 − αhom(∂θQhom)2]− eP+λ/2K2

2t7/2
+
ePhom+λhom/2K2

2t7/2
.

Let us consider the differences appearing on the right hand side, beginning with

αt
2α
Pt −

∂tαhom

2αhom
∂tPhom =

αt
2α
P̂t +

1

2
t−2−γ(t∂tPhom)fα,1(x̂, X̂)(P̂ + λ̂/2),

where we have used (50). We also have

−e
P+λ/2K2

2t7/2
+
ePhom+λhom/2K2

2t7/2
=

1

2
t−2−γfα,1(x̂, X̂)(P̂ + λ̂/2)

due to (50). Finally, consider

e2P (Q2
t − αQ2

θ)− e2Phom [(∂tQhom)2 − αhom(∂θQhom)2]

=e2P (Qt + ∂tQhom)Q̂t + e2Phom(∂tQhom)2(e2P̂ − 1)− αe2P Q̂2
θ

=(eP Q̂t + 2eP̂ ePhom∂tQhom)eP Q̂t + e2Phom(∂tQhom)2 e
2P̂ − 1

P̂
P̂ − αe2P Q̂2

θ

=e2P (Q̂2
t − αQ̂2

θ) + t−1−r∞gP,Q,1(t1+r∞ePhom∂tQhom, P̂ )eP Q̂t

+ t−2−2r∞gP,P,1(t1+r∞ePhom∂tQhom, P̂ )P̂ ,

where gP,Q,1 and gP,P,1 are smooth functions which equal zero if B = 0 (in particular, if gP,Q,1 6= 0,
then r∞ > 0, etc.). Let

z = (t∂tPhom, t
1+r∞ePhom∂tQhom).

Note that z is bounded for t ≥ t1; t∂tPhom and t1+r∞ePhom∂tQhom are bounded due to (35) and
(33) respectively, which hold in the pseudo-homogeneous case. For the purposes of the proof of
the present lemma, let us call a function admissible if it can be written in the form f(z, x̂, X̂) for
some smooth function f on R6. We shall also say that a function g of this form is Q-admissible if
it vanishes whenever the second argument of z vanishes (i.e., whenever B = 0). Due to the above
observations,

P̂tt +
1

t
P̂t − αP̂θθ =

αθ
2
P̂θ +

αt
2α
P̂t + e2P (Q̂2

t − αQ̂2
θ) + fP , (51)
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where
fP = t−1−r∞gP,Qte

P Q̂t + t−2−γfP,P P̂ + t−2−γfP,λλ̂+ t−2−2r∞gP,P P̂ (52)

and fP,P , fP,λ are admissible functions and gP,Qt , gP,P are Q-admissible functions. Concerning
Q, we have the equation

Q̂tt +
1

t
Q̂t − αQ̂θθ =

αθ
2
Q̂θ +

αt
2α
Qt −

∂tαhom

2αhom
∂tQhom − 2PtQt + 2∂tPhom∂tQhom + 2αP̂θQ̂θ.

As in the case of P ,

αt
2α
Qt −

∂tαhom

2αhom
∂tQhom =

αt
2α
Q̂t +

1

2
t−1−γe−P ePhom∂tQhome

P̂ fα,1(x̂, X̂)(P̂ + λ̂/2).

Note also that

−2PtQt + 2∂tPhom∂tQhom = −2PtQ̂t − 2P̂te
−P ePhom∂tQhome

P̂ .

Adding up, we obtain

Q̂tt +
1

t
Q̂t − αQ̂θθ =

αθ
2
Q̂θ +

αt
2α
Q̂t − 2(PtQ̂t − αP̂θQ̂θ) + e−P fQ, (53)

where
fQ = t−1−r∞gQ,Pt P̂t + t−2−γ−r∞gQ,P P̂ + t−2−γ−r∞gQ,λλ̂ (54)

and gQ,Pt , gQ,P and gQ,λ are Q-admissible functions. Finally, consider λ. We have

λ̂t =t(P 2
t + e2PQ2

t )− t[(∂tPhom)2 + e2Phom(∂tQhom)2] + tα(P̂ 2
θ + e2P Q̂2

θ) +
αt
α
− ∂tαhom

αhom

=2(t∂tPhom)P̂t + 2tePhom∂tQhome
P̂ eP Q̂t + t[P̂ 2

t + e2P Q̂2
t + α(P̂ 2

θ + e2P Q̂2
θ)]

+ (e2P̂ − 1)te2Phom(∂tQhom)2 +
αt
α
− ∂tαhom

αhom
.

Consequently,
λ̂t = t[P̂ 2

t + e2P Q̂2
t + α(P̂ 2

θ + e2P Q̂2
θ)] + fλ, (55)

where

fλ = fλ,Pt P̂t + t−r∞gλ,Qte
P Q̂t + t−1−2r∞gλ,P P̂ + t−1−γfλ,P P̂ + t−1−γfλ,λλ̂. (56)

In this equality, fλ,Pt , fλ,P and fλ,λ are admissible functions and gλ,Qt , gλ,P are Q-admissible
functions. Due to the above equalities,

∂t(tα
−1/2P̂t) = ∂θ(tα

1/2Pθ) + tα−1/2e2P (Q̂2
t − αQ̂2

θ) + tα−1/2fP ,

∂t(tα
−1/2e2P Q̂t) = ∂θ(tα

1/2e2P Q̂θ) + tα−1/2eP fQ.

As a consequence, it can be calculated that if

Ĥ1 =

∫
S1
α−1/2[P̂ 2

t + αP̂ 2
θ + e2P (Q̂2

t + αQ̂2
θ)]dθ,

then

dĤ1

dt
=− 2

t

∫
S1
α−1/2(P̂ 2

t + e2P Q̂2
t )dθ +

∫
S1

αt
2α
α−1/2[P̂ 2

t + αP 2
θ + e2P (Q̂2

t + αQ̂2
θ)]dθ

− 2(∂tPhom)

∫
S1
e2Pα−1/2(Q̂2

t − αQ̂2
θ)dθ + 2

∫
S1
α−1/2(P̂tfP + eP Q̂tfQ)dθ.

(57)
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Let us now turn to

∂t

[
1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ

]
=− 2 + ρ

t

1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ

+
2

t1+ρ

∫
S1
λ̂[P̂ 2

t + e2P Q̂2
t + α(P̂ 2

θ + e2P Q̂2
θ)]dθ

+
2

t2+ρ

∫
S1

(
λ̂fλ + P̂ P̂t

)
dθ.

(58)

We wish to estimate the right hand sides of (57) and (58) from below. Before doing so, note that

Ĥ = Ĥ1 +
1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ.

Since α1/2 is bounded for t ≥ t1 and λ̂ converges to zero, we conclude that there is a constant
C > 0 such that the second term on the right hand side of (58) is bounded from below by

− C

t1+ρ
Ĥ

for all t ≥ t1. Using (56), the third term on the right hand side of (58) can be bounded from below
by

− C

t1+ρ/2
Ĥ − D

t1+ρ/2+r∞
Ĥ − D

t1+2r∞
Ĥ − C

t1+γ
Ĥ,

where D ≥ 0 is a constant which equals zero in case B = 0. Regardless of whether B = 0 or not,
there are thus constants C, η > 0 such that

∂t

[
1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ

]
≥ −2 + ρ

t

1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ − C

t1+η
Ĥ

for all t ≥ t1. Note that an inequality of this form holds regardless of the value of ρ > 0. Turning to
(57), note that the second term on the right hand side can be estimated from below by −Ct−1−γĤ.
In case B = 0, the third term on the right hand side is zero, and the sum of the first and third
terms can be estimated from below by the first term. If B 6= 0, then t∂tPhom − r∞ = O(t−η)
for some η > 0 and r∞ ∈ (0, 1); cf. (40). The sum of the first and the third terms can thus be
estimated from below by

−2

t

∫
S1
α−1/2P̂ 2

t dθ −
2(1 + r∞)

t

∫
S1
α−1/2e2P Q̂2

tdθ − Ct−1−ηĤ

for all t ≥ t1. Finally, the last term on the right hand side of (57) can be estimated from below by

−Dt−1−r∞+ρ/2Ĥ − Ct−1−γ+ρ/2Ĥ,

for t ≥ t1; here C > 0 and D ≥ 0 are constants and D = 0 if B = 0. Fixing ρ > 0 to be a constant
such that ρ < 2 min{r∞, γ} in case B 6= 0 and such that ρ < 2γ in case B = 0, we conclude that

dĤ
dt
≥ −2

t

∫
S1
α−1/2P̂ 2

t dθ−
2(1 + r∞)

t

∫
S1
α−1/2e2P Q̂2

tdθ−
2 + ρ

t

1

t2+ρ

∫
S1

(
λ̂2 + P̂ 2

)
dθ− C

t1+η
Ĥ,

for some constants C, η > 0 and all t ≥ t1. Note also that, by assumption, the second term
vanishes unless r∞ ∈ (0, 1). The lemma follows.

5 General estimates

In the next few sections, we change perspective and start with the assumption that we have a
solution such that α has a positive lower bound. Our goal is to prove that given such a solution,
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there is a uniquely associated pseudo-homogeneous solution such that the difference converges to
zero. Moreover, we wish to prove that the decay rate is such that combining the relevant estimate
with Lemma 16 yields the conclusion that the difference between the solution we started with and
the pseudo-homogeneous solution is zero. The end result of such an argument is the conclusion
that solutions such that α has a positive lower bound are pseudo-homogeneous. However, before
we derive conclusions based on the assumption of a positive lower bound for α, let us record some
estimates which hold in general.

Lemma 18. Consider a solution to (2)–(6) on (t0,∞)×S1 with K 6= 0. Then there is a constant
C > 0 such that ∫

S1

∫ τ

t1

t
[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dtdθ ≤ C ln τ (59)

for all τ ≥ t1.

Remark 19. The assumption that K 6= 0 is necessary here; T3-Gowdy symmetric solutions
satisfying (59) are spatially homogeneous.

Proof. Let

f = α−1/2eP+λ/2, g = P +
λ

2
− 1

2
lnα.

Then, due to Jensen’s inequality, [26, Theorem 3.3, p. 62], 〈f〉 = 〈eg〉 ≥ e〈g〉. Furthermore

gt =
1

2
t

[(
Pt +

1

t

)2

+ αP 2
θ + e2P (Q2

t + αQ2
θ)

]
− 1

2t
.

Letting

h(t) =

∫ t

ta

〈gt〉ds,

we have 〈f〉(t) ≥ exp[〈g〉(ta)] exp[h(t)]. However, due to the fact that t−2Ĥ is decreasing, we know
that 〈f〉(t) ≤ Ct7/2. As a consequence, h(t) ≤ 7 ln t/2 + C for all t ≥ t1. In particular, there is a
constant C > 0 such that (59) holds for all τ ≥ t1.

Note that one particular consequence of this estimate is that 〈P 〉 cannot grow faster than loga-
rithmically to the future.

Corollary 20. Consider a solution to (2)–(6) on (t0,∞) × S1 with K 6= 0. Then there is a
constant C > 0 such that

|〈P (t, ·)〉|+
∫ t

t1

∫
S1
|Pt(s, θ)|dθds ≤ C ln t

for all t ≥ t1.

Proof. Estimate

|〈P (t, ·)〉| ≤ |〈P (t1, ·)〉|+
1

2π

∫ t

t1

∫
S1
|Pt(s, θ)|dθds.

On the other hand,

1

2π

∫ t

t1

∫
S1
|Pt(s, θ)|dθds ≤

1

2π

(∫ t

t1

2πs−1ds

)1/2(∫ t

t1

∫
S1
sP 2

t (s, θ)dθds

)1/2

≤ C ln t,

where we have appealed to Lemma 18.
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In Section 12, it will be of interest to know that t−ρ〈Pt〉 ∈ L1([t1,∞)) for constants ρ > 0. As a
first step in the proof of this fact, let us demonstrate the following.

Lemma 21. Let T ≥ 1 and let f : [T,∞)→ R be measurable. Assume, moreover, that there is a
real constant C > 0 such that ∫ τ

T

tf2(t)dt ≤ C ln τ

for all τ ≥ T . Then t1−ρf2 ∈ L1([T,∞)) for every constant ρ > 0. In particular, t−ρf ∈
L1([T,∞)) for every constant ρ > 0.

Proof. Let 0 < ρ ∈ R, 1 ≤ N ∈ Z, and let us estimate

N−1∑
n=0

∫ 2n+1T

2nT

t1−ρf2(t)dt ≤
N−1∑
n=0

(2nT )−ρ
∫ 2n+1T

2nT

tf2(t)dt ≤
N−1∑
n=0

(2nT )−ρC ln(2n+1T ).

Since the limit of the right hand side (as N → ∞) is finite, Lebesgue’s monotone convergence
theorem yields the first conclusion of the lemma. The second follows by appealing to Hölder’s
inequality.

Corollary 22. Consider a solution to (2)–(6) on (t0,∞) × S1 with K 6= 0. Then, for every
0 < ρ ∈ R, t−ρ〈Pt〉 ∈ L1([t1,∞)).

Proof. Let f = 〈Pt〉. Then ∫ τ

t1

tf2(t)dt ≤ 1

2π

∫ τ

t1

t

∫
S1
P 2
t dθdt.

Due to Lemma 18, it is thus clear that the assumptions of Lemma 21 are fulfilled. The corollary
follows.

6 Pointwise considerations

In the end, we shall assume α to be bounded from below by a positive constant. However, it is
possible to deduce some of the desired conclusions assuming only that α does not converge to zero
uniformly. We shall therefore start by making such assumptions. Moreover, in the proof of the
fact that 〈α−1/2〉 converges to infinity in the non-pseudo-homogeneous setting, we need to be able
to derive uniform bounds given non-uniform ones. This is the main purpose of the present section.

Lemma 23. Consider a solution to (2)–(6) on (t0,∞) × S1. Assume that α does not converge
uniformly to zero as t → ∞. Then there is a θ0 ∈ S1 and an ε > 0 such that α(t, θ0) ≥ ε for all
t ∈ (t0,∞).

Proof. Since α does not converge to zero uniformly, there is an ε > 0 and, for every T > t0, a
(t, θ) such that t ≥ T and α(t, θ) ≥ ε. As a consequence, there is a sequence (tk, θk) with tk →∞
such that α(tk, θk) ≥ ε. We can assume that θk converges to, say, θ∗ ∈ S1. Let t ∈ (t0,∞). Then

α(t, θ∗) = lim
k→∞

α(t, θk) ≥ lim inf
k→∞

α(tk, θk) ≥ ε,

where we have used the fact that α is monotonically decaying and the fact that tk ≥ t for k large
enough. The lemma follows.

Let us derive some preliminary bounds on P , assuming α to have a pointwise positive lower bound.
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Lemma 24. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is a
θ0 ∈ S1 and an ε > 0 such that α(t, θ0) ≥ ε for all t ∈ (t0,∞). For every C > 0, there is then a
TC such that

−3 ln t+ C ≤ P (t, θ0) ≤ ln t− C (60)

for all t ≥ TC . Moreover,

lim
t→∞

(
α−1/2eP+λ/2K2

t3/2

)
(t, θ0) = 0. (61)

Remark 25. The conclusions should be compared with the statement of Lemma 11.

Proof. Due to the assumptions and (4),∫ ∞
t1

eP+λ/2K2

t5/2
dt <∞,

where we take it to be understood that θ = θ0. Since α has a positive lower bound, we also know
that ∫ ∞

t1

α−1/2eP+λ/2K2

t5/2
dt <∞.

Let

f(t) =

(
α−1/2eP+λ/2K2

t3/2

)
(t, θ0).

Then ∫ ∞
t1

t−1f(t)dt <∞ (62)

and f is smooth on (t0,∞). Note, moreover, that

∂t(α
−1/2eP+λ/2) =

(
1

2
t[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)] + Pt

)
α−1/2eP+λ/2

=

(
1

2
t[(Pt + t−1)2 + αP 2

θ + e2P (Q2
t + αQ2

θ)]−
1

2t

)
α−1/2eP+λ/2

≥− 1

2t
α−1/2eP+λ/2.

Thus

f ′ ≥ − 3

2t
f − 1

2t
f = −2

t
f. (63)

Combining (62), (63) and Lemma 10, we conclude that (61) holds. In order to derive conclusions
concerning P from this observation, let us note that

(α−1/2eP+λ/2)(t, θ0) = (α−1/2eλ/2)(t1, θ0) exp

(∫ t

t1

1

2
s[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)]ds+ P

)
.

Combining this observation with (61), we obtain

lim
t→∞

(∫ t

t1

1

2
s[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)]ds+ P − 3

2
ln t

)
= −∞, (64)

where θ = θ0. Let C > 0 and assume that there is a sequence tk → ∞ such that P (tk, θ0) ≥
a ln tk − C for some constant a > 0. Then

a ln tk − C − P (t1, θ0) ≤
∫ tk

t1

Pt(s, θ0)ds ≤
(∫ tk

t1

1

s
ds

)1/2(∫ tk

t1

sP 2
t (s, θ0)ds

)1/2

.

24



There is consequently a constant c1 (depending on C) such that

a2 ln tk − c1 ≤
∫ tk

t1

sP 2
t (s, θ0)ds

for k large enough. Thus

a ln tk +
1

2
a2 ln tk −

1

2
c1 − C ≤

∫ tk

t1

1

2
sP 2

t (s, θ0)ds+ P (tk, θ0).

If a ≥ 1, this estimate contradicts (64). As a consequence, there is a TC > t0 such that

P (t, θ0) ≤ ln t− C (65)

for t ≥ TC . In other words, we obtain the upper bound in (60).

Fix C > 0. Let us assume that for every TC > t0, there is a t ≥ TC such that P (t, θ0) ≤ −3 ln t+C.
Then there is a sequence tk →∞ and a sequence ak ≤ −3 such that P (tk, θ0) = ak ln tk + C. As
a consequence,

−ak ln tk − C + P (t1, θ0) = −
∫ tk

t1

Pt(s, θ0)ds ≤ ln1/2 tk

(∫ tk

t1

sP 2
t (s, θ0)ds

)1/2

.

Thus

a2
k ln tk − c1 ≤

∫ tk

t1

sP 2
t (s, θ0)ds

for k large enough, so that

1

2
a2
k ln tk + ak ln tk + C − 1

2
c1 ≤

1

2

∫ tk

t1

sP 2
t (s, θ0)ds+ P (tk, θ0).

Due to (64), we obtain a contradiction. Consequently, the lower bound in (60) holds.

It is of interest to derive uniform bounds on P of the above type. However, in order to be able to
do so, we unfortunately need a uniform positive lower bound on α. It would be preferable to avoid
making such an assumption. Let us therefore briefly discuss some ways in which this assumption
might be avoided.

Lemma 26. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that α does not
converge to zero uniformly, and that Ĥ ≤ Ct for some constant C > 0 and all t ≥ t1. Then there
is an α0 > 0 such that α(t, θ) ≥ α0 for all (t, θ) ∈ (t0,∞)× S1.

Proof. Due to Lemma 23, we know that there is a θ0 ∈ S1 and an ε > 0 such that α(t, θ0) ≥ ε. In
particular, we know that ∫ ∞

t1

eP+λ/2K2

t5/2
dt <∞

for θ = θ0. It is of interest to consider the spatial variation of P and λ. Note that

‖P − 〈P 〉‖C0 ≤ 1

2

∫
S1
|Pθ|dθ ≤

1

2

(∫
S1
α1/2P 2

θ dθ

)1/2(∫
S1
α−1/2dθ

)1/2

≤ 1

4
√

3
t−1Ĥ ≤ C,

due to our assumptions. Moreover,

‖λ− 〈λ〉‖C0 ≤ 1

2

∫
S1
|λθ|dθ ≤

1

2
t−1Ĥ ≤ C.
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As a consequence of the above observations, we have the following conclusion:∫ ∞
t1

eP (t,θ)+λ(t,θ)/2K2

t5/2
dt ≤

∫ ∞
t1

eP (t,θ0)+λ(t,θ0)/2+CK2

t5/2
dt ≤ eC

∫ ∞
t1

eP (t,θ0)+λ(t,θ0)/2K2

t5/2
dt.

Since the integral on the right hand side has a uniform upper bound (independent of θ), we obtain
a positive uniform lower bound on α.

In particular, we have the following consequence of the above observation.

Corollary 27. Consider a solution to (2)–(6) on (t0,∞) × S1 with K 6= 0. Assume that α does
not converge to zero uniformly, and that there is a constant C > 0 such that

α−1/2(t, θ) ≤ C t

ln t
(66)

for all (t, θ) ∈ [t1,∞) × S1. Then there is an α0 > 0 such that α(t, θ) ≥ α0 for all (t, θ) ∈
(t0,∞)× S1.

Proof. As a consequence of (59),∫
S1

∫ τ

t1

tα−1/2
[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dtdθ

≤
∫
S1

∫ τ

t1

Ct2(ln t)−1
[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dtdθ

≤Cτ(ln τ)−1

∫
S1

∫ τ

t1

t
[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dtdθ ≤ Cτ,

where we have used (66). In particular,∫
S1

∫ τ

t1

tα1/2(P 2
θ + e2PQ2

θ)dtdθ ≤ Cτ.

Combining this estimate with (24) yields

Ĥ(τ) ≤ Ĥ(t1) + 2

∫
S1

∫ τ

t1

tα1/2(P 2
θ + e2PQ2

θ)dtdθ ≤ Cτ.

We thus obtain the desired conclusion by appealing to Lemma 26.

7 Positive lower bound on α

Let us now derive uniform bounds on P , given a positive lower bound on α.

Lemma 28. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞) × S1. Then, for every C > 0, there is a TC such
that

−3 ln t+ C ≤ P (t, θ) ≤ ln t− C (67)

for all (t, θ) ∈ [TC ,∞)× S1.

Remark 29. Here and below, α0 is a constant.

Proof. Due to the lower bound on α and the boundedness of the energy H = Ĥ/t2, cf. (24), there
is a constant C0 such that

‖P − 〈P 〉‖C0 ≤ C0

for all t ≥ t1. Combining this observation with (60), we obtain the desired conclusion.
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Let us now consider the energies.

Lemma 30. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞) × S1. Then there is a constant 0 ≤ cE ∈ R such
that

lim
t→∞

∫
S1
t2α−1/2

[
P 2
t + e2PQ2

t + α(P 2
θ + e2PQ2

θ)
]
dθ = cE . (68)

Moreover, ∫ ∞
t1

t

∫
S1
α1/2(P 2

θ + e2PQ2
θ)dθdt <∞. (69)

Proof. Recall (24). As a consequence of this equality, Ĥ is increasing. It is of interest to prove
that there is a C ∈ R such that ∫ t

t1

s−1Ĥ(s)ds ≤ C ln t (70)

for all t ≥ t1. Note, to this end, that t−1Ĥ(t) is given by∫
S1

[
tα−1/2[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)] +

α−1/2eP+λ/2K2

t5/2
+ 3t−1α−1/2

]
dθ.

Due to Lemma 18 and the positive lower bound on α, we conclude that the integral in time of the
quantity arising from the first term in the integrand is bounded by C ln t. Moreover, due to the
lower bound on α, the integral of the quantity arising from the last two terms in the integrand is
bounded by C ln t for some constant C. In fact, due to the lower bound on α and (4),∫ ∞

T

∫
S1

α−1/2eP+λ/2K2

t5/2
dθdt <∞ (71)

for each T > t0. To conclude, (70) holds for some C. On the other hand, Ĥ is increasing. If
Ĥ(t) > C for some t, we thus obtain a contradiction. Since Ĥ is increasing and bounded from
above, there is an Ĥ∞ such that Ĥ(t)→ Ĥ∞. However,∫

S1
3α−1/2dθ

is increasing and converges to a limit. Moreover,∫
S1

α−1/2eP+λ/2K2

t3/2
dθ

converges to zero. In order to prove this statement, note that if we let

f(t) =

∫
S1

α−1/2eP+λ/2K2

t3/2
dθ,

then ∫ ∞
t1

1

t
f(t)dt <∞.

Moreover, by an argument similar to the derivation of (63), we have f ′ ≥ −2f/t. We are thus
in a position to apply Lemma 10 in order to obtain the desired conclusion. Combining the above
observations, we conclude that there is a constant cE ≥ 0 such that (68) holds. Moreover, the
boundedness of Ĥ and (24) imply that (69) holds.

It is of interest to derive some basic conclusions concerning the spatial variation of P , Q and λ.
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Lemma 31. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C > 0 such that

‖P − 〈P 〉‖C0 ≤ C

(∫
S1
αP 2

θ dθ

)1/2

, (72)

‖eP (Q− 〈Q〉)‖C0 ≤ C

(∫
S1
αe2PQ2

θdθ

)1/2

, (73)

‖λ− 〈λ〉‖C0 ≤ C

(∫
S1
α(P 2

θ + e2PQ2
θ)dθ

)1/2

(74)

for all t ≥ t1.

Proof. That (72) holds is obvious. As a consequence, ‖P − 〈P 〉‖C0 ≤ Ct−1. Thus

‖eP (Q− 〈Q〉)‖C0 ≤Ce〈P 〉‖Q− 〈Q〉‖C0 ≤ Ce〈P 〉
∫
S1
|Qθ|dθ

≤Ce〈P 〉
(∫

S1
αQ2

θdθ

)1/2

≤ C
(∫

S1
αe2PQ2

θdθ

)1/2

.

Thus (73) holds. Finally, note that

‖λ− 〈λ〉‖C0 ≤1

2

∫
S1
|λθ|dθ ≤ t

∫
S1
|PtPθ + e2PQtQθ|dθ

≤t
∫
S1

(
α−1/2P 2

t + α−1/2e2PQ2
t

)1/2 (
α1/2P 2

θ + α1/2e2PQ2
θ

)1/2

dθ

≤t
(∫

S1
α−1/2

(
P 2
t + e2PQ2

t

)
dθ

)1/2(∫
S1
α1/2

(
P 2
θ + e2PQ2

θ

)
dθ

)1/2

≤C
(∫

S1
α(P 2

θ + e2PQ2
θ)dθ

)1/2

.

(75)

Thus (74) holds.

Corollary 32. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is
an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C > 0 such that

‖P − 〈P 〉‖C0 + ‖eP (Q− 〈Q〉)‖C0 + ‖λ− 〈λ〉‖C0 ≤ Ct−1 (76)

for all t ≥ t1.

One immediate consequence of the above observations is a sup-norm estimate of αt/α.

Corollary 33. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is
an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then

lim
t→∞

t
∥∥∥αt
α

(t, ·)
∥∥∥
C0

= 0.

Proof. Let us estimate, for t ≥ t1,

t
∥∥∥αt
α

(t, ·)
∥∥∥
C0
≤ C e

〈P 〉+〈λ〉/2K2

t3/2
≤ C

∫
S1

α−1/2eP+λ/2K2

t3/2
dθ.

However, the right hand side converges to zero as t→∞; cf. the proof of Lemma 30.
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In what follows, we shall use the fact that ‖αt/α‖C0 = O(t−1) without further comment. Let us
now turn to more detailed conclusions concerning the asymptotics.

Lemma 34. Consider a solution to (2)–(6) on (t0,∞) × S1 with K 6= 0. Assume that there is
an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞) × S1. Assume, moreover, that the conserved
quantity B defined in (22) is non-zero. Then there is a q∞ such that

lim
t→∞

‖Q(t, ·)− q∞‖C0 = 0.

Moreover,
lim
t→∞
〈P (t, ·)〉 =∞. (77)

Proof. Note that

B2e−2〈P 〉 ≤ t2
∫
S1
α−1/2dθ

∫
S1
α−1/2e4P−2〈P 〉Q2

tdθ ≤ C.

There is thus a constant C such that P (t, θ) ≥ C for all (t, θ) ∈ [t1,∞)× S1.

Consider the conserved quantity A; cf. (23). Note that∫
S1
tα−1/2e2PQtQdθ = B〈Q〉+

∫
S1
tα−1/2e2PQt(Q− 〈Q〉)dθ.

Due to (76), our bounds on the basic energy and Hölder’s inequality, we know that the second
term on the right hand side is O(t−1). As a consequence,

A =

∫
S1
tα−1/2(Pt + t−1)dθ −B〈Q〉+O(t−1). (78)

Since we know that the first term on the right hand side is bounded, we conclude that 〈Q〉 is
bounded. Consider

∂t

[
1

e〈P 〉〈α−1/2〉

∫
S1
e〈P 〉α−1/2(Q− 〈Q〉)dθ

]
.

Note that when the derivative hits a factor involving 〈P 〉 or α−1/2, then the resulting term is
O(t−2e−〈P 〉). Thus

∂t

[
1

e〈P 〉〈α−1/2〉

∫
S1
e〈P 〉α−1/2(Q− 〈Q〉)dθ

]
=

1

e〈P 〉〈α−1/2〉

∫
S1
e〈P 〉α−1/2(Qt − 〈Qt〉)dθ +O(t−2e−〈P 〉)

=
1

e〈2P 〉〈α−1/2〉

∫
S1
e〈2P 〉α−1/2Qtdθ − 2π〈Qt〉+O(t−2e−〈P 〉)

=
1

e〈2P 〉〈α−1/2〉

∫
S1

(e〈2P 〉 − e2P )α−1/2Qtdθ +
1

e〈2P 〉〈α−1/2〉
t−1B − 2π〈Qt〉+O(t−2e−〈P 〉)

=
1

e〈2P 〉〈α−1/2〉
t−1B − 2π〈Qt〉+O(t−2e−〈P 〉).

(79)

Since B 6= 0, we know that 〈P 〉 is bounded from below by a constant, and we can integrate the
above equality in order to obtain

c1 +O(t−1) =

∫ t

t1

1

e〈2P 〉〈α−1/2〉
s−1Bds− 2π〈Q〉.

Since 〈Q〉 is bounded, we conclude that∫ ∞
t1

t−1e−2〈P 〉dt <∞,

so that 〈Q〉 converges to a limit, say q∞. Since t〈Pt〉 is bounded, we can, moreover, appeal to
Lemma 10 in order to conclude that 〈P 〉 → ∞.
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In the next lemma, we prove that P/ ln t converges to a limit. Moreover, we prove that the limit,
say r∞, belongs to (−3, 1) in case B = 0 and that it belongs to [0, 1) in case B 6= 0. Most of the
effort in the proof is in excluding the cases r∞ = 1 and r∞ = −3. At first sight, this might seem to
be a technical issue. Let us therefore justify the effort spent in achieving this goal. In Lemma 38,
we shall be able to prove that λ = r2

∞ ln t+ o(ln t). Combining this information with Lemma 35,
we conclude that, for every ε > 0, αt/α = O(t−1−γ+ε), where γ is defined in (39). Clearly, this
equality is only useful if γ > 0; in that case, we obtain α(t, θ) = α∞(θ) + O(t−η) for some η > 0.
However, we are only allowed to conclude that γ > 0 if we are able to exclude the extreme cases
r∞ = 1 and r∞ = −3. It is also of interest to exclude r∞ = 0 in case B 6= 0 (that would yield a
decay rate for Q− q∞). However, we shall only be able to do so later; cf. Lemma 39.

Lemma 35. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is an r∞ ∈ (−3, 1) such that

lim
t→∞

∥∥(ln t)−1P − r∞
∥∥
C0 = 0. (80)

Moreover, if B 6= 0, then r∞ ∈ [0, 1).

Remark 36. For future reference, it is of interest to keep the following consequence of the proof
in mind:

2π(r∞ + 1) =
A+Bq∞
〈α−1/2〉∞

,

where 〈α−1/2〉∞ is the limit of 〈α−1/2〉, q∞ is given by the statement of Lemma 34 in case B 6= 0,
and Bq∞ should be replaced by zero in case B = 0.

Proof. Let us begin by computing that

∂t

[
1

〈α−1/2〉

∫
S1
α−1/2(P − 〈P 〉)dθ

]
=O(t−2) +

1

〈α−1/2〉

∫
S1
α−1/2(Pt + t−1)dθ − 2π〈Pt + t−1〉

=
1

〈α−1/2〉

(
A

t
+
B

t
〈Q〉
)
− 2π〈Pt + t−1〉+O(t−2),

(81)

where we have used (78). It is of interest to consider the quantity

1

〈α−1/2〉
(A+B〈Q〉). (82)

From the conclusions we have already derived, this quantity converges. Call the limit 2π(r∞+ 1).
As a consequence,

〈P 〉 = r∞ ln t+ o(ln t). (83)

In order to obtain more information, it is of interest to determine how the limit 2π(r∞ + 1) is
approached.

The case B = 0. When B = 0,

1

〈α−1/2〉
(A+B〈Q〉) =

1

〈α−1/2〉
A.

Note that this is a decreasing quantity if A ≥ 0 and an increasing quantity if A ≤ 0. Assuming
A ≥ 0, we thus have

∂t

[
1

〈α−1/2〉

∫
S1
α−1/2(P − 〈P 〉)dθ

]
≥ 2π(r∞ + 1)t−1 − 2π〈Pt + t−1〉+O(t−2).

Thus
c+O(t−1) ≥ 2π(r∞ + 1) ln t− 2π〈P + ln t〉,
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so that
〈P 〉 ≥ r∞ ln t+ c+O(t−1), (84)

assuming r∞ ≥ −1. Assuming A ≤ 0, we have

∂t

[
1

〈α−1/2〉

∫
S1
α−1/2(P − 〈P 〉)dθ

]
≤ 2π(r∞ + 1)t−1 − 2π〈Pt + t−1〉+O(t−2).

Thus
c+O(t−1) ≤ 2π(r∞ + 1) ln t− 2π〈P + ln t〉,

so that
〈P 〉 ≤ r∞ ln t+ c+O(t−1), (85)

assuming r∞ ≤ −1. From the estimate (67), we know that −3 ≤ r∞ ≤ 1. In fact, combining this
estimate with (84) and (85), we obtain −3 < r∞ < 1.

The case B 6= 0. In this case, we know that 0 ≤ r∞ ≤ 1; this conclusion is due to (67), (77) and
(83). Consequently, we have A + Bq∞ ≥ 0. In order to proceed, it is of interest to analyse how
〈Q〉 approaches q∞. Consider, to this end, (79). Multiplying this equality by B and integrating
from t to infinity, we obtain

O(t−1) =

∫ ∞
t

1

e〈2P 〉〈α−1/2〉
s−1B2ds− 2πB(q∞ − 〈Q〉). (86)

Since we are mainly interested in excluding r∞ = 1, let us assume that this equality holds. Then
〈2P 〉 = 2 ln t+ o(ln t), so that

B〈Q〉 = Bq∞ +O(t−1).

Thus,
1

〈α−1/2〉
(A+B〈Q〉) =

1

〈α−1/2〉
(A+Bq∞) +O(t−1) ≥ 2π(r∞ + 1) +O(t−1),

where we have used the fact that A+Bq∞ ≥ 0. We can thus argue as above in order to conclude
that

〈P 〉 ≥ ln t+ c+O(t−1).

However, this estimate contradicts (67). Thus r∞ ∈ [0, 1).

7.1 Integrals of the energies

Let us consider the energies in greater detail. The following lemma may seem somewhat technical,
but it almost immediately gives asymptotic estimates for λ; cf. Lemma 38.

Lemma 37. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then∫ ∞

t1

∫
S1
tα−1/2[αP 2

θ + αe2PQ2
θ + e2PQ2

t ]dθdt <∞. (87)

Moreover,∫ t

t1

∫
S1
sα−1/2[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)]dθds = 2π〈α−1/2〉∞r2

∞ ln t+ o(ln t), (88)

where
〈α−1/2〉∞ = lim

t→∞
〈α−1/2〉

and r∞ is the quantity defined by (80).
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Proof. Compute∫ t

t1

∫
S1
sα−1/2e2PQ2

tdθds =

∫ t

t1

[∫
S1
sα−1/2e2PQt(Qt − 〈Qt〉)dθ +B〈Qt〉

]
ds

=

∫ t

t1

[
∂s

{∫
S1
sα−1/2e2PQt(Q− 〈Q〉)dθ +B〈Q〉

}]
ds

−
∫ t

t1

∫
S1
∂s(sα

−1/2e2PQt)(Q− 〈Q〉)dθds

=

[∫
S1
sα−1/2e2PQt(Q− 〈Q〉)dθ +B〈Q〉

]t
t1

+

∫ t

t1

∫
S1
sα1/2e2PQ2

θdθds.

Note, in particular, that the right hand side is bounded, so that∫ ∞
t1

∫
S1
tα−1/2e2PQ2

tdθdt <∞,

an estimate which, together with (69), proves (87). Let us turn to∫ t

t1

∫
S1
sα−1/2P 2

t dθds =

∫ t

t1

∫
S1
sα−1/2

(
Pt +

1

s

)
Ptdθds−

∫ t

t1

∫
S1
α−1/2Ptdθds

=

∫ t

t1

∫
S1
sα−1/2

(
Pt +

1

s

)
(Pt − 〈Pt〉)dθds

+

∫ t

t1

∫
S1
sα−1/2

(
Pt +

1

s

)
〈Pt〉dθds−

∫ t

t1

∫
S1
α−1/2

(
Pt +

1

s

)
dθds

+

∫ t

t1

∫
S1

1

s
α−1/2dθds.

(89)

Note that the first term on the far right hand side can be written[∫
S1
sα−1/2

(
Pt +

1

s

)
(P − 〈P 〉)dθ

]t
t1

−
∫ t

t1

∫
S1
∂s

[
sα−1/2

(
Pt + s−1

)]
(P − 〈P 〉)dθds

=c0 +O(t−1)−
∫ t

t1

∫
S1

[
∂θ

(
sα1/2Pθ

)
+ sα−1/2e2P (Q2

t − αQ2
θ)
]

(P − 〈P 〉)dθds

=c0 +O(t−1) +

∫ t

t1

∫
S1
sα1/2P 2

θ dθds;

cf. (21). The second term on the far right hand side of (89) can be written∫ t

t1

∫
S1
sα−1/2

(
Pt +

1

s
− e2PQtQ

)
dθ〈Pt〉ds+

∫ t

t1

∫
S1
sα−1/2e2PQt(Q− 〈Q〉)dθ〈Pt〉ds

+

∫ t

t1

∫
S1
sα−1/2e2PQt〈Q〉dθ〈Pt〉ds

=

∫ t

t1

(A+B〈Q〉)〈Pt〉ds+ c0 +O(t−1).

By a similar argument, the third term on the far right hand side of (89) can be written

−
∫ t

t1

1

s
(A+B〈Q〉)ds+ c0 +O(t−1).
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Adding up the above observations, we conclude that∫ t

t1

∫
S1
sα−1/2P 2

t dθds =

∫ t

t1

∫
S1
sα1/2P 2

θ dθds+

∫ t

t1

(A+B〈Q〉)
(
〈Pt〉 −

1

s

)
ds+

∫ t

t1

∫
S1

1

s
α−1/2dθdt

+ c0 +O(t−1).

As a consequence,∫ t

t1

∫
S1
sα−1/2[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)]dθds =〈α−1/2〉∞2π(r∞ + 1) (〈P 〉 − ln t)

+ 2π〈α−1/2〉∞ ln t+ o(ln t)

=2π〈α−1/2〉∞[(r2
∞ − 1) + 1] ln t+ o(ln t)

=2π〈α−1/2〉∞r2
∞ ln t+ o(ln t),

(90)

where we have used the fact that 2π(r∞ + 1) is the limit of (82). The lemma follows.

7.2 Asymptotics

Let us now turn to the asymptotics of λ.

Lemma 38. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then

lim
t→∞

‖(ln t)−1λ− r2
∞‖C0 = 0,

where r∞ is the real number defined by (80).

Proof. Compute

∂t〈α−1/2(λ− 〈λ〉)〉 = O(t−2) + 〈α−1/2∂tλ〉 − 〈α−1/2〉〈λt〉.

Integrating this equality, we obtain

〈α−1/2〉∞〈λ〉 =

∫ t

t1

〈α−1/2∂tλ〉dt+ o(ln t) = 〈α−1/2〉∞r2
∞ ln t+ o(ln t), (91)

where we, in the last step, used (88) and the fact that αt/α is integrable. Thus

〈λ〉 = r2
∞ ln t+ o(ln t).

The lemma follows.

Given the above information, we obtain a decay rate for α−α∞. As a consequence, we can exclude
r∞ = 0 in case B 6= 0, so that we obtain a decay rate for Q− q∞. Combining these two pieces of
information, we obtain an estimate of the form (92) below. However, the estimate we obtain for
λ does not include a decay rate. This is due to the fact that we do not have sufficient information
concerning the L2-norm of Pθ etc. However, we will improve our knowledge concerning these
norms in Lemma 43 below.

Lemma 39. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is an r∞ ∈ (−3, 1) and constants
cP and C, δ > 0 such that

‖P (t, ·)− r∞ ln t− cP ‖C0 ≤ Ct−δ (92)

33



for t ≥ t1. Moreover, if B 6= 0, then r∞ ∈ (0, 1). Let γ be the real number defined in (39). Then
there is an α∞ ∈ C0(S1,R+) and a constant C such that

‖α(t, ·)− α∞‖C0 ≤ Ct−γ (93)

for all t ≥ t1. Furthermore, if B 6= 0,

‖Q(t, ·)− q∞‖C0 ≤ Ct−2r∞ (94)

for all t ≥ t1. Finally, there is a constant cλ such that

lim
t→∞

∥∥λ(t, ·)− r2
∞ ln t− cλ

∥∥
C0 = 0. (95)

Remarks 40. That γ > 0 follows from the fact that r∞ ∈ (−3, 1).

Remark 41. It is possible to use (79) and the above estimates in order to prove that (94) is
optimal. Note, however, that

‖(Q− 〈Q〉)(t, ·)‖C0 ≤ Ct−1−r∞ .

Remark 42. Using the above asymptotics together with (81), it can be concluded that δ in (92)
can be chosen to equal min{γ, 1} in case B = 0 and to equal min{γ, 1, 2r∞} in case B 6= 0. Note
also that δ < 1 in case B 6= 0. In fact, assuming δ = 1, we conclude that γ ≥ 1 and 2r∞ ≥ 1. On
the other hand, the latter estimate implies that

γ = 2− 1

2
(r∞ + 1)2 ≤ 2− 1

2

9

4
=

7

8
< 1,

contradicting the fact that γ ≥ 1. In other words, δ = min{γ, 2r∞} in case B 6= 0, and δ < 1.

Proof. By combining Lemmas 35 and 38, we have

P +
1

2
λ =

(
1

2
r2
∞ + r∞

)
ln t+ o(ln t).

Thus
eP+λ/2K2

t5/2
= t−1−γ exp[o(ln t)].

Let us use this observation in order to prove that r∞ > 0 in case B 6= 0. Assume, to this end,
that r∞ = 0 and that B 6= 0. Then γ = 3/2, so that αt = O(t−2). As a consequence,

1

〈α−1/2〉
− 1

〈α−1/2〉∞
= O(t−1).

Thus
1

〈α−1/2〉
(A+B〈Q〉) =

1

〈α−1/2〉∞
(A+B〈Q〉) +O(t−1).

On the other hand, due to (86), we have

Bq∞ =

∫ ∞
t

1

2πe〈2P 〉〈α−1/2〉
s−1B2ds+B〈Q〉+O(t−1) ≥ B〈Q〉+O(t−1).

Combining these two observations, we conclude that

1

〈α−1/2〉
(A+B〈Q〉) ≤ 1

〈α−1/2〉∞
(A+Bq∞) +O(t−1).
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Combining this observation with (81), we obtain

∂t

[
1

〈α−1/2〉

∫
S1
α−1/2(P − 〈P 〉)dθ

]
≤ 2π(r∞ + 1)

1

t
− 2π〈Pt + t−1〉+O(t−2).

Integrating this inequality and keeping in mind that r∞ = 0, we conclude that

〈P 〉 ≤ c+O(t−1),

in contradiction with (77). To conclude: if B 6= 0, then r∞ ∈ (0, 1).

Due to the above observation, we obtain a rate of convergence of 〈Q〉 to q∞. In fact, due to (79)
and the fact that r∞ > 0, there is an η > 0 such that

〈Q〉 − q∞ = O(t−η).

Combining the above observations, we conclude that there is a δ > 0 such that

1

〈α−1/2〉
(A+B〈Q〉) = 2π(r∞ + 1) +O(t−δ).

We can thus integrate (81) in order to conclude that (92) holds for some δ > 0 and some cP ∈ R.
Moreover, we are in a position to improve (90) to∫ t

t1

∫
S1
sα−1/2[P 2

t + αP 2
θ + e2P (Q2

t + αQ2
θ)]dθds = 2π〈α−1/2〉∞r2

∞ ln t+ c0 + o(1).

Using this equality, (91) can be improved to

〈λ〉 = r2
∞ ln t+ c0 + o(1).

As a consequence, (95) holds. Due to (92) and (95),

eP+λ/2K2

t5/2
= t−1−γ exp[c0 + o(1)].

Thus (93) holds. Finally, integrating (79) from t to infinity, keeping the above in mind, we obtain
(94).

It would of course be of interest to improve the estimate for λ; we would like to have a rate of
convergence. However, it is then necessary to obtain a rate of convergence to zero for∫ ∞

t

∫
S1
sα−1/2[αP 2

θ + αe2PQ2
θ + e2PQ2

t ]dθds.

This is the next topic of interest. Note also that the proof of the next lemma constitutes the
model case of how to derive estimates for the the L2-norms of Pθ and ePQθ using the conserved
quantities and the monotonicity properties of the energies; cf. the discussion in the introduction.

Lemma 43. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C > 0 such that∫

S1
t2α−1/2

[
αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dθ ≤ Ct−δ, (96)∣∣∣∣∫

S1
t2α−1/2P 2

t dθ − 2π〈α−1/2〉∞r2
∞

∣∣∣∣ ≤ Ct−δ, (97)

for all t ≥ t1.
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Remark 44. The constant δ can be chosen as in Remark 42.

Remark 45. Due to the estimate (96), several of the conclusions derived previously can be
improved.

Proof. Step 1. The first step of the proof is to use the conserved quantities to estimate the
integral of α−1/2P 2

t from below. Consider, to this end,

A =

∫
S1
tα−1/2Ptdθ + 2π〈α−1/2〉 −

∫
S1
tα−1/2e2PQt(Q− 〈Q〉)dθ −B〈Q〉. (98)

This equality can be written

A+Bq∞ − 2π〈α−1/2〉∞ +O(t−δ) =

∫
S1
tα−1/2Ptdθ.

Since
A+Bq∞ = 2π〈α−1/2〉∞(r∞ + 1),

we conclude that

2π〈α−1/2〉∞r∞ +O(t−δ) =

∫
S1
tα−1/2Ptdθ. (99)

Squaring this equality, we obtain

〈α−1/2〉2∞r2
∞ +O(t−δ) =

(
1

2π

∫
S1
tα−1/2Ptdθ

)2

.

On the other hand,(
1

2π

∫
S1
tα−1/2|Pt|dθ

)2

≤ 〈α−1/2〉〈t2α−1/2P 2
t 〉 ≤ 〈α−1/2〉∞〈t2α−1/2P 2

t 〉.

Combining these observations, we obtain

〈α−1/2〉∞r2
∞ +O(t−δ) ≤ 〈t2α−1/2P 2

t 〉.

Thus there is a constant C > 0 such that

−Ct−δ ≤
∫
S1
t2α−1/2P 2

t dθ − 2π〈α−1/2〉∞r2
∞. (100)

Step 2. The idea of the second step is to combine the lower bound on the Pt-energy with the
monotonicity of the energy to derive upper bounds on the remainder of the PQ-energy. Estimate∫

S1
t2α−1/2

[
αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dθ

=Ĥ −
∫
S1
t2α−1/2P 2

t dθ −
∫
S1

α−1/2eP+λ/2K2

t3/2
dθ −

∫
S1

3α−1/2dθ

≤Ĥ∞ − 6π〈α−1/2〉∞ − 2π〈α−1/2〉∞r2
∞ + Ct−δ.

However, due to Lemmas 30 and 37, we know that

Ĥ∞ = 6π〈α−1/2〉∞ + 2π〈α−1/2〉∞r2
∞.

Combining the above observations, we obtain (96). Due to (24), we thus have

0 ≤ Ĥ∞ − Ĥ(t) =

∫ ∞
t

2s

∫
S1
α1/2(P 2

θ + e2PQ2
θ)dθds ≤ Ct−δ.

As a consequence of this and earlier observations,∫
S1
t2α−1/2

[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dθ − 2π〈α−1/2〉∞r2

∞ = O(t−δ). (101)

Combining this estimate with (96), we conclude that (97) holds.
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We are now in a position to improve the estimates concerning λ.

Lemma 46. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there are constants C > 0 and cλ such
that ∥∥λ(t, ·)− r2

∞ ln t− cλ
∥∥
C0 ≤ Ct−δ (102)

for t ≥ t1.

Remark 47. The constant δ can be chosen as in Remark 42.

Proof. To begin with, we can improve (91) to

c0 +O(t−δ) =

∫ t

t1

〈α−1/2λt〉dt− 〈α−1/2〉∞〈λ〉.

However,∫ t

t1

〈α−1/2λt〉dt =
1

2π

∫ t

t1

∫
S1
sα−1/2

[
P 2
t + αP 2

θ + e2P (Q2
t + αQ2

θ)
]
dθds+ c0 +O(t−δ).

Combining this observation with (96) and (97), we conclude that (102) holds.

7.3 Auxiliary observations

Let us record some auxiliary observations that we shall need when deriving sup-norm estimates.

Lemma 48. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C such that∣∣∣∣ 1

〈α−1/2〉
〈α−1/2Pt〉 −

r∞
t

∣∣∣∣ ≤ Ct−1−δ, (103)∥∥∥∥∂t( α−1/2

〈α−1/2〉

)∥∥∥∥
C0

≤ Ct−2−γ−δ/2 (104)

for all t ≥ t1.

Proof. Combining (99) with (93), we obtain (103). Turning to (104), note that

∂t

(
α−1/2

〈α−1/2〉

)
= −1

2

α−1/2

〈α−1/2〉

(
αt
α
− 1

〈α−1/2〉

〈
α−1/2αt

α

〉)
. (105)

On the other hand,

αt
α
− 1

〈α−1/2〉

〈
α−1/2αt

α

〉
=
e〈P 〉+〈λ〉/2(1− eP−〈P 〉+(λ−〈λ〉)/2)K2

t5/2

+
1

〈α−1/2〉

〈
α−1/2

(
e〈P 〉+〈λ〉/2(eP−〈P 〉+(λ−〈λ〉)/2 − 1)K2

t5/2

)〉
.

(106)

Appealing to (72), (74) and (96), we conclude that (104) holds.
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8 Light cone estimates

In the present section, we derive sup-norm bounds on the first derivatives. However, as a prelim-
inary step, it is of interest to derive estimates for the diffeomorphisms of the circle generated by
the characteristics. Fix, to this end, a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Define

Φ± : (t0,∞)× R→ (t0,∞)× R

by requiring
Φ±(t1, θ) = (t1, θ), (∂tΦ±)(t, θ) = [1,±

√
α ◦ Φ±(t, θ)]. (107)

Note that Φ± are smooth maps that can be written

Φ±(t, θ) = [t, Φ̄±(t, θ)].

Note also that Φ̄±(t, θ + n2π) = Φ̄±(t, θ) + n2π for n ∈ Z. In this sense, Φ± can be considered to
be a smooth function on (t0,∞)×S1 and Φ̄±(t, ·) can be considered to be a smooth map from the
circle to itself. In what follows, it will be of interest to change variables from θ to Φ̄±(t, θ). As a
consequence, it is of interest to estimate Φ̄′±, the θ-derivative of Φ̄±.

Lemma 49. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then Φ̄±(t, ·) is a diffeomorphism of S1 for
each t ∈ (t0,∞). Moreover, there is a constant C > 1 such that

1

C
≤ Φ̄′±(t, θ) ≤ C (108)

for all (t, θ) ∈ [t1,∞)× R.

Proof. Due to the equation defining Φ±,

∂Φ̄′±
∂t

= ±
(
αθ

2
√
α

)
◦ Φ±(t, θ) · Φ̄′±.

Since Φ̄′±(t1, θ) = 1, this equation implies that Φ̄′± is always positive. Thus Φ̄±(t, ·) is a diffeomor-
phism of S1 for each t ∈ (t0,∞). Moreover,

ln Φ̄′±(t, θ) =±
∫ t

t1

(
αθ

2
√
α

)
◦ Φ±(s, θ)ds =

∫ t

t1

(αθ
2α

)
◦ Φ±(s, θ) · ∂Φ̄±

∂t
(s, θ)ds

=

∫ t

t1

[( αt
2α

)
◦ Φ±(s, θ) +

(αθ
2α

)
◦ Φ±(s, θ) · ∂Φ̄±

∂t
(s, θ)−

( αt
2α

)
◦ Φ±(s, θ)

]
ds

=
1

2
ln
α ◦ Φ±(t, θ)

α(t1, θ)
−
∫ t

t1

( αt
2α

)
◦ Φ±(s, θ)ds,

where we used (107) in the second step. Since the right hand side is bounded, we conclude that
Φ̄′±(t, θ) is uniformly bounded from above and below for t ≥ t1.

Let us now prove a non-optimal estimate.

Lemma 50. Consider a solution to (2)–(6) on (t0,∞) × S1 with K 6= 0. Assume that there is
an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞) × S1. Then, for every 0 < a < 2, there is a
constant Ca > 0 such that

‖P 2
t + e2PQ2

t + α(P 2
θ + e2PQ2

θ)‖C0 ≤ Cat−a (109)

for all t ≥ t1.
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Proof. Using (28), it can be computed that

∂±(tA∓) = −∂−P∂+P − e2P∂−Q∂+Q+ t
αt
α
A∓ − ∂∓P

eP+λ/2K2

t5/2
.

Thus

∂

∂t
[(tA∓)◦±] =− (∂∓P )◦±(∂±P )◦± − e2P◦±(∂∓Q)◦±(∂±Q)◦± + t

(αt
α

)
◦±

(A∓)◦±

− (∂∓P )◦±
eP◦±+λ◦±/2K2

t5/2
,

(110)

where we use the notation f◦± = f ◦Φ±. It is of interest to estimate the integral of the right hand
side. Before doing so, let us, however, introduce the quantities

F± = tA± + ∂±P (P − 〈P 〉) + e2〈P 〉∂±Q(Q− 〈Q〉) + 1. (111)

It may seem unnatural to introduce a quantity such as F±, since (as we shall show below) it does
not decay and since we would like to prove that tA± converges to zero. For example, it might
seem more natural to to replace the 1 on the right hand side of (111) by t raised to an appropriate
negative power. However, the problem is that we are not able to derive the desired decay by
studying the derivative of the resulting object (along the appropriate characteristics). The idea is
therefore to

• prove that F± ◦ Φ∓ converges to some function, say ψ, at a certain rate,

• use the L2-bounds we have together with the bounds (108) in order to prove that ψ = 1.

Using this information, it can then be argued that tA± decays. The argument can then be iterated
to yield the conclusion of the lemma.

In order to proceed, note that, since

|∂±P (P − 〈P 〉)| ≤ Ct−1−δ/2|∂±P | ≤ Ct−3/2−δ/2[1 + t(∂±P )2],

|e2〈P 〉∂±Q(Q− 〈Q〉)| ≤ Ct−1−δ/2e2〈P 〉−2P eP |∂±Q| ≤ Ct−3/2−δ/2[1 + te2P (∂±Q)2],

we have that F± is equivalent to tA± + 1 for t large enough. Define

E±(t) = sup
θ∈S1

F±(t, θ), E(t) = E+(t) + E−(t).

Then there is a T > t0 and a C > 1 such that

C−1E(t) ≤ t‖P 2
t + e2PQ2

t + α(P 2
θ + e2PQ2

θ)‖C0 + 1 ≤ CE(t)

for all t ≥ T . Let
G± = F± ◦ Φ∓.

Then, due to (110) and the definition of F±,

∂tG∓ =(e2〈P 〉 − e2P◦±)(∂∓Q)◦±(∂±Q)◦± + (∂±∂∓P )◦±(P◦± − 〈P 〉)− (∂∓P )◦±〈Pt〉
+ 2〈Pt〉e2〈P 〉(∂∓Q)◦±(Q◦± − 〈Q〉) + e2〈P 〉(∂±∂∓Q)◦±(Q◦± − 〈Q〉)

− e2〈P 〉(∂∓Q)◦±〈Qt〉+ t
(αt
α

)
◦±

(A∓)◦± − (∂∓P )◦±
eP◦±+λ◦±/2K2

t5/2
.

(112)

Note that
‖(e2〈P 〉 − e2P◦±)(∂∓Q)◦±(∂±Q)◦±‖C0 ≤ Ct−2−δ/2E,
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where we have used the definition of E, (72) and (96). We also have

‖(∂∓P )◦±〈Pt〉‖C0 ≤ Ct−3/2E,

‖(∂±∂∓P )◦±(P◦± − 〈P 〉)‖C0 ≤ Ct−2−δ/2E,

where we have used (26) in the second estimate. The remaining terms appearing in (112) can
similarly be controlled by appealing to earlier estimates. It is of interest to note that the worst
term appearing on the right hand side of (112) is the second to last term (assuming γ to be small).
On the other hand, this term has a good sign. However, we are here interested in the decay rate
of G± to its limiting value. As a consequence, we need to estimate the absolute value of the right
hand side. To conclude, we have

‖∂tG∓‖C0 ≤ C(t−3/2 + t−1−γ)E (113)

for t ≥ T . Due to this inequality, we obtain

G∓(t) ≤ E∓(ta) +

∫ t

ta

C(s−3/2 + s−1−γ)Eds,

assuming ta ≥ T . Taking the supremum with respect to θ and summing the two resulting esti-
mates, we obtain

E(t) ≤ E(ta) +

∫ t

ta

C(s−3/2 + s−1−γ)Eds.

Applying Grönwall’s lemma, we conclude that E is bounded. Combining this observation with
(113), we obtain

‖∂tG∓‖C0 ≤ Ct−3/2 + Ct−1−γ .

Thus G± converges in C0 to a limit function, say G±,∞. In fact, there is a constant C such that

‖G±(t, ·)−G±,∞‖C0 ≤ Ct−1/2 + Ct−γ . (114)

Thus ∫
S1
|G±,∞ − 1|dθ = lim

t→∞

∫
S1
|G±(t, θ)− 1|dθ = lim

t→∞

∫
S1
|F±(t, Φ̄∓(t, θ))− 1|dθ

= lim
t→∞

∫
S1
|F±(t, φ)− 1| 1

Φ̄′∓(t, θt(φ))
dφ = 0

(for some suitable function θt), where we used (108) in the last step. Since G±,∞ is a continuous
function, we conclude that it equals 1. Combining this observation with (114), we obtain

‖F±(t, ·)− 1‖C0 ≤ Ct−1/2 + Ct−γ .

Letting
E = sup

θ∈S1
tA+ + sup

θ∈S1
tA−,

this estimate yields
E ≤ Ct−1/2 + Ct−γ . (115)

By iterating the above procedure, we can improve this estimate. In order to justify this statement,
assume that

E ≤ Cbt−b (116)

for t ≥ ta and some 0 < b < 1. Assuming b ≤ 1− 2ε for some 0 < ε < γ and returning to (112), it
can then be estimated that

‖∂tG±‖C0 ≤ Ct−3/2−b/2 + Ct−1−γ−b
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Arguing, again, as above, we conclude that

E ≤ Ct−(1−b)/2−b + Ct−γ−b.

In other words, we have improved the estimate (116) by at least ε. We can iterate this procedure
until b > 1 − ε. To conclude, for every 0 < b < 1, there is a constant Cb such that (116) holds.
The lemma follows.

Let us now derive an optimal estimate.

Lemma 51. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C such that

t2A± ≤ r2
∞ + Ct−δ

for all t ≥ t1.

Remark 52. It should be possible to use the methods described in the proof of Lemma 53
iteratively in order to obtain the same conclusion, as well as more detailed information. However,
the argument presented here (besides being different) yields the optimal estimate immediately,
and we have therefore chosen to present it separately.

Proof. Before going into the details, let us say a few words concerning the intuition behind the
argument. We would like to estimate A±. One way of doing so is by integrating equalities such
as (118) below. However, it is then necessary to know, e.g., what the integrals of (tA±)◦± and
(tA∓)◦± are. Furthermore, we need to be able to control the remaining terms in (118). On
the other hand, ∂±λ = tA± + αt/α. Using the knowledge we have concerning the asymptotic
behaviour of λ, and the fact that we have good control of αt/α in the sup norm, we obtain good
control over the integral of (tA±)◦±. Since the last two terms on the right hand side of (118) are
under good control due to previous estimates, what remains is the second and the third terms.
However, the third term has an advantageous sign, and what remains can (roughly speaking) be
interpreted as an equation for the integral of (tA∓)◦±. Using a Grönwall’s lemma type argument
and previous estimates, it can then be deduced that the desired estimate holds.

Turning to the details, note that

∂tλ◦± = (∂±λ)◦± = (tA±)◦± +
(αt
α

)
◦±
.

Consequently, there is a continuous function fλ on S1 such that∥∥∥∥∫ t

t1

(sA±)◦±(s, ·)ds− r2
∞ ln t− fλ

∥∥∥∥
C0

≤ Ct−δ (117)

for all t ≥ t1. On the other hand,

∂±(t2A∓) =tA∓ + t∂±(tA∓) = ∓2t
√
α(PtPθ + e2PQtQθ) + 2tα(P 2

θ + e2PQ2
θ) +

αt
α
t2A∓

− ∂∓P
eP+λ/2K2

t3/2

=− 1

2
tA± +

1

2
tA∓ + 2tα(P 2

θ + e2PQ2
θ) +

αt
α
t2A∓ − ∂∓P

eP+λ/2K2

t3/2
.

(118)

Due to the fact that, given any 0 < a < 2, (109) holds, the last two terms on the far right hand
side are integrable. In fact, there is an 0 < η < γ and a continuous function f on S1 such that
the integral from t1 to t of the last two terms (composed with Φ±) is given by f + O(t−η). As a
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consequence (keeping (117) in mind), letting 0 < η < δ, there is a continuous function f± on S1

and a constant C > 0 such that∥∥∥∥(t2A∓)◦± +
1

2
r2
∞ ln t− 1

2

∫ t

t1

(sA∓)◦±ds− 2

∫ t

t1

s[α(P 2
θ + e2PQ2

θ)]◦±ds− f±
∥∥∥∥
C0

≤ Ct−η (119)

for t ≥ t1. In particular,

(t2A∓)◦± ≥ −
1

2
r2
∞ ln t+

1

2

∫ t

t1

(sA∓)◦±ds+ 2

∫ t

t1

s[α(P 2
θ + e2PQ2

θ)]◦±ds+ f± − Ct−η

for all (t, θ) ∈ [t1,∞)× S1. Denoting the right hand side by g±, we obtain

∂tg± =− 1

2t
r2
∞ +

1

2
(tA∓)◦± + 2t[α(P 2

θ + e2PQ2
θ)]◦± + ηCt−1−η

≥− 1

2t
r2
∞ +

1

2t
g± + 2t[α(P 2

θ + e2PQ2
θ)]◦± + ηCt−1−η.

Consequently,

∂t(t
−1/2g±) ≥ − 1

2t3/2
r2
∞.

Integrating from ta ≥ t1 to tb ≥ ta, we obtain

t
−1/2
b g±(tb, θ) ≥ t−1/2

a g±(ta, θ) + t
−1/2
b r2

∞ − t−1/2
a r2

∞.

Assume that there is a θ ∈ S1 and a ta ≥ t1 such that

t−1/2
a g±(ta, θ)− t−1/2

a r2
∞ > 0.

Then there is a constant c > 0 and a θ ∈ S1 such that

t
−1/2
b g±(tb, θ) ≥ c

for all tb ≥ ta. On the other hand, due to previous estimates, we know that the left hand side
tends to zero. Thus we have to have

g±(t, θ) ≤ r2
∞

for all (t, θ) ∈ [t1,∞)× S1. Due to the definition of g±, this inequality can be written

1

2

∫ t

t1

(sA∓)◦±ds+ 2

∫ t

t1

s[α(P 2
θ + e2PQ2

θ)]◦±ds+ f± ≤
1

2
r2
∞ ln t+ r2

∞ + Ct−η.

Combining this estimate with (119), we obtain

(t2A∓)◦± ≤ r2
∞ + Ct−η.

Since the estimate is independent of θ, we conclude that

‖P 2
t + e2PQ2

t + α(P 2
θ + e2PQ2

θ)‖C0 ≤ Ct−2

for all t ≥ t1. Returning to the above estimates, it can then be seen that η can be chosen to equal
δ. In fact, the statement of the lemma follows.

Finally, let us separate the different parts of the energy.

Lemma 53. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C such that

‖e2P (Q2
t + αQ2

θ)‖C0 ≤ Ct−2−δ

and such that
‖tPt(t, ·)− r∞‖C0 + ‖tPθ(t, ·)‖C0 ≤ Ct−δ

for all t ≥ t1.
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Proof. Before writing down the details, let us give the idea behind the proof. First of all, it is of
interest to note that we first consider the energy associated with Q, and then the energy associated
with P . The reason for carrying out the argument in this order is that we need an estimate of the
Q-part of the energy before being able to estimate the P -part. When deriving the estimate for
the Q-energy, we consider ∂±(t1/2eP∂∓Q). The reason for considering the derivative of t1/2∂∓Q
is that the combination of

• the term that results when the derivative hits t1/2 and

• the first term on the right hand side of (27) (times t1/2)

is given by
1

2
t−1/2∂∓Q− t−1/2Qt = −1

2
t−1/2∂±Q.

When deriving estimates, we are interested in composing this expression with Φ± and integrating
with respect to t. In that context, it is useful to have ∂±Q as opposed to ∂∓Q, since (∂±Q)◦± =
∂tQ◦±; the latter expression (when multiplied by other functions) can be integrated partially in
order to obtain an improved estimate. On the other hand, in order for these estimates to be
useful, we need to know that eP∂±Q = o(t−1/2); one particular consequence of earlier estimates.
In order to control what remains after carrying out the partial integration, it is convenient to
rewrite ∂±Q as ∂±Q = ∂±(Q− 〈Q〉) + 〈Qt〉. The expressions resulting from the first term on the
right hand side can be estimated after a partial integration (using prior knowledge concerning the
spatial variation of Q) and the expressions resulting from 〈Qt〉 can be estimate due to our earlier
L2-estimates of the derivatives of Q.

Turning to the details, it can be computed that

∂±(t1/2eP∂∓Q) =− 1

2
t−1/2eP∂±Q− t1/2eP∂∓P∂±Q+ t1/2

αt
2α
eP∂∓Q

=− 1

2
t−1/2eP 〈Qt〉 −

1

2
t−1/2eP∂±(Q− 〈Q〉)− t1/2eP∂∓P∂±(Q− 〈Q〉)

− t1/2eP∂∓P 〈Qt〉+ t1/2
αt
2α
eP∂∓Q

=− 1

2
t−1/2eP∂±(Q− 〈Q〉)− t1/2eP∂∓P∂±(Q− 〈Q〉) +O(t−3/2−δ/2),

(120)

where the constant implicit in the expression O(t−3/2−δ/2) is independent of θ. Thus

∂t[t
1/2eP◦±(∂∓Q)◦±] =− 1

2
t−1/2eP◦±∂t(Q◦± − 〈Q〉)

− t1/2eP◦±(∂∓P )◦±∂t(Q◦± − 〈Q〉) +O(t−3/2−δ/2),

where we use the notation f◦± = f ◦ Φ±. Integrating this equality from ta to tb (and integrating
partially in the integrals that arise from the integral of the first two terms on the right hand side),
we obtain

t
1/2
b [eP◦±(∂∓Q)◦±](tb, θ)− t1/2a [eP◦±(∂∓Q)◦±](ta, θ) = O(t−1/2−δ/2

a ),

where the constant implicit in the expression O(t−1/2−δ/2) is independent of θ. Letting tb tend to
infinity, we obtain

‖e2P (Q2
t + αQ2

θ)‖C0 ≤ Ct−2−δ
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for t ≥ t1. Let us turn to P . Compute

∂±(t1/2∂∓P ) =
1

2t1/2
∂∓P −

1

t1/2
Pt + t1/2e2P (Q2

t − αQ2
θ)−

eP+λ/2K2

2t3
+ t1/2

αt
2α
∂∓P

=− 1

2
t−1/2∂±P +O(t−3/2−δ)

=− 1

2
t−1/2 1

〈α−1/2〉
〈α−1/2Pt〉 −

1

2
t−1/2∂±

(
P − 1

〈α−1/2〉
〈α−1/2P 〉

)
− 1

2
t−1/2

〈
∂t

(
α−1/2

〈α−1/2〉

)
P

〉
+O(t−3/2−δ),

where the constant implicit in O(t−3/2−δ) is independent of θ. Combining this equality with (103)
and (104), we conclude that

∂±(t1/2∂∓P ) = −1

2
r∞t

−3/2 − 1

2
t−1/2∂±

(
P − 1

〈α−1/2〉
〈α−1/2P 〉

)
+O(t−3/2−δ).

This equality implies that

∂

∂t
[t1/2(∂∓P )◦±] = −1

2
r∞t

−3/2 − t−1/2 ∂

∂t

(
P◦± −

1

〈α−1/2〉
〈α−1/2P 〉

)
+O(t−3/2−δ).

Integrating this equality from ta to tb (and integrating the expression arising from the second term
on the right hand side partially), we obtain

t
1/2
b (∂∓P )◦±(tb, θ)− t1/2a (∂∓P )◦±(ta, θ) = r∞t

−1/2
b − r∞t−1/2

a +O(t−1/2−δ
a ).

Letting tb →∞ in this equality, we conclude that

‖t(∂∓P )(t, ·)− r∞‖C0 ≤ Ct−δ

for t ≥ t1. The lemma follows.

Corollary 54. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is
an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C such that

‖tλt − r2
∞‖C0 + ‖tλθ‖C0 ≤ Ct−δ

for all t ≥ t1. Moreover, α∞ (the limit of α) is C1, and

‖∂θ[lnα(t, ·)− lnα∞]‖C0 ≤ Ct−1−γ−δ

for all t ≥ t1.

Proof. The estimates concerning λ are immediate consequences of Lemma 53, the equations for
λt and λθ, as well as previous estimates. In order to derive the stated conclusions for α, note that

∂t∂θ lnα = −
(
Pθ +

1

2
λθ

)
eP+λ/2K2

t5/2
.

Due to this identity and previous estimates, we obtain the desired conclusion for α.
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9 Asymptotics uniquely determining a pseudo-homogeneous
solution

Due to the asymptotic information obtained in the previous section, we are in a position to prove
the following statement: given a solution such that α is bounded from below by a positive constant,
there is a uniquely associated pseudo-homogeneous solution. To begin with, it is, however, of
interest to note that if B = 0 and α is bounded from below by a positive constant, then the
solution has to be polarised. As a preliminary step, let us define the following object:

Γ2 =
1

t

∫
S1
α−1/2e2PQt(Q− 〈Q〉)dθ. (121)

Lemma 55. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Then

dΓ2

dt
= −2

t
Γ2 −

1

t

∫
S1
α−1/2e2P

(
αQ2

θ −Q2
t

)
dθ − 1

t2
B〈Qt〉. (122)

Remark 56. It is important to note that this calculation holds in general; it is not dependent on
α having a positive lower bound.

Proof. Compute

dΓ2

dt
=− 2

t
Γ2 +

1

t2

∫
S1
∂t

(
tα−1/2e2PQt

)
(Q− 〈Q〉)dθ +

1

t

∫
S1
α−1/2e2PQt(Qt − 〈Qt〉)dθ

=− 2

t
Γ2 −

1

t2

∫
S1
tα1/2e2PQ2

θdθ +
1

t

∫
S1
α−1/2e2PQ2

tdθ −
1

t

∫
S1
α−1/2e2PQtdθ〈Qt〉.

The lemma follows.

Lemma 57. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Assume, moreover, that B = 0. Then Q is
constant; i.e., the solution is polarised.

Proof. Define

EQ =

∫
S1
α−1/2e2P (Q2

t + αQ2
θ)dθ.

It can be computed that

∂tEQ =− 2

t

∫
S1
α−1/2e2PQ2

tdθ +

∫
S1

αt
2α
e2P (α−1/2Q2

t + α1/2Q2
θ)dθ

− 2

∫
S1
Pte

2P (α−1/2Q2
t − α1/2Q2

θ)dθ,

so that

∂tEQ =− 2(1 + r∞)

t

∫
S1
α−1/2e2PQ2

tdθ +
2r∞
t

∫
S1
α1/2e2PQ2

θdθ +O(t−1−δ)EQ,

where we have used the fact that αt/α = O(t−1−γ) and the fact that Pt = r∞/t + O(t−1−δ); cf.
Lemma 53. Let

EQ = EQ + (1 + 2r∞)Γ2,

where Γ2 is defined in (121). Note that |Γ2| ≤ CEQ/t, so that there is a T such that

1

2
EQ ≤ EQ ≤ 2EQ
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for all t ≥ T . Note, in particular, that |Γ2|/t ≤ Ct−1−δEQ. Combining the above observations,
we have

∂tEQ ≥ −
1

t
EQ −

C

t1+δ
EQ

for t ≥ T . In particular,
EQ(t) ≥ CEQ(T )t−1

for t ≥ T . On the other hand, we know that EQ(t) ≤ Ct−2−δ due to Lemma 43. Combining these
observations, we conclude that EQ = 0. The lemma follows.

Lemma 58. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a unique pseudo-homogeneous
solution (Phom, Qhom, λhom, αhom) having the same conserved quantities A and B and satisfying

lim
t→∞

(‖α− αhom‖C0 + ‖P − Phom‖C0 + ‖Q−Qhom‖C0 + ‖λ− λhom‖C0) = 0.

Proof. Let us begin by considering the case B = 0. Due to Lemma 57, we know that the solution
is polarised. We can therefore choose Qhom = Q. Due to Corollary 54, we know that α converges
to α∞ in C1. Letting q∞ = Q, it is clear that Q converges to q∞ in C0. Moreover, due to (92)
and (102), we know that there are constants cP and cλ such that

lim
t→∞

(‖P − r∞ ln t− cP ‖C0 + ‖λ− r2
∞ ln t− cλ‖C0) = 0.

Finally, due to Lemma 39, we know that r∞ ∈ (−3, 1). As a consequence, we are allowed to
appeal to Proposition 14, and the lemma follows in the case B = 0. The case B 6= 0 is similar,
but slightly simpler.

Due to this observation, we are in a position to prove that if B = 0, then the solution is pseudo-
homogeneous.

Theorem 59. Consider a solution to (2)–(6) on (t0,∞) × S1 with K 6= 0 and B = 0. Assume
that there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞) × S1. Then the solution is
pseudo-homogeneous.

Proof. Due to Lemma 53, (92) and (102), it can be estimated that

Ĥ(t) ≤ Ct−2−2δ (123)

for all t ≥ t1 (the estimate being independent of the choice of ρ in the definition of Ĥ). In this
estimate, C > 0 is a constant and Ĥ was defined in the statement of Lemma 16. Choosing ρ = δ
in the definition of Ĥ, the estimate (49) implies that

Ĥ(ta) ≤ C(t/ta)2+δĤ(t) ≤ Ct−δ

for all t ≥ ta ≥ t1, where we used (123) in the last step. Letting t→∞ we conclude that Ĥ(ta) = 0
for all ta ≥ t1. Thus P = Phom, λ = λhom and Q = Qhom. Since αt/α = ∂tαhom/αhom, and since
α and αhom converge to the same function, we conclude that α = αhom.

10 Improved estimates of the difference between the solu-
tion and the associated pseudo-homogeneous solution

Given a solution such that α is bounded from below by a positive constant, Lemma 58 ensures
that there is a uniquely associated pseudo-homogeneous solution. In the present section, we
wish to improve our estimates of the difference between the solution and the associated pseudo-
homogeneous solution (since we already know that the difference is zero in case B = 0, we assume
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B 6= 0 here). Let us denote the relevant pseudo-homogeneous solution by the same letters as the
original solution, but with the subscript hom. Note that Lemmas 39 and 46 apply to the pseudo-
homogeneous solution and that K, A, B, r∞, cP and cλ are the same for the two solutions. In
particular, we thus have

‖P (t, ·)− Phom(t)‖C0 + ‖λ(t, ·)− λhom(t)‖C0 ≤ Ct−δ,

‖α(t, ·)− αhom(t, ·)‖C0 ≤ Ct−γ ,

for all t ≥ t1; note that αhom is allowed to depend on θ. Let us now, for the sake of argument,
assume that

‖P (t, ·)− Phom(t)‖C0 + ‖λ(t, ·)− λhom(t)‖C0 ≤ Ct−a, (124)∫
S1
α1/2(P 2

θ + e2PQ2
θ)dθ ≤ Ct−2b, (125)∫

S1
α−1/2e2PQ2

tdθ ≤ Ct−2c, (126)

for some constants a, b, c > 0 and all t ≥ t1. Note that we know these estimates to hold with δ = a
and b = c = 1 + δ/2. In what follows, we shall assume 1 < c ≤ b.

Let us compare 〈α−1/2〉 with 〈α−1/2
hom 〉.

Lemma 60. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then

〈α−1/2〉 = 〈α−1/2
hom 〉[1 +O(t−γ−a)], (127)

assuming that (124) holds.

Proof. Compute

∂t〈α−1/2〉 =

〈
−1

2
α−1/2αt

α

〉
=

〈
α−1/2 e

P+λ/2K2

2t5/2

〉
= −1

2
〈α−1/2〉∂tαhom

αhom
+O(t−1−γ−a);

note that ∂tαhom/αhom is independent of θ even though αhom need not be. Consequently,

∂t

(
〈α−1/2〉
〈α−1/2

hom 〉

)
= O(t−1−γ−a).

The lemma follows.

Before proceeding to the asymptotics for Q, it is of interest to make the following observation.

Lemma 61. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is an
α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then there is a constant C > 0 such that∥∥∥∥∂t( α−1/2

〈α−1/2〉

)∥∥∥∥
C0

≤ Ct−1−γ (‖P − 〈P 〉‖C0 + ‖λ− 〈λ〉‖C0) (128)

for all t ≥ t1. In particular, ∥∥∥∥∂t( α−1/2

〈α−1/2〉

)∥∥∥∥
C0

≤ Ct−1−γ−b (129)

for all t ≥ t1, assuming (125) to hold.

Proof. Due to (105) and (106), the estimate (128) holds. Combining this estimate with (72), (74)
and (125), we obtain (129).
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Given this information, let us turn to the asymptotics for Q.

Lemma 62. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then

‖Q−Qhom‖C0 ≤ Ct−a−2r∞ + Ct−b−r∞ , (130)

for t ≥ t1, assuming (124)–(126) to hold.

Proof. Consider (79). It is of interest to improve the estimates implicit in this equation slightly.
Due to (129),

∂t

[
1

〈α−1/2〉

∫
S1
α−1/2(Q− 〈Q〉)dθ

]
=

1

〈α−1/2〉

∫
S1
α−1/2(Qt − 〈Qt〉)dθ +O(t−1−γ−2be−〈P 〉)

=
1

e2〈P 〉〈α−1/2〉
t−1B − 2π〈Qt〉+O(t−b−ce−〈P 〉).

(131)

Moreover,

1

e2〈P 〉〈α−1/2〉
t−1B = 2π

〈α−1/2
hom 〉

〈α−1/2〉
e2(Phom−〈P 〉)∂tQhom = 2π∂tQhom +O(t−1−a−2r∞).

Thus
〈Q〉 = Qhom +O(t−a−2r∞) +O(t−b−r∞).

The lemma follows.

Let us turn to P .

Lemma 63. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then

‖P − Phom‖C0 ≤ Ct−b + Ct−a−δ (132)

for t ≥ t1, assuming (124)–(126) to hold.

Proof. Due to (129), we have

∂t

[
1

〈α−1/2〉

∫
S1
α−1/2(P − 〈P 〉)dθ

]
=

1

〈α−1/2〉

∫
S1
α−1/2(Pt − 〈Pt〉)dθ +O(t−1−γ−2b)

=
1

〈α−1/2〉
1

t
(A+B〈Q〉)− 2π〈Pt + t−1〉

+
1

〈α−1/2〉

∫
S1
α−1/2e2PQt(Q− 〈Q〉)dθ +O(t−1−γ−2b)

=
1

〈α−1/2〉
1

t
(A+B〈Q〉)− 2π〈Pt + t−1〉+O(t−b−c).

(133)

Note that

1

〈α−1/2〉
1

t
(A+B〈Q〉) =

1

〈α−1/2〉
1

t
B(〈Q〉 −Qhom) + 2π

〈α−1/2
hom 〉

〈α−1/2〉
(∂tPhom + t−1).

Thus
1

〈α−1/2〉
1

t
(A+B〈Q〉) = 2π(∂tPhom + t−1) +O(t−1−a−δ) +O(t−1−b−r∞).
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Integrating (133), using this information, we conclude that

〈P 〉 = Phom +O(t−b) +O(t−a−δ).

The lemma follows.

Given our improved knowledge concerning P , we are in a position to improve the above estimates
for Q.

Lemma 64. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Then

‖Q−Qhom‖C0 ≤ Ct−b−r∞ + Ct−a−δ−2r∞ (134)

for all t ≥ t1, assuming (124)–(126) to hold.

Proof. Compute

1

e2〈P 〉〈α−1/2〉
t−1B = 2π∂tQhom +O(t−1−b−2r∞) +O(t−1−a−δ−2r∞).

As a consequence,∫ ∞
t

1

e2〈P 〉〈α−1/2〉
1

s
Bds = 2π(q∞ −Qhom) +O(t−b−2r∞) +O(t−a−δ−2r∞).

Integrating (131) from t to ∞, we thus obtain the conclusion of the lemma.

Next, it is natural to turn to the energies.

Lemma 65. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Assume, moreover, (124)–(126)
to hold. Then∫

S1
t2α1/2(P 2

θ + e2PQ2
θ)dθ ≤ Ct−a−γ + Ct1−b−c + Ct−b−r∞ + Ct−a−δ−2r∞ (135)

for all t ≥ t1. Moreover,∫
S1
t2α−1/2P 2

t dθ =

∫
S1
t2α
−1/2
hom (∂tPhom)2dθ (136)

+O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞),∫
S1
t2α−1/2e2PQ2

tdθ =

∫
S1
t2α
−1/2
hom e2Phom(∂tQhom)2dθ (137)

+O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞)

for all t ≥ t1.

Proof. It is natural to begin by estimating the integrals of α−1/2P 2
t and α−1/2e2PQ2

t from below.

Q-energy. Let us begin by considering the Q-energy. Note, to this end, that

|B| ≤
∫
S1
tα−1/2e2P |Qt|dθ ≤ t

(∫
S1
α−1/2e2P dθ

)1/2(∫
S1
α−1/2e2PQ2

tdθ

)1/2

.

Consequently,

B2

t

(∫
S1
α−1/2e2P dθ

)−1

≤ t
∫
S1
α−1/2e2PQ2

tdθ.

49



On the other hand,∫
S1
α−1/2e2P dθ =

∫
S1
α
−1/2
hom e2Phomdθ [1 +O(t−b) +O(t−a−δ)]

and
B2 = 4π2t2〈α−1/2

hom 〉
2e4Phom(∂tQhom)2.

Combining the above observations, we conclude that∫
S1
α
−1/2
hom e2Phom(∂tQhom)2dθ [1 +O(t−b) +O(t−a−δ)] ≤

∫
S1
α−1/2e2PQ2

tdθ. (138)

P -energy. Let us turn to the P -energy. To begin with,∫
S1
tα−1/2Ptdθ = A− 2π〈α−1/2〉+B〈Q〉+O(t1−b−c).

As a consequence of this equality and previous estimates,∫
S1
tα−1/2Ptdθ =

∫
S1
tα
−1/2
hom ∂tPhomdθ +O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞).

Squaring this equality, we obtain

2π〈α−1/2
hom 〉t

2

∫
S1
α
−1/2
hom (∂tPhom)2dθ +O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞)

≤2π〈α−1/2〉t2
∫
S1
α−1/2P 2

t dθ,

so that

t2
∫
S1
α
−1/2
hom (∂tPhom)2dθ +O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞)

≤t2
∫
S1
α−1/2P 2

t dθ.

(139)

Thus

t2
∫
S1
α
−1/2
hom [(∂tPhom)2 + e2Phom(∂tQhom)2]dθ

+O(t1−b−c) +O(t−a−γ) +O(t−b−r∞) +O(t−a−δ−2r∞)

≤t2
∫
S1
α−1/2(P 2

t + e2PQ2
t )dθ.

α-energy. Turning to the α-contribution to the energy, note that∫
S1

α−1/2eP+λ/2K2

t3/2
dθ + 3

∫
S1
α−1/2dθ =

∫
S1

α
−1/2
hom ePhom+λhom/2K2

t3/2
dθ + 3

∫
S1
α
−1/2
hom dθ +O(t−γ−a).

(140)

Since the Ĥ-energy for the pseudo-homogeneous solution is constant and equal to the Ĥ∞-energy
for the solution under consideration, we conclude that

Ĥ∞ +O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞)

≤t2
∫
S1
α−1/2(P 2

t + e2PQ2
t )dθ +

∫
S1

α−1/2eP+λ/2K2

t3/2
dθ + 3

∫
S1
α−1/2dθ.

(141)
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Total energy. Due to (141) and the fact that Ĥ is increasing, we conclude that∫
S1
t2α1/2(P 2

θ + e2PQ2
θ)dθ

=Ĥ −
∫
S1
t2α−1/2(P 2

t + e2PQ2
t )−

∫
S1

α−1/2eP+λ/2K2

t3/2
dθ −

∫
S1

3α−1/2dθ

≤Ct−a−γ + Ct1−b−c + Ct−b−r∞ + Ct−a−δ−2r∞ .

Thus (135) holds. Combining (135) with (24), we obtain

0 ≤ Ĥ∞−Ĥ(t) =

∫ ∞
t

2s

∫
S1
α1/2(P 2

θ +e2PQ2
θ)dθds ≤ Ct−a−γ+Ct1−b−c+Ct−b−r∞+Ct−a−δ−2r∞ .

Combining this estimate with (135) and (140), we obtain(∫
S1
t2α
−1/2
hom (∂tPhom)2dθ −

∫
S1
t2α−1/2P 2

t dθ

)
+

(∫
S1
t2α
−1/2
hom e2Phom(∂tQhom)2dθ −

∫
S1
t2α−1/2e2PQ2

tdθ

)
=O(t−a−γ) +O(t1−b−c) +O(t−b−r∞) +O(t−a−δ−2r∞).

On the other hand, due to (138) and (139), we know that the terms inside the parantheses on the
left hand side have upper bound of the same order as the right hand side. For that reason, the
corresponding lower bounds also hold. The lemma follows.

Finally, we are in a position to improve our knowledge concerning the asymptotics for λ.

Lemma 66. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)× S1. Assume, moreover, (124)–(126)
to hold. Then

‖λ− λhom‖C0 ≤Ct−b + Ct−a−γ + Ct−a−δ−2r∞ (142)

for all t ≥ t1.

Proof. Due to (74) and (125), ‖λ− 〈λ〉‖C0 ≤ Ct−b. Due to (129),

∂t

[
1

〈α−1/2〉
〈α−1/2(λ− 〈λ〉)〉

]
= O(t−1−γ−b‖λ− 〈λ〉‖C0) +

1

〈α−1/2〉
〈α−1/2λt〉 − 〈λt〉. (143)

On the other hand,

〈α−1/2λt〉 =
1

2π

∫
S1
tα−1/2[P 2

t + e2PQ2
t + α(P 2

θ + e2PQ2
θ)]dθ −

1

2π

∫
S1

α−1/2eP+λ/2K2

t5/2
dθ

=
1

2π

∫
S1
tα
−1/2
hom [(∂tPhom)2 + e2Phom(∂tQhom)2]dθ − 1

2π

∫
S1

α
−1/2
hom ePhom+λhom/2K2

t5/2
dθ

+O(t−1−a−γ) +O(t−b−c) +O(t−1−b−r∞) +O(t−1−a−δ−2r∞).

Combining this observation with (127), we conclude that

〈α−1/2λt〉
〈α−1/2〉

= ∂tλhom +O(t−1−a−γ) +O(t−b−c) +O(t−1−b−r∞) +O(t−1−a−δ−2r∞).

The lemma follows.
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10.1 Iterative improvement of the C0-estimates

It is of interest to iterate the above procedure. This leads to the following result.

Lemma 67. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)×S1. Then, for every η < 2+min{γ, r∞},
there is a constant Cη such that (124) and (125) hold for t ≥ t1, with a = b = η and C replaced
by Cη.

Proof. There are two possibilities. Either δ = 2r∞ or δ = γ. Let us begin by considering the case
δ = 2r∞. Let a0 = δ = 2r∞ and b0 = 1 + δ/2 = 1 + r∞. Combining Lemmas 63 and 66, we
conclude that the estimate (124) can be improved in that a can be replaced by

an+1 = min{bn, an + 2r∞, 1 + (an + γ)/2, 1 + 2r∞ + an/2}, (144)

assuming (124) to hold with a replaced by an and (125) to hold with b replaced by bn (note that we
actually obtain a better bound, an+1 = min{bn, an + 2r∞}, but as we shall see, this improvement
does not lead to an improvement of the end result, and it is more difficult to obtain the desired
conclusion using the better bound). Under the same assumptions, we obtain

bn+1 = min{1 + (bn + r∞)/2, 1 + (an + γ)/2, 1 + 2r∞ + an/2} (145)

due to Lemma 65; note that c = 1 + r∞. Due to (145), we have

bn+1 ≤ 1 + r∞/2 + bn/2.

Defining
b̂n = bn − 2− r∞,

we have b̂n+1 ≤ b̂n/2, whence b̂n ≤ 2−nb̂0 = −2−n. In particular, bn < 2 + r∞ for all n. Due
to (144), we conclude that an < 2 + r∞ (note that this conclusion holds even if we improve the
estimate (144) as described above). Note that b0 ≥ a0. Moreover, there are three possibilities
for bn+1. Either bn+1 = (2 + r∞ + bn)/2 > bn ≥ an+1, or bn+1 = 1 + (an + γ)/2 ≥ an+1, or
bn+1 = 1 + 2r∞ + an/2 ≥ an+1. Thus bn ≥ an for all n. By similar arguments, one can therefore
prove that an+1 ≥ an. Thus an is an increasing sequence of numbers which is bounded from
above. Thus an converges to some number, say a∗. Assume that a∗ < 2 + r∞. Then

min{an + 2r∞, 1 + (an + γ)/2, 1 + 2r∞ + an/2} > a∗

for n large enough. Consequently, an+1 = bn for n large enough. On the other hand, bn+1 > a∗
for n large enough (note that bn ≥ an), so that we obtain a contradiction. Thus a∗ = 2 + r∞. As
a consequence, the improvement of (144) described above does not lead to any improvement of
the end result. To conclude, if δ = 2r∞, then (124) and (125) hold with a and b replaced by any
number strictly less than 2 + r∞.

Let us now consider the case δ = γ ≤ 2r∞. Similarly to the above, we have

an+1 = min{bn, an + γ}, (146)

bn+1 = min{(1 + bn + c)/2, 1 + (an + γ)/2, 1 + (bn + r∞)/2}. (147)

We know that this estimate holds with c = 1 + γ/2. Thus, we can certainly choose

an+1 = min{bn, an + γ, 1 + (an + γ)/2},
bn+1 = min{1 + (bn + γ/2)/2, 1 + (an + γ)/2},

where we have used the fact that γ ≤ 2r∞ (for reasons similar to ones given above, there is no loss
in including 1 + (an + γ)/2 in the formula for an+1). As above, we can argue that bn < 2 + γ/2,
an < 2 + γ/2, an ≤ bn, an is an increasing sequence and an converges to 2 + γ/2. Returning to
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(137), we conclude that (126) holds with c = 1 + r∞ (note that this estimate is optimal in case
B 6= 0). Returning to (146) and (147), we conclude that

an+1 = min{bn, an + γ},
bn+1 = min{1 + (bn + r∞)/2, 1 + (an + γ)/2}.

Just as before, we conclude that an, bn < 2 + r∞. Note that we also have bn+1 ≤ 1 + (bn−1 +γ)/2.
Since b0, b1 < 2 + γ, we conclude that bn < 2 + γ, so that an < 2 + γ. Thus

an, bn < min{2 + r∞, 2 + γ}.

As above, we also have the iteration

an+1 = min{bn, an + γ, 1 + (an + γ)/2},
bn+1 = min{1 + (bn + r∞)/2, 1 + (an + γ)/2}.

By arguments similar to ones given above, bn ≥ an for all n and an is an increasing sequence
which is bounded from above. Thus an converges to, say, a∗. Assuming a∗ < 2 + min{r∞, γ}, we
obtain a contradiction, as above.

10.2 Iterative improvement of the C1-estimates

Using the knowledge we have concerning the C0-distance between the solution and the associated
pseudo-homogeneous solution, it turns out to be possible to improve the C1-estimates.

Lemma 68. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0 and B 6= 0. Assume that
there is an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞) × S1. Let η < 3 + min{γ, r∞}. Then
there is a constant Cη such that

‖Pt − ∂tPhom‖C0 + ‖eP (Qt − ∂tQhom)‖C0 + ‖Pθ‖C0 + ‖ePQθ‖C0 ≤ Cηt−η

for all t ≥ t1.

Proof. Let us assume that there is an 1/2 < as ∈ R and a constant C such that

‖Pt − ∂tPhom‖C0 + ‖eP (Qt − ∂tQhom)‖C0 + ‖Pθ‖C0 + ‖ePQθ‖C0 ≤ Ct−as (148)

for all t ≥ t1. Note that this estimate holds with as = 1 due to Lemma 53. Let us compute

∂±(t1/2eP∂∓Q− t1/2ePhom∂∓Qhom) =− 1

2
t−1/2(eP∂±Q− ePhom∂±Qhom)

− t1/2(eP∂∓P∂±Q− ePhom∂∓Phom∂±Qhom)

+ t1/2
(
αt
2α
eP∂∓Q−

∂tαhom

2αhom
ePhom∂∓Qhom

)
;

(149)

cf. (120). Let us consider the terms on the right hand side one by one. The first term can be
written

− 1

2
t−1/2eP∂±(Q−Qhom)− 1

2
t−1/2(eP−Phom − 1)ePhom∂±Qhom

=− 1

2
t−1/2eP∂±(Q−Qhom) +O(t−3/2−a−r∞),

where we have assumed that

‖λ− λhom‖C0 + ‖P − Phom‖C0 + ‖eP (Q−Qhom)‖C0 ≤ Ct−a
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for all t ≥ t1; note that such an estimate holds due to Lemmas 64 and 67, and that a < 2 +
min{γ, r∞} can be chosen to be as close to 2 + min{γ, r∞} as we wish. Turning to the second
term on the right hand side of (149), it can be written

− t1/2∂∓PeP∂±(Q−Qhom)− t1/2∂∓(P − Phom)eP∂±Qhom

− t1/2(eP−Phom − 1)∂∓Phome
Phom∂±Qhom

=− t1/2∂∓PeP∂±(Q−Qhom) +O(t−1/2−as−r∞) +O(t−3/2−a−r∞).

Finally, the third term on the right hand side of (149) can be written

t1/2
αt
2α
eP∂∓(Q−Qhom) + t1/2

αt
2α

(eP−Phom − 1)ePhom∂∓Qhom

+
1

2
t1/2

(
αt
α
− ∂tαhom

αhom

)
ePhom∂∓Qhom = O(t−1/2−as−γ) +O(t−3/2−γ−a−r∞).

Adding up the above observations, we conclude that

∂t

[
t1/2(eP∂∓Q− ePhom∂∓Qhom)◦±

]
=− 1

2
t−1/2eP◦±∂t(Q−Qhom)◦± − t1/2(∂∓P )◦±e

P◦±∂t(Q−Qhom)◦±

+O(t−1/2−as−δs) + (t−3/2−a−r∞),

(150)

where δs = min{r∞, γ}. It is of interest to integrate this equality from, say, ta to tb. Let us begin
by considering the integral of the first term on the right hand side. Integrating by parts, it is given
by (disregarding the factor −1/2)

[t−1/2eP◦±(Q−Qhom)◦±]tbta −
∫ tb

ta

∂t(t
−1/2eP◦±)(Q−Qhom)◦±dt = O(t−1/2−a

a ).

Turning to the integral of the second term on the right hand side of (150), it can (after integration
by parts) be written

− [t1/2(∂∓P )◦±e
P◦±(Q−Qhom)◦±]tbta +

∫ tb

ta

∂t[t
1/2eP◦± ](∂∓P )◦±(Q−Qhom)◦±dt

+

∫ tb

ta

t1/2eP◦±(∂±∂∓P )◦±(Q−Qhom)◦±dt = O(t−1/2−a
a ),

where we have used the fact that ∂±∂∓P = O(t−2); cf. (26) and Lemma 53. Adding up, and
letting tb tend to infinity, we conclude that

t1/2a [eP∂∓Q− ePhom∂∓Qhom]◦±(ta, θ) = O(t1/2−as−δsa ) +O(t−1/2−a
a ).

As a consequence of this equality, it can be argued that

‖eP (∂∓Q− ∂∓Qhom)‖C0 ≤ Ct−1−a + Ct−as−δs . (151)

Let us turn to the derivatives of P . To begin with,

∂±[t1/2∂∓(P − Phom)] =− 1

2
t−1/2∂±(P − Phom) + t1/2(e2P∂±Q∂∓Q− e2Phom∂±Qhom∂∓Qhom)

− eP+λ/2K2

2t3
+
ePhom+λhom/2K2

2t3
+ t1/2

αt
2α
∂∓P − t1/2

∂tαhom

2αhom
∂∓Phom.

(152)
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The second term on the right hand side can be written

t1/2e2P∂∓Q∂±(Q−Qhom) + t1/2e2P∂∓(Q−Qhom)∂±Qhom

+ t1/2(e2(P−Phom) − 1)e2Phom∂∓Qhom∂±Qhom

=t1/2e2P∂∓Q∂±(Q−Qhom) +O(t−1/2−as−r∞) +O(t−3/2−a−2r∞).

By arguments similar to ones given above, the last four terms on the right hand of (152) can be
combined to give

O(t−3/2−a−γ) +O(t−1/2−as−γ).

Adding up,

∂t[t
1/2∂∓(P − Phom)]◦± =− 1

2
t−1/2[∂±(P − Phom)]◦± + t1/2[e2P∂∓Q∂±(Q−Qhom)]◦±

+O(t−3/2−a) +O(t−1/2−as−δs).

This equality is quite similar to (150), and arguments similar to ones given above yield

‖Pt − ∂tPhom‖C0 + ‖Pθ‖C0 ≤ Ct−1−a + Ct−as−δs .

Combining this estimate with (151), we obtain an improvement of (148); we can replace as with
min{a+ 1, as + δs}. Iterating this improvement a finite number of times, we conclude that as can
be chosen to equal a+ 1. The lemma follows.

11 Characterising the pseudo-homogeneous solutions in terms
of a lower bound on α

Finally, we are in a position to prove that only pseudo-homogeneous solutions are such that there
is a positive lower bound on α.

Theorem 69. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that there is
an α0 > 0 such that α ≥ α0 for all (t, θ) ∈ (t0,∞)×S1. Then the solution is pseudo-homogeneous.

Proof. Since we have already proved that the conclusion holds in case B = 0, cf. Theorem 59, let
us assume B 6= 0. Due to Lemma 16, we know that there is a C > 0 such that

(t/ta)rĤ(t) ≥ CĤ(ta) (153)

holds for t ≥ ta ≥ t1; cf. (49). Here Ĥ is defined in (48) and r can be chosen to equal 2(r∞ + 1).
Moreover, 0 < ρ < 2 min{γ, r∞}. On the other hand, due to Lemmas 67 and 68, we know that if
we fix η < 6 + 2 min{γ, r∞}, then there is a constant such that

Ĥ(t) ≤ Ct−η

for all t ≥ t1. Combining this estimate with (153), we conclude that Ĥ(t) = 0 for all t ≥ t1. Thus
P = Phom and λ = λhom. Since Q and Qhom converge to the same number and Qt = ∂tQhom for
t ≥ t1, we obtain Q = Qhom. Finally, since αt/α = ∂tαhom/αhom for large t and since α and αhom

converge to the same function, we conclude that α = αhom. The theorem follows.

12 Proof of the main theorem

In the present section, we prove that 〈α−1/2〉 → ∞ for solutions that are not pseudo-homogeneous.
Due to the monotonicity of 〈α−1/2〉, it is sufficient to prove that the assumption that 〈α−1/2〉 is
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bounded leads to a contradiction. The idea of how to achieve this is to prove that a bound on
〈α−1/2〉 implies that t−1Ĥ is bounded to the future. Appealing to Lemma 26, we are then allowed
to conclude that α has a positive lower bound. Theorem 69 then implies that the solution is
pseudo-homogeneous, contrary to the assumption. In order to prove the desired bound on t−1Ĥ,
it is natural to consider the energy

Ha =

∫
S1

{
α−1/2

[(
Pt +

1

t

)2

+ αP 2
θ + e2P (Q2

t + αQ2
θ)

]
+

3

t2
α−1/2 +

α−1/2eP+λ/2K2

t7/2

}
dθ.

(154)
It can then be computed that

dHa

dt
= −2

t

∫
S1
α−1/2[(Pt+t

−1)2 +αe2PQ2
θ]dθ−

6

t3

∫
S1
α−1/2dθ− 5

2t

∫
S1

α−1/2eP+λ/2K2

t7/2
dθ. (155)

In order to prove decay, it would be desirable to trade, e.g.,

−1

t

∫
S1
α−1/2(Pt + t−1)2dθ

against

−1

t

∫
S1
α1/2P 2

θ dθ.

One way of doing so is by introducing corrections, as in the case of T3-Gowdy. That is the topic
of the first subsection.

12.1 Corrections

Define

Γ1 =
1

t

∫
S1
α−1/2

(
Pt +

1

t

)
(P − 〈P 〉)dθ.

Lemma 70. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Then

dΓ1

dt
=− 2

t
Γ1 −

1

t

∫
S1

[
α1/2P 2

θ − α−1/2

(
Pt +

1

t

)2
]
dθ

+
1

t

∫
S1
α−1/2e2P (Q2

t − αQ2
θ)(P − 〈P 〉)dθ −

1

t

∫
S1
α−1/2

(
Pt +

1

t

)
dθ

(
〈Pt〉+

1

t

)
.

(156)

Remark 71. It is sometimes convenient to rewrite the last term as

− 1

t2
A

(
〈Pt〉+

1

t

)
− 1

t

∫
S1
α−1/2e2PQt(Q− 〈Q〉)dθ

(
〈Pt〉+

1

t

)
− 1

t2
B〈Q〉

(
〈Pt〉+

1

t

)
.

Proof. Compute

dΓ1

dt
=− 2

t
Γ1 +

1

t2

∫
S1
∂t

[
tα−1/2

(
Pt +

1

t

)]
(P − 〈P 〉)dθ

+
1

t

∫
S1
α−1/2

(
Pt +

1

t

)2

dθ − 1

t

∫
S1
α−1/2

(
Pt +

1

t

)
dθ

(
〈Pt〉+

1

t

)
.

Due to (21), we obtain the conclusion of the lemma.

Let us estimate the corrections in terms of Ha and the integral of α−1/2.
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Lemma 72. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Define Ha according to
(154). Then

|Γ1| ≤
1

4t2

∫
S1
α−1/2dθ tHa. (157)

Proof. Note, to begin with, that

‖P − 〈P 〉‖C0 ≤1

2

∫
S1
|Pθ|dθ ≤

1

2

(∫
S1
α−1/2dθ

)1/2(∫
S1
α1/2P 2

θ dθ

)1/2

. (158)

Thus ∣∣∣∣1t
∫
S1
α−1/2(Pt + t−1)(P − 〈P 〉)dθ

∣∣∣∣
≤1

t

(∫
S1
α−1/2dθ

)1/2(∫
S1
α−1/2(Pt + t−1)2dθ

)1/2

‖P − 〈P 〉‖C0

≤ 1

2t

∫
S1
α−1/2dθ

(∫
S1
α−1/2(Pt + t−1)2dθ

)1/2(∫
S1
α1/2P 2

θ dθ

)1/2

≤ 1

4t2

∫
S1
α−1/2dθ t

∫
S1
α−1/2[(Pt + t−1)2 + αP 2

θ ]dθ.

The lemma follows.

Lemma 73. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Define Ha according to
(154). If 〈α−1/2〉 is bounded, there is a constant C, depending on the solution, such that

|Γ2| ≤
C

t
Ha

for all t ≥ t1, where Γ2 is defined in (121).

Proof. Estimate∣∣∣∣1t
∫
S1
α−1/2e2PQt(Q− 〈Q〉)dθ

∣∣∣∣ ≤ 1

t

(∫
S1
α−1/2dθ

)1/2(∫
S1
α−1/2e2PQ2

tdθ

)1/2

‖eP (Q− 〈Q〉)‖C0 .

Due to (158), the assumed bound on 〈α−1/2〉 and the fact that Ha is bounded, there exists a
constant C such that

‖P − 〈P 〉‖C0 ≤ C

for all t ≥ t1. As a consequence,

‖eP (Q− 〈Q〉)‖C0 ≤Ce〈P 〉‖Q− 〈Q〉‖C0 ≤ Ce〈P 〉
∫
S1
|Qθ|dθ

≤Ce〈P 〉
(∫

S1
α−1/2dθ

)1/2(∫
S1
α1/2Q2

θdθ

)1/2

≤ C
(∫

S1
α1/2e2PQ2

θdθ

)1/2

for all t ≥ t1. Adding up the above, we obtain

|Γ2| ≤
C

t

∫
S1
α−1/2e2P (Q2

t + αQ2
θ)dθ ≤

C

t
Ha(t) (159)

for all t ≥ t1. The lemma follows.
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12.2 Limiting value of Ha

In order to prove that tHa is bounded, we proceed in two steps. First, we prove that Ha → 0.
Then we use the corrections defined in the previous subsection to prove that tHa is bounded. In
the present subsection, we focus on the first step. The argument is similar to one presented in
[24]; we prove that

t−1Ha ∈ L1([t1,∞)). (160)

Since we know that Ha decays and is bounded from below, we know that it converges to a real
number ≥ 0. If this number is different from zero, we obtain a contradiction to (160).

Lemma 74. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that 〈α−1/2〉 is
bounded. Then

lim
t→∞

Ha(t) = 0.

Proof. As described prior to the statement of the lemma, we wish to prove that (160) holds. Due
to (155), the only thing that remains to be proved is that

1

t

∫
S1
α−1/2(e2PQ2

t + αP 2
θ )dθ ∈ L1([t1,∞)).

However, that
1

t

∫
S1
α−1/2e2PQ2

tdθ

is integrable is an immediate consequence of the fact that

d(t−2Ĥ)

dt
= −2

t

∫
S1
α−1/2(P 2

t + e2PQ2
t )dθ −

6

t3

∫
S1
α−1/2dθ − 2

t

∫
S1

α−1/2eP+λ/2K2

t7/2
dθ

and that t−2Ĥ is bounded from below by zero. Turning to P , note that (156) implies that

1

t

∫
S1
α1/2P 2

θ =
1

t

∫
S1
α−1/2

(
Pt +

1

t

)2

dθ − dΓ1

dt
− 2

t
Γ1

+
1

t

∫
S1
α−1/2e2P (Q2

t − αQ2
θ)(P − 〈P 〉)dθ

− 1

t

∫
S1
α−1/2

(
Pt +

1

t

)
dθ

(
〈Pt〉+

1

t

)
.

(161)

Integrating this equality from t1 to tb and then letting tb → ∞, we see that the first three terms
cause no problems; in the case of the first term, we can appeal to (155) and the lower bound on Ha;
in the case of the second and third terms, it is sufficient to appeal to the bound |Γ1| ≤ Ct−1 which
holds under the assumptions of the lemma. The fourth term is integrable due to the information
we have already derived concerning the Q-energy and the fact that ‖P − 〈P 〉‖C0 is bounded to
the future under the assumptions of the lemma. What remains is thus to consider the last term.
However, it can be estimated in absolute value by

1

2πt

(∫
S1
α−1/2dθ

)1/2 ∫
S1
α−1/2

(
Pt + t−1

)2
dθ

(∫
S1
α1/2dθ

)1/2

,

a function we know to be integrable.
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12.3 Rate of decay for Ha

In the present subsection, we prove that tHa is bounded, given a bound on 〈α−1/2〉. The main
idea of the proof is to use the corrections Γ1 and Γ2. As a consequence of the result, we are able
to prove the main theorem.

Lemma 75. Consider a solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that 〈α−1/2〉 is
bounded. Then there is a constant C such that tHa(t) ≤ C for all t ≥ t1.

Proof. Define the energy
E = Ha + Γ1 − Γ2.

Due to Lemmas 72 and 73 and the assumptions of the lemma, we know that

|Γ1|+ |Γ2| ≤ Ct−1Ha.

In particular, E and Ha are thus equivalent for large t. Compute

dE
dt

=− 1

t
E − 1

t
(Γ1 − Γ2)− 3

t3

∫
S1
α−1/2dθ − 3

2t

∫
S1

α−1/2eP+λ/2K2

t7/2
dθ

+
1

t

∫
S1
α−1/2e2P (Q2

t − αQ2
θ)(P − 〈P 〉)dθ −

1

t

∫
S1
α−1/2

(
Pt +

1

t

)
dθ

(
〈Pt〉+

1

t

)
+

1

t2
B〈Qt〉.

(162)

Thus

dE
dt
≤ −1

t
E +

C

t2
E +

C

t
E3/2 − 1

t

∫
S1
α−1/2

(
Pt +

1

t

)
dθ

(
〈Pt〉+

1

t

)
+

1

t2
B〈Qt〉

for large t, where we have used (158), Lemmas 72 and 73 and the fact that E and Ha are equivalent
for large t. Let 0 < ρ < 1 and define Eρ = tρE . Then

dEρ
dt
≤ −1− ρ

t
Eρ+

C

t2
Eρ+

C

t
E1/2Eρ−

1

t1−ρ

∫
S1
α−1/2

(
Pt +

1

t

)
dθ

(
〈Pt〉+

1

t

)
+

1

t2−ρ
B〈Qt〉 (163)

for large t. There is a Tρ > t0 such that for t ≥ Tρ, the sum of the first three terms is negative;
note that E converges to zero. What we need to concern ourselves with is consequently the integral
of the last two terms. Let us begin with the integral of the last term. It is given by∫ tb

ta

1

t2−ρ
B〈Qt〉dt =

[
1

t2−ρ
B〈Q〉

]tb
ta

+

∫ tb

ta

2− ρ
t3−ρ

B〈Q〉dt. (164)

In order to estimate the right hand side, we need an estimate of B〈Q〉. Note, to this end, that

A =

∫
S1
tα−1/2

(
Pt +

1

t
− e2PQt(Q− 〈Q〉)

)
dθ −B〈Q〉.

Under the assumptions of the lemma, the first term on the right hand side is bounded in absolute
value by Ct. Thus there is a constant C such that

|B〈Q〉| ≤ Ct (165)

for all t ≥ t1. As a consequence, both of the terms on the right hand side of (164) are bounded.
Let us turn to the second to last term on the right hand side of (163). It can be written

− A

t2−ρ

(
〈Pt〉+

1

t

)
− 1

t1−ρ

∫
S1
α−1/2e2PQt(Q− 〈Q〉)dθ

(
〈Pt〉+

1

t

)
− 1

t2−ρ
B〈Q〉

(
〈Pt〉+

1

t

)
;

(166)
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cf. Remark 71. Note that the second term can be estimated by Ct−1E1/2Eρ and can therefore be
absorbed by the first term on the right hand side of (163); cf. the above argument. Turning to
the integral of the first term on the right hand side of (166), we have

−
∫ tb

ta

A

t2−ρ

(
〈Pt〉+

1

t

)
dt = −

[
A

t2−ρ
(〈P 〉+ ln t)

]tb
ta

−
∫ tb

ta

(2− ρ)A

t3−ρ
(〈P 〉+ ln t) dt.

Due to Corollary 20, both terms appearing on the right hand side are bounded. Note that this is
still the case if ρ = 1. Finally, note that∫ tb

t1

∣∣∣∣ 1

t2−ρ
B〈Q〉

(
〈Pt〉+

1

t

)∣∣∣∣ dt ≤ C ∫ tb

t1

t−1+ρ

(
|〈Pt〉|+

1

t

)
dt ≤ Cρ,

where we have used Corollary 22. Adding up the above, we conclude that there is a constant Cρ
such that Eρ(t) ≤ Cρ for all t ≥ t1. As a consequence, there is, for every 0 < ρ < 1, a constant Cρ
such that tρHa(t) ≤ Cρ for all t ≥ t1. Returning to the proof of (165), we conclude that for every
η > 1/2, there is a constant Cη such that

|B〈Q〉| ≤ Cηtη (167)

for all t ≥ t1. Going through the above estimates with ρ = 1 and using the improved estimate
(167), we conclude that

tE(t) ≤ C + C

∫ t

t1

s−1|B〈Q〉〈Pt〉|ds.

However, appealing to (167) and Corollary 22, we know that the right hand side is bounded. Thus
E(t) ≤ Ct−1 for all t ≥ t1. In particular, tHa(t) ≤ C for all t ≥ t1.

Finally, we are in a position to prove the main theorem, Theorem 3.

Theorem 3. Due to Lemma 75, we know that tHa(t) ≤ C for t ≥ t1. We would like to appeal to
Lemma 26. However, in order to be able to do so, we need to demonstrate that t−1Ĥ(t) ≤ C for
t ≥ t1. However, most of the terms appearing in t−1Ĥ appear also in tHa. All that remains is to
estimate ∫

S1
α−1/2P 2

t dθ ≤ 2

∫
S1
α−1/2

[(
Pt +

1

t

)2

+
1

t2

]
dθ ≤ Ct−1,

where the last step is a consequence of the bound on Ha mentioned above and the assumption that
〈α−1/2〉 is bounded. Due to the assumptions, we know that α cannot converge to zero uniformly.
Adding up the above observations, we are therefore allowed to appeal to Lemma 26 in order to
conclude that α has a positive lower bound. Consequently, the solution is pseudo-homogeneous;
cf. Theorem 69.

13 The polarised case

In the present section, we prove Proposition 1. As a first step, we prove that there is an open
set of initial data such that Ha decays as 1/t. One particular consequence of this result is that
suitably small perturbations of pseudo-homogeneous solutions have energy decay of this type;
cf. Proposition 8. Combining this observation with the fact that 〈α−1/2〉 → ∞ for non-pseudo-
homogeneous solutions, we are then able to derive the desired conclusions; cf. Lemma 79.

Lemma 76. Consider a polarised solution to (2)–(6) on (t0,∞)× S1 with K 6= 0. Assume that,
for some ta ≥ t1,

taHa(ta) ≤ 6, taE(ta) ≤ 1,
8|A|[〈α1/2〉(ta)]1/2√

2πta
≤ 1, (168)
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where E = Ha + Γ1. Then tHa(t) ≤ 6 for all t ≥ ta. Moreover,

1

t2

∫
S1
α−1/2dθ,

1

t

∫
S1

α−1/2eP+λ/2K2

t5/2
dθ ∈ L1([t1,∞)).

Remark 77. Pseudo-homogeneous solutions are such that the left hand sides in (168) converge
to zero as ta →∞.

Remark 78. Non pseudo-homogeneous solutions which satisfy the conditions have the property
that α converges to zero uniformly; cf. Lemma 26 and the proof of Theorem 3.

Proof. Let γ ∈ (0, 1). Due to (157), we know that as long as

tHa(t) ≤ 12γ, (169)

then
(1− γ)Ha ≤ E ≤ (1 + γ)Ha. (170)

Due to (162), we know that

dE
dt

=− 1

t
E − 1

t
Γ1 −

A

t2

(
〈Pt〉+

1

t

)
− 3

t3

∫
S1
α−1/2dθ − 3

2t

∫
S1

α−1/2eP+λ/2K2

t7/2
dθ. (171)

As long as
tHa(t) ≤ 12, (172)

the second and the fourth terms on the right hand side of (171) add up to something non-positive,
so that

dE
dt
≤ −1

t
E − A

t2

(
〈Pt〉+

1

t

)
,

and
d

dt
(tE) ≤ −A

t

(
〈Pt〉+

1

t

)
.

Assuming (172) to hold on the interval [ta, tb], we obtain

tE(t) ≤taE(ta) + |A|[〈α1/2〉(ta)]1/2
∫ t

ta

1

s
√

2π
H1/2
a (s)ds

≤taE(ta) +
4|A|[〈α1/2〉(ta)]1/2√

2π

∫ t

ta

1

s3/2
ds ≤ taE(ta) +

8|A|[〈α1/2〉(ta)]1/2√
2πta

(173)

for all t ∈ [ta, tb]. By assumption, (168) holds. Note that, as a consequence,

tE(t) ≤ 2 (174)

on the interval [ta, tb], assuming (172) to hold there. Let A be the set of s ∈ [ta,∞) such that

tHa(t) ≤ 6 (175)

and (174) hold for t ∈ [ta, s]. Clearly, A is non-empty and connected. Moreover, it is closed by
definition. In order to prove openness, let τ ∈ A. Due to (175), we know that (169) holds with
γ = 1/2. Thus (170) implies that

τHa(τ) ≤ 2τE(τ) ≤ 4.

Consequently, (175) clearly holds in an open neighbourhood of τ . We are thus allowed to appeal
to (173) in [ta, τ + ε] for some ε > 0. As a consequence, we can extend (174) to [ta, τ + ε]. Thus
A = [ta,∞).
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Returning to (171), note that

d(tE)

dt
=− Γ1 −

A

t

(
〈Pt〉+

1

t

)
− 3

t2

∫
S1
α−1/2dθ − 3

2t

∫
S1

α−1/2eP+λ/2K2

t5/2
dθ

≤− A

t

(
〈Pt〉+

1

t

)
− 3

2t2

∫
S1
α−1/2dθ − 3

2t

∫
S1

α−1/2eP+λ/2K2

t5/2
dθ,

where we used the fact that (157) and (175) hold. Since we know that the first term on the far
right hand side is integrable, we conclude that the second and third terms are integrable.

Note that one particular consequence of the last lemma is that t−2〈α−1/2〉 ∈ L1([t1,∞)). It is of
interest to use this assumption as a starting point for further analysis.

Lemma 79. Consider a non-pseudo-homogeneous polarised solution to (2)–(6) on (t0,∞)×S1 with
K 6= 0. Assume that t−2〈α−1/2〉 ∈ L1([t1,∞)). Then there is a constant C such that tHa(t) ≤ C
for all t ≥ t1. In particular, α converges to zero uniformly. Moreover, t−1〈α−1/2〉 → 0, and

lim
t→∞

‖P (t, ·)− 〈P (t, ·)〉‖C0 = 0.

Finally,

lim
t→∞

∥∥∥∥P (t, ·)
ln t

+ 1

∥∥∥∥
C0

= 0 (176)

and there is a time sequence tk →∞ such that

lim
k→∞

∥∥∥∥λ(tk, ·)
ln tk

− 5

∥∥∥∥
C0

= 0. (177)

Proof. Let f(t) = t−1〈α−1/2〉. By assumption, t−1f ∈ L1([t1,∞)). Moreover,

∂tf = −t−1f + t−1〈∂tα−1/2〉 ≥ −t−1f.

Thus Lemma 10 applies, and we conclude that t−1〈α−1/2〉 → 0. Combining this observation with
(157), we conclude that for every ε > 0, there is a T > t0 such that |Γ1| ≤ εHa for all t ≥ T .
Consequently, for t large enough, E and Ha are equivalent. Compute, using (171) and (157), that

d

dt
(tE + 1) ≤− Γ1 −

A

t

(
〈Pt〉+

1

t

)
≤ C

t2
〈α−1/2〉(tE + 1) +

C

t

(∫
S1
α−1/2(Pt + t−1)2dθ

)1/2

≤C(t−3/2 + t−2〈α−1/2〉)(tE + 1).

As a consequence, tE , and thus tHa, is bounded. By earlier observations, we thus know that α
converges to zero uniformly. Combining the fact that t−1〈α−1/2〉 converges to zero with the bound
on tHa(t), we conclude that the spatial variation of P converges to zero; cf. (158).

Let us turn to the limit of P/ ln t. Note, to begin with, that ‖λ − 〈λ〉‖C0 is bounded; cf. (75).
Since the spatial variation of P tends to zero, there is thus a constant C > 0 such that

∂t〈α−1/2〉 ≥ C〈α−1/2〉e
〈P 〉+〈λ〉/2K2

t5/2
.

In particular, we thus have∫ τ

t1

e〈P 〉+〈λ〉/2K2

t5/2
dt ≤ C ln

〈α−1/2(τ, ·)〉
〈α−1/2(t1, ·)〉

≤ C ln τ (178)

for all τ ≥ t1. Let us compute

∂t

(
1

〈α−1/2〉

∫
S1
α−1/2Pdθ

)
= −2π

t
+

A

t〈α−1/2〉
+

∫
S1
∂t

(
α−1/2

〈α−1/2〉

)
(P − 〈P 〉)dθ; (179)
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note that ∫
S1
∂t

(
α−1/2

〈α−1/2〉

)
〈P 〉dθ = 0.

Note that the first term on the right hand side of (179) dominates over the second. What we need
to analyse is thus the third term. It can be estimated by∫

S1

∣∣∣∣∂t( α−1/2

〈α−1/2〉

)∣∣∣∣ dθ‖P − 〈P 〉‖C0 .

Due to (105), the first factor of this expression can be estimated by

−
∫
S1

1

2

αt
α

α−1/2

〈α−1/2〉
dθ +

∫
S1

1

〈α−1/2〉

〈
−1

2
α−1/2αt

α

〉
α−1/2

〈α−1/2〉
dθ ≤ C e

〈P 〉+〈λ〉/2K2

t5/2
(180)

for all t ≥ t1. Let ε > 0. Then there is a ta ≥ t1 such that ‖P −〈P 〉‖C0 ≤ ε for all t ≥ ta. Dividing
the interval of integration into the pieces [t1, ta] and [ta, t] yields∫ τ

t1

∫
S1

∣∣∣∣∂t( α−1/2

〈α−1/2〉

)∣∣∣∣ dθ‖P − 〈P 〉‖C0dt ≤ Cε + Cε

∫ τ

ta

e〈P 〉+〈λ〉/2K2

t5/2
dt ≤ Cε + Cε ln τ,

where we used (180) in the first step and (178) in the second. There is a similar estimate for the
integral of the second term on the right hand side of (179). Integrating (179), we thus have∣∣∣∣ 1

〈α−1/2〉

∫
S1
α−1/2Pdθ + 2π ln τ

∣∣∣∣ ≤ Cε + Cε ln τ.

In particular,

lim
t→∞

∣∣∣∣ 1

2π〈α−1/2〉 ln t

∫
S1
α−1/2Pdθ + 1

∣∣∣∣ = 0.

On the other hand,

1

2π〈α−1/2〉

∫
S1
α−1/2Pdθ − 〈P 〉 =

1

2π〈α−1/2〉

∫
S1
α−1/2(P − 〈P 〉)dθ → 0

as t→∞. Since ‖P − 〈P 〉‖C0 → 0 as t→∞, we obtain (176).

In order to prove the statement concerning λ, let us fix ε > 0. Assume that there is a T such that

λ(t, θ)

ln t
≥ 5 + ε

for all (t, θ) ∈ [T,∞)× S1. Due to (176), we are allowed to assume that T is such that P (t, θ) ≥
− ln t− ε ln t/4 for all (t, θ) ∈ [T,∞)× S1. Combining this information with (4), we conclude that

αt
α
≤ −t−1+ε/4K2.

Integrating this inequality from T to t and exponentiating the result, we obtain

α(t, θ) ≤ exp

(
−4

ε
tε/4K2 +

4

ε
T ε/4K2

)
α(T, θ).

Raising this equality to −1/2 and averaging over the result, we obtain a lower bound on 〈α−1/2〉
which is inconsistent with the fact that t−1〈α−1/2〉 converges to zero. Consequently, the above
assumption leads to a contradiction. Assume that there is a T such that

λ(t, θ)

ln t
≤ 5− ε
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for all (t, θ) ∈ [T,∞)× S1. By an argument similar to the one given above, this assumption leads
to the conclusion that α is bounded from below by a positive constant, something we know to be
false. Adding up the above information, we conclude that there is a time sequence tk →∞ and a
sequence of θk ∈ S1 such that

5− ε ≤ λ(tk, θk)

ln tk
≤ 5 + ε.

Since the spatial variation of λ is bounded by, say, C, we conclude that

5− ε− C

ln tk
≤ λ(tk, θ)

ln tk
≤ 5 + ε+

C

ln tk

for all θ ∈ S1. The lemma follows.

Finally, we are in a position to prove Proposition 1.

Proposition 1. Combining Proposition 8 and Lemma 76, we conclude that for ε > 0 small enough,
the conditions of Lemma 79 are met. Moreover the conclusions of this lemma yield the desired
result.
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The author would like to thank H̊akan Andréasson, Beverly Berger and James Isenberg for stim-
ulating discussions. He would also like to acknowledge the support of the Göran Gustafsson
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