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Abstract. The solutions of Einstein’s equations used by physicists to model the universe
have a high degree of symmetry. In order to verify that they are reasonable models, it
is therefore necessary to demonstrate that they are future stable under small perturba-
tions of the corresponding initial data. The purpose of this contribution is to describe
mathematical results that have been obtained on this topic. A question which turns out
to be related concerns the topology of the universe: what limitations do the observations
impose? Using methods similar to ones arising in the proof of future stability, it is possi-
ble to construct solutions with arbitrary closed spatial topology. The existence of these
solutions indicate that the observations might not impose any limitations at all.
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1. Introduction

In 1915, the interpretation of gravitational forces was fundamentally altered by
the introduction of Einstein’s general theory of relativity. The underlying math-
ematical structures were not well understood at the time, and as a consequence,
some of the fundamental questions have only recently been phrased in the form of
mathematical problems. Since Einstein’s equations are not as commonly studied
in mathematics as many other equations that appear in physics, we here wish to
give a brief description of their origin and of how different perspectives on them
have developed since the inception of general relativity. However, the main purpose
of this contribution is more specific. Recent observational data indicate that the
universe is expanding at an accelerated rate. As a consequence, physicists nowa-
days use solutions to Einstein’s equations with accelerated expansion to model the
universe. Since the model solutions are highly symmetric (they are spatially homo-
geneous and isotropic), a natural question to ask is: are they stable? In order to
phrase this question in a more precise way, it is necessary to formulate Einstein’s
equations (coupled to various matter equations) as an initial value problem. It
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turns out that there is a natural and geometric notion of initial data, and that,
given initial data, there is a uniquely associated maximal Cauchy development.
A more precise formulation of the question of stability is then: given initial data
corresponding to one of the standard models, do small perturbations thereof yield
maximal Cauchy developments that are globally similar? The currently preferred
models have a big bang type singularity and an expanding direction. Proving sta-
bility in the direction of the singularity is quite difficult (there are some results in
the case of special matter fields), but there are several results on stability in the
expanding direction. For that reason we shall focus on the expanding direction
here, and we shall think of it as corresponding to the future.

The outline of this contribution is as follows. We begin, in Section 2, by giving
a brief description of the origin of the general theory of relativity. Moreover, we
explain how the present contribution fits into the general context of mathematical
studies of Einstein’s equations. In Sections 3 and 4, we then discuss the formulation
of the initial value problem, which is needed in order for us to be able to state a
stability result. In Section 5, we then discuss the topic of stability in general.
We give a rough description of some of the results that have been obtained in
the past, as well as of some of the methods. However, we shall only formulate a
theorem in the case of the Einstein-Vlasov system. In order to be able to do so,
we devote Section 6 to a discussion of this system. In Sections 7 and 8, we then
describe the background solutions we are interested in proving stability of, and
state the relevant results. Finally, in Section 9, we discuss a construction which
indicates that the observations do not impose any restrictions on the topology of
the universe.

2. General relativity

In order to discuss the general theory of relativity, it is natural to begin with
Einstein’s paper on special relativity [6]. The starting point of the paper is the
contemporary interpretation of electrodynamics. Noting that this interpretation
involves asymmetries, and postulating that the speed of light is independent of in-
ertial observer, Einstein was led to the Poincaré group of transformations, relating
the observations of inertial observers. Due to the added insight of Poincaré and
Minkowski, it was realized that this group is the group of isometries of Minkowski
space; recall that Minkowski space is R4 with the inner product 〈x, y〉 = xtηy,
where η = diag(−1, 1, 1, 1). This interpretation indicates the importance of ge-
ometry. As a next step, it is clear that Newtonian gravity has to be modified.
Two important principles that guided Einstein in his search for a modified theory
were the equivalence principle (the equality between inert and gravitational mass;
this is roughly speaking the idea that it is not possible to distinguish between a
coordinate system at rest in a uniform gravitational field and a uniformly acceler-
ated coordinate system far away from all matter, for example) and the principle
of general covariance, the idea that the equations should be independent of the
choice of coordinate system. By a simple thought experiment involving rotating
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coordinate systems, it can be argued (heuristically) that acceleration distorts the
geometry; cf. [7, pp. 58–59]. Combining this observation with the equivalence
principle indicates that gravitation should affect the geometry. In fact, it is not
unnatural to equate gravitation with distorsion of the geometry. Since the geom-
etry at a point should be described by the Minkowski metric (with respect to a
suitable choice of coordinates), the natural underlying object in general relativity
is a Lorentz manifold; in other words, a manifold M on which a smooth symmetric
covariant two-tensor field g is defined, where g is such that it, at each point of
M , equals the Minkowski metric with respect to suitable coordinates. The stan-
dard notions and constructions in Riemannian geometry (Levi-Civita connection,
curvature tensor, Ricci tensor, scalar curvature, geodesics etc.) can be defined in
the same way in Lorentz geometry, and we shall use them below without further
comment. The one question that remains is: what equation should (M, g) satisfy?
In some way, the geometry should be related to the matter sources. On the level
of special relativity, it was already clear that the matter should be combined into
the so-called stress-energy tensor; a symmetric covariant two-tensor field, the exact
form of which depends on the specific matter model. Let us denote this object by
T . It should be the source term in Einstein’s equations (it can be thought of as a
generalization of the matter density in Poisson’s equation in Newtonian gravity).
As a consequence, what remains is to determine what the left hand side of the
equation should be. To begin with, it should clearly be symmetric. However, due
to the equations for the matter, the stress-energy tensor should be divergence free.
As a consequence, the left hand side should be as well. Moreover, it should be such
that the resulting equations are independent of the choice of coordinates. Finally,
it is natural (for the sake of simplicity, and in analogy with the Poisson equation)
to require that the left hand side should contain at most second order derivatives
of the gravitational field (i.e., the metric). However, the only equations fulfilling
these requirements are the ones of the form

G+ Λg = αT, (1)

where Λ and α are constants and

G = Ric− 1

2
Sg

is the Einstein tensor, defined in terms of the Ricci tensor, Ric, and the scalar
curvature, S, of the metric g (the reader interested in a justification of this state-
ment is referred to the corollary of [15, Theorem 1, p. 500]). In (1), we shall,
for simplicity, assume α = 1. Moreover, we shall refer to Λ as the cosmological
constant. The resulting equations are

G+ Λg = T, (2)

and we shall refer to them as Einstein’s equations.

2.1. Historical development. It is of interest to say a few words concern-
ing how different perspectives on these equations have developed over time. In the
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intial phase, physicists tried to find explicit solutions to the equations. In order to
do so, they imposed symmetry assumptions adapted to the physical situation of in-
terest. When considering physical objects such as a star, a galaxy, a globular cluster
etc. (i.e., an isolated system), a natural first symmetry assumption to make is that
of spherical symmetry. This assumption led to the class of Schwarzschild space-
times, which can be used to model the gravitational field outside a non-rotating
star or black hole. Much later, the Kerr family of solutions was found, describ-
ing the rotating case. When modelling the universe as a whole, another type of
symmetry assumption is required. Guided by the Copernican principle, a natural
starting point in this case is the assumption of spatial homogeneity and isotropy;
this is the assumption that at ’one moment in time’, it is not possible to distin-
guish between two points in space, nor is it possible to distinguish between two
directions. Symmetry assumptions of this type (corresponding to the so-called cos-
mological setting) led to the Friedman-Lemâıtre-Robertson-Walker metrics, which
are still used to this very day when modelling the universe (though the preferred
matter models have changed over time). Even though mathematicians nowadays
consider significantly less symmetric solutions, the problems considered can still be
divided into ones concerning isolated systems and ones concerning the cosmological
setting.

In the initial stages of the development of general relativity, when the emphasis
was on finding explicit solutions, the geometry remained somewhat obscure. As a
consequence, some of the features of, e.g., the Schwarzschild solutions were mis-
understood for several decades. In the 50’s and 60’, the geometry received more
attention, and the so-called singularity theorems were proven. In order to give an
idea of the statements of these results, it is necessary to introduce the notion of
causal geodesics. To begin with, a vector v in Minkowski space is said to be timelike
if 〈v, v〉 < 0; lightlike or null if 〈v, v〉 = 0 and v 6= 0; and spacelike if 〈v, v〉 > 0 or
v = 0. A vector which is either timelike or null is said to be causal. These notions
can be generalized to Lorentz manifolds. Moreover, it makes sense to speak of
timelike curves etc. as well as spacelike hypersurfaces. In particular, the character
of a geodesic (timelike, null, spacelike) is preserved, so that it is meaningful to
speak of timelike geodesics etc. In the interpretation of general relativity, a causal
curve corresponds to an observer that travels at a speed less than or equal to that
of light. Moreover, a timelike geodesic corresponds to a freely falling test particle,
and a null geodesics corresponds to a light ray. Thus causal geodesics are of partic-
ular importance in general relativity. A notion which is also of importance is that
of a time orientation. At a given spacetime point, the set of causal vectors based
at that point has two components. A continuous choice of component corresponds
to a time orientation (and we shall, from now on, assume all Lorentz manifolds to
be time oriented). Vectors belonging to the chosen component will be referred to
as future oriented.

The singularity theorems of Hawking and Penrose give general conditions that
ensure the existence of incomplete causal geodesics. Since the existence of such
a geodesic means that there is a freely falling test particle (or a light ray) which
exits the spacetime in finite parameter time, Hawking and Penrose equated causal



Stability of cosmological models 5

geodesic incompleteness with the existence of a singularity (examples illustrate
that this is not always reasonable). Due to the results, it is to be expected that
singularities, in the sense of causal geodesic incompleteness, occur generically in
solutions to Einstein’s equations. These results changed the perspective concerning
the occurrences of singularities. Moreover, due to the methods used to prove them,
the importance of the subject of Lorentz geometry became apparent.

In the early 50’s, Yvonne Choquet-Bruhat formulated Einstein’s equations as an
initial value problem [8]. It took a significant amount of time before this perspective
became a natural starting point in the subject. Since the initial data cannot be
specified freely (they have to satisfy an underdetermined, non-linear system of
elliptic PDE’s, referred to as the constraint equations), and since, given initial
data, the evolution problem typically involves proving global existence of solutions
to a non-linear system of hyperbolic PDE’s, this is perhaps not so surprising.
In particular, the relevant PDE tools were not so well developed in the early 50’s.
Nevertheless, this perspective has become more and more important in the subject.
This is, in particular, due to the fact that central questions such as that of stability
are most naturally formulated using it.

With the above description in mind, the present contribution can be said to
be concerned with the initial value formulation of Einstein’s equations in the cos-
mological setting. Moreover, the precise notion of stability we shall use is highly
dependent on a Lorentz geometric interpretation of the outcome of the PDE anal-
ysis.

3. On the character of Einstein’s equations

In order to justify that it is meaningful to formulate Einstein’s equations as an
initial value problem, let us begin by focusing on the vacuum equations with a
vanishing cosmological constant. Since these equations can be written Ric = 0,
it is of interest to know if Ric, considered as a differential operator acting on the
components of the metric, has a particular character (elliptic, hyperbolic etc.). Due
to the diffeomorphism invariance of the equations, this is not to be expected. On
the other hand, it is possible to break the diffeomorphism invariance by making a
special choice of coordinates. In fact, choosing coordinates such that the contracted
Christoffel symbols vanish, the Ricci tensor (schematically) takes the form

Ricαβ = −1

2
gµν∂µ∂νgαβ + Fαβ(g, ∂g), (3)

where F is a quadratic expression in the first derivatives of the metric components.
In this equation, we assume Greek indices to range from 0 to n, where n+ 1 is the
dimension of the Lorentz manifold, and we tacitly assume that repeated indices
are summed over (the Einstein summation convention). With respect to these
coordinates, Einstein’s vacuum equations can thus be thought of as a system of
non-linear wave equations for the metric components. As a consequence, it seems
natural to formulate a corresponding inital value problem.



6 Hans Ringström

It is of interest to note that the above issues arise not only in general relativity,
but also in Riemannian geometry and in Ricci flow. In Riemannian geometry,
it is sometimes convenient to think of the Ricci tensor as an elliptic differential
operator acting on the components of the metric; this yields good control of the
metric components, given information concerning the Ricci tensor. It is therefore
of interest to consider the so-called harmonic coordinates, defined by the condition
that the contracted Christoffel symbols vanish. The reason for referring to these
coordinates as harmonic is that their defining requirement is equivalent to

∆gx
µ = 0,

where ∆g is the scalar covariant Laplacian associated with the metric g and xµ

are the components of the coordinate system. The analogous coordinates in the
Lorentzian setting are sometimes, by analogy, referred to as harmonic coordi-
nates (and sometimes as wave coordinates). In Ricci flow, the relevant equation is
∂tg = −2Ric[g], and when dealing with this equation analytically, it would be con-
venient if Ric were an elliptic operator. Hamilton’s original idea concerning how
to prove local existence was to appeal to the Nash-Moser inverse function theorem.
However, later proofs instead relied on breaking the diffeomorphism invariance in
order to obtain a strictly parabolic equation.

4. The initial value problem

With the above observations in mind, it seems natural to formulate an initial value
problem. However, it is not so clear what the initial data should be, nor where they
should be specified. It turns out that there are several ways of proceeding, but we
shall here focus on the perspective that arises in analogy with the standard Cauchy
problem for the ordinary wave equation. In that setting, the initial data are spec-
ified on a t = const hypersurface in Minkowski space. These hypersurfaces are
special in several ways. First of all, they are spacelike, meaning that the induced
metric is Riemannian (in this particular case, they are in fact the ordinary Eu-
clidean metric). Moreover, they are intersected exactly once by every inextendible
causal curve; cf. the above terminology. Hypersurfaces in Lorentz manifolds which
are intersected exactly once by every inextendible casual curve are referred to as
Cauchy hypersurfaces. They are natural surfaces on which to specify initial data,
since given initial data on a Cauchy hypersurface (for the linear wave equation
on the Lorentz manifold), there is a unique corresponding solution. A Lorentz
manifold which admits a Cauchy hypersurface is called globally hyperbolic.

Turning to the choice of the intial data, it would seem natural to specify the
metric components and their normal derivative at the initial hypersurface (keeping
(3) in mind). However, since Einstein’s equations are geometric in nature, the
initial data should be geometric as well. On the other hand, the induced metric
and second fundamental form are geometric in nature and correspond to a part
of the desired information; with respect to local coordinates, they yield some of
the metric components and the normal derivative of some metric components.



Stability of cosmological models 7

The induced metric and second fundamental form would thus seem to constitute
minimal information needed in order to contruct a solution. On the other hand, it
unfortunately turns out that these initial data cannot be specified freely. In order
to be more specific, let Σ be a spacelike hypersurface in a Lorentz manifold on
which Einstein’s equations (2) are satisfied. Contracting the equations twice with
respect to the future directed unit normal, say N , yields

1

2
[S̄ − k̄ij k̄ij + (trḡk̄)2] = ρ+ Λ, (4)

where ḡ and k̄ are the induced metric and second fundamental form on the hyper-
suface Σ respectively; cf. [18, Proposition 13.3, p. 149]. Moreover, S̄ is the scalar
curvature of the metric ḡ, indices are raised and lowered with ḡ and ρ = T (N,N).
In particular, all the ingredients in (4) are intrinsic to the hypersurface. Contract-
ing (2) once with respect to the future directed unit normal and once with respect
to a tangential vector yields the equation

∇j k̄ji −∇itrḡk̄ = −Ji, (5)

where ∇ is the Levi-Civita connection associated with the metric ḡ and J is the
one-form field defined by J = −T (N, ·); cf. [18, Proposition 13.3, p. 149]. Again,
the ingredients of (5) are intrinsic to the hypersurface Σ. Clearly, the initial data
have to satisfy (4) and (5), which are referred to as the Hamiltonian and momen-
tum constraints respectively; collectively, we shall refer to them as the constraint
equations. It is natural to ask whether the constraint equations are sufficient in
order to guarantee the existence of a corresponding development. In the vacuum
setting, this question was settled in the seminal result of Yvonne Choquet-Bruhat
[8], which we now formulate.

Theorem 4.1. Let (Σ, ḡ, k̄) be initial data for Einstein’s vacuum equations; i.e.,
Σ is an n-dimensional manifold, ḡ is a Riemannian metric and k̄ is a symmetric
covariant 2-tensor field satisfying the vacuum constraint equations; i.e., (4) and
(5) with Λ = 0, ρ = 0 and J = 0. Then there is a globally hyperbolic development
of the initial data. In other words, a Lorentz manifold (M, g) satisfying Einstein’s
vacuum equations and an embedding i : Σ → M such that i∗g = ḡ and i∗κ = k̄,
where κ is the second fundamental form of i(Σ) in (M, g). Moreover, i(Σ) is a
Cauchy hypersurface in (M, g).

This result has been generalized to include many different types of matter
models. We shall not list them, but for all the matter models discussed in this
contribution, there is a result analogous to Theorem 4.1.

Even though Theorem 4.1 is important, it does have one deficiency; there is no
uniqueness statement. Given initial data, there are infinitely many inequivalent
globally hyperbolic developments associated with it. In order to obtain uniqueness,
it is necessary to require some sort of maximality. In fact, the fundamental result,
due to Yvonne Choquet-Bruhat and Robert Geroch [4], is the following.

Theorem 4.2. Let (Σ, ḡ, k̄) be initial data for Einstein’s vacuum equations. Then
there is a unique maximal globally hyperbolic development.
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Due to this theorem, it is clear that the notion of initial data introduced in
the statement of Theorem 4.1 is meaningful. Unfortunately, there are examples of
maximal globally hyperbolic developments that are extendible in the class of all
(not necessarily globally hyperbolic) developments. In fact, there might even be
inequivalent maximal developments, indicating that the general theory of relativity
is not deterministic. Since the examples are very special, one is led to the strong
cosmic censorship conjecture. However, that is not the main topic of this contri-
bution. In fact, we shall here be content with the maximal globally hyperbolic
development as the development of the intial data.

5. Stability

Since Einstein’s equations can be formulated as an initial value problem, it is
possible to phrase the stability question: Given initial data corresponding to a
specific solution, do small perturbations thereof yield maximal globally hyperbolic
developments which are globally similar? The question is still somewhat vague,
since we have not specified what is meant by globally similar, nor what is meant
by small perturbations. However, the precise meaning in practice depends on
the particular solution under consideration, and even for a given solution it is
sometimes possible to take different perspectives.

Turning to the stability results that have been obtained in the past, the first
one is due to Helmut Friedrich; cf. [9], which contains a proof of stability of de
Sitter space. In the same paper, he also proved future stability of Minkowski space,
starting with hyperboloidal initial data. Later on, Demetrios Christodoulou and
Sergiu Klainerman proved stability of Minkowski space [5]. That stability holds
when using harmonic coordinates was only demonstrated much later by Hans Lind-
blad and Igor Rodnianski [13]. Another perspective on the stability of Minkowski
space is given by the work of Lydia Bieri; cf. [3]. Even though all of the references
[9, 5, 13, 3] pertain to the problem of stability of Minkowski space, they are very
different in nature; the assumptions and conclusions are different in all of these
references, and the results correspond to different notions of ’smallness’ and ’global
similarity’.

Minkowski space is a natural solution to start with when one is interested in
isolated systems. However, the topic of the present contribution is cosmology. Of
the references mentioned above, the one which is of interest in that setting is [9],
in which Friedrich proves stability of de Sitter space. For an appropriate value of
the cosmological constant, Λ, the metric of de Sitter space is given by

gdS = −dt⊗ dt+ cosh2(t)ḡS3

on R×S3, where ḡS3 is the standard metric on S3. The de Sitter space is a solution
to Einstein’s vacuum equations with a positive cosmological constant; i.e.,

G+ Λg = 0.
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The result of Friedrich is peculiar to 3 + 1-dimensions, but Michael Anderson later
generalized it to n+1-dimensions, with n odd; cf. [1]. Friedrich also generalized [9]
to include matter of Maxwell and Yang-Mills type; cf. [10]. All of these references
yield stability of cosmological solutions with accelerated expansion. They thus be-
long to the class of results we wish to discuss here. It is of interest to note that the
proofs given in [9, 10, 1] are based on conformal reformulations of the equations.
The idea is to first rescale the background spacetime by a conformal factor, so
that what corresponds to past and future infinity in the physical spacetime is at a
finite distance away with respect to the rescaled metric. The second step is then to
derive a suitable system of equations for the rescaled metric and conformal factor
(in reality, the variables might be quite different). This step can be expected to be
very difficult, and the only cases in which it is known to be possible is when the
matter sources have suitable conformal invariance properties. However, when it
is possible, the problem of global existence and stability becomes an issue of con-
tinuous dependence on initial data. Assuming the conformally rescaled equations
admit a well posed initial value problem (with respect to an appropriately chosen
gauge; i.e., an appropriate choice of how to break the diffeomorphism invariance),
this is, however, immediate, so that the desired result follows. It is of interest
to note that, even though [1] yields stability in the case of higher dimensions, it
can be used to prove stability in 3 + 1-dimensions for spacetimes with a special
type of matter source; cf. [12]. The results mentioned above are appealing due
the the geometric nature of the arguments involved. However, the methods used
seem to suffer from a lack of robustness. This leads us to the different perspective
developed in [17].

In [17], we considered the case of Einstein’s equations coupled to a non-linear
scalar field. The relevant stress-energy tensor in that case is

T = dφ⊗ dφ−
[

1

2
g(gradφ, gradφ) + V (φ)

]
g, (6)

where φ is a scalar valued function on the manifold (the so-called scalar field) and
V is a smooth function on R referred to as the potential. The relevant matter field
equations are

2gφ− V ′ ◦ φ = 0, (7)

where 2g is the scalar wave operator associated with g (defined in the same way
as the scalar Laplacian in the case of Riemannian geometry). Note that (6) is
divergence free if (7) holds. In [17], it is assumed that V (0) > 0, V ′(0) = 0 and
V ′′(0) > 0; in other words, that 0 is a positive non-degenerate local minimum of
the potential. Moreover, the scalar field is assumed to be small initially.

The motivation for studying non-linear scalar fields is partly due to their inter-
est in physics. Once it became clear that the observational data indicate that the
universe is expanding at an accelerated rate, it was natural to try to find matter
models that induce accelerated expansion. One possibility is to include a positive
cosmological constant. Another is to add matter of non-linear scalar field type.
The types of potentials considered above specialize to the case of a positive cosmo-
logical constant when demanding that φ = 0 (a case which can already be handled
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using conformal methods). However, they are more general, and only in the case
of special relations between V (0) and V ′′(0) do the conformal methods seem to
work; cf. [11].

Following the appearance of [17], there were several results obtained using simi-
lar methods; cf. [19] (treating the case of an exponential potential and generalizing
the results of [12]), [23, 16] (in which an electromagnetic field was added), [21, 22]
(in which the Euler-Einstein system was considered). However, the situation we
focus on in what follows is the Einstein-Vlasov setting, discussed in [20].

6. The Einstein-Vlasov system

The physical situation matter of Vlasov type is supposed to represent is that of a
gas. The fundamental assumption is that collisions are sufficiently rare that they
can be negelected (including binary collisions would, e.g., lead to the Boltzmann
equation, which we do not consider here). In the case of general relativity, each
particle in the gas can thus be expected to behave as a freely falling test particle.
A test particle with a non-zero rest mass (also referred to as a massive particle)
can thus be expected to travel along a timelike geodesic. In the case of a zero
rest mass (i.e., a massless) particle, the relevant curves are the null geodesics. On
the other hand, the particles collectively generate a gravitational field which, in its
turn, affects the geometry (and thereby the geodesics). In order to describe the
gas, it is convenient to use a distribution function. The natural space on which
this function is defined is the space of states of particles. Assuming all the particles
to have rest mass 1, the space of states is given by the set of future directed unit
timelike vectors. We shall denote this set by P , and we shall refer to it as the
mass shell. The distribution function, say f , is then a function from P to the
non-negative real numbers.

In order to couple Vlasov matter to Einstein’s equations, it is necessary to
explain how to construct a stress-energy tensor, given a distribution function.
Moreover, it is necessary to formulate an evolution equation for the distribution
function. The relevant stress-energy tensor is defined by

T |TξM×TξM =

∫
Pξ

f(p)p[ ⊗ p[µPξ(p). (8)

In this equation, ξ is a spacetime point (i.e., an element of the spacetime manifold
M); Pξ is the mass shell above ξ (i.e., the elements of P based at ξ); p is an element
of Pξ; p

[ is the one-form metrically associated with p (i.e., p[(X) = g(p,X) for
X ∈ TξM); and µPξ is a volume form defined on Pξ in the following way: the
metric g induces a Lorentz metric gξ on TξM , the Lorentz metric gξ induces a
Riemannian metric on Pξ, and this Riemannian metric induces a volume form on
Pξ (which we denote by µPξ). It is important to note that it is necessary to impose
fall-off conditions on the distribution function in order for (8) to make sense. Often
the requirement of compact support in the momentum directions is imposed, but
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we here prefer to demand that the distribution function belong to Sobolev spaces
with appropriate weights in the momentum directions.

Turning to the equation for the distribution function, it is given by

Lf = 0, (9)

and it is referred to as the Vlasov equation. Here L is a vector field on P defined
as follows. Given an element of P , say v, there is a unique geodesic γ such that
γ̇(0) = v. Moreover, γ̇(s) is a curve in P , and its tangent vector at 0 (considered as
a curve in P ) is Lv, the vector field L at the point v. Note that the Vlasov equation
is equivalent to the requirement that f(γ̇) be constant for each geodesic γ with
initial values on P . Moreover, this requirement corresponds to the assumption that
collisions can be neglected, so that the particles travel along timelike geodesics. It
is of interest to note that (9) implies that the stress energy tensor defined by (8)
is divergence free (regardless of whether Einstein’s equations are satisfied or not).

Summing up the above discussion, the Einstein-Vlasov system with a positive
cosmological constant is given by the equations

G+ Λg =T,

Lf =0,

where T is defined by (8). It is also possible to couple this system to a non-linear
scalar field, but we shall focus on the above equations in what follows. There are
results corresponding to Theorems 4.1 and 4.2 in this setting. We shall not write
them down in detail, but it is of some interest to clarify what the initial data are.

Initial data for the Einstein-Vlasov system. For the geometry, the rel-
evant initial data are the induced metric and second fundamental form, just as
before. Since the Vlasov equation is a first order equation, we only need one initial
datum for the distribution function. In order to explain how it is related to the
spacetime picture, let us assume that we have a solution (M, g, f) and a spacelike
hypersurface Σ in (M, g). Then there is a diffeomorphism from PΣ (the mass shell
above Σ) to TΣ obtained by projecting orthogonally to the normal of Σ. Let us
denote it by projΣ. The initial datum for the distribution function is given by
f̄ = f ◦proj−1

Σ , and it is defined on TΣ. In the case of the Einstein-Vlasov system,
the relevant initial data are (Σ, ḡ, k̄, f̄), where Σ is an n-dimensional manifold, ḡ is
a Riemannian metric on Σ, k̄ is a symmetric covariant 2-tensor field on Σ and f̄ is
a smooth, non-negative function on TΣ. Moreover, these data should satisfy the
constraint equations (4) and (5) (where the matter quantities should be expressed
in terms of ḡ and f̄ , something which can be done; cf. [20, (7.20) and (7.21),
p. 92]). In order to phrase a stability result, we also need a notion of distance
between initial data sets.

Distance between initial data sets. Let us assume Σ to be a closed man-
ifold. Then we can use ordinary Sobolev norms on manifolds to measure the dis-
tance between two metrics and between two symmetric covariant 2-tensor fields.
Since the tangent space of Σ is non-compact, we do, however, need a different norm
to measure the difference between initial data for the distribution function. We
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shall use

‖f̄‖HlVl,µ
=

 j∑
i=1

∑
|α|+|β|≤l

∫
x̄i(Ui)×Rn

〈%̄〉2µ+2|β|χ̄i(ξ̄)(∂
α
ξ̄ ∂

β
%̄ f̄x̄i)

2(ξ̄, %̄)dξ̄d%̄

1/2

.

(10)
In this expression, (Ui, x̄i), i = 1, . . . , j, is a covering of Σ by coordinate neigh-
bourhoods, and {χ̄i} is a partition of unity subordinate to the covering {Ui}. The
expression f̄x̄i is the distribution function expressed with respect to the local coor-
dinates on TΣ induced by (Ui, x̄i); in particular, it is a function on x̄i(Ui) × Rn,
where the Rn-factor corresponds to the tangential directions. Finally, we use the
notation

〈%̄〉 = (1 + |%̄|2)1/2.

Considering the norm (10), there are two contributions to the power of the weight
〈%̄〉; 2µ and 2|β|. The reason for including µ is that it yields an overall decay
(assuming it to be positive). In fact, for µ > n/2+1, the relevant matter quantities
are well defined, assuming the right hand side of (10) to be bounded (for a high
enough l). The reason for including 2|β| is that it ensures that the notion of
smallness obtained using (10) is geometrically meaningful; the exact value of the
right hand side of (10) depends on the coordinates and the partition of unity, but
different choices lead to equivalent norms, assuming we include 2|β| in the power of
the weight. We shall refer to the space of functions f̄ such that (10) is bounded for
all l by D̄∞µ (TΣ) (this space can also be defined in case Σ is not compact; we then
only require the integrals appearing in the definition of the norm to be bounded
on compact subsets of Σ). The reader interested in a more detailed discussion of
norms such as (10) is referred to [20]. In this reference, there is also a description
of the relevant function spaces for the corresponding distribution functions on the
maximal globally hyperbolic development associated with the initial data. The
final ingredient we need before phrasing a stability result is a description of the
relevant background solutions. We turn to this topic next.

7. Background solutions

Let us begin by describing the class of solutions to Einstein’s equations which is
currently preferred by physicists when modelling the universe. The geometry is
taken to be spatially homogeneous and isotropic, as well as spatially flat. In other
words, the relevant metrics take the form

gmodel = −dt⊗ dt+ a2(t)ḡE

on I × R3 (or I × T3), where I is an open interval, ḡE is the standard Euclidean
metric on R3, and a is a positive smooth function on I. Concerning the matter
sources, they are usually taken to be a combination of so-called perfect fluids. In
the case of a perfect fluid (and the above type of symmetry conditions), the stress
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energy tensor is of the form

T = (ρ+ p)dt⊗ dt+ pgmodel.

Here the functions ρ and p are referred to as the energy density and the pressure
respectively. In order to obtain evolution equations for p and ρ, it is common to
introduce an equation of state, giving p in terms of ρ. The condition that T be
divergence free then yields an evolution equation for ρ. Two equations of state
that are often used by physicists are dust (in which case p = 0) and radiation (in
which case p = ρ/3). In fact, the early universe is expected to have been radiation
dominated, and at late times, the matter is expected to behave as dust. Physicists
often study one of these situations at at time, and then they include only dust or
only radiation. However, it is possible to include both at the same time, and we
shall take the matter content of the standard model to consist of a radiation fluid
and dust. The corresponding stress energy tensors are required to be divergence
free individually, and this yields evolution equations for the corresponding energy
densities. Finally, a mechanism is required in order to produce the observed ac-
celerated expansion. One possibility is to include a non-linear scalar field, but we
shall here simply add a positive cosmological constant Λ to the above description.
The relevant equations are then

G+ Λgmodel =Trad + Tdust,

Trad =(ρrad + prad)dt⊗ dt+ pradgmodel,

Tdust =ρdustdt⊗ dt,

ρ̇rad =− 4
ȧ

a
ρrad,

ρ̇dust =− 3
ȧ

a
ρdust,

where prad = ρrad/3 and G is the Einstein tensor of gmodel. It should be pointed out
that solutions of the above type are only relevant models after decoupling (i.e., the
time at which matter and radiation decoupled). In particular, inflationary phases
etc. are not included. The above matter models are not of Vlasov type. However,
it turns out to be possible to approximate the above solutions arbitrarily well with
solutions to the Einstein-Vlasov system with a positive cosmological constant and
the above type of symmetry; cf. [20, Chapter 28]. Moreover, Vlasov matter is such
that it naturally behaves as a radiation fluid close to the singularity and as dust
in the expanding direction. In other words, it is not necessary to put in a dust
and a radiation fluid by hand; Vlasov matter is such that this emerges naturally.
Finally, Vlasov matter is conceptually natural in the later part of the evolution of
the universe. As a consequnce, we shall prefer it here.

Spatial homogeneity. It is of interest to put the above example into a slightly
bigger context, namely that of spatially homogeneous solutions. In [24], Robert
Wald presented general ideas for how to analyze the future asymptotics of spa-
tially homogeneous solutions to Einstein’s equations with a positive cosmological
constant (assuming the matter sources satisfy certain energy conditions). He did
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not address the issue of future global existence; this was taken for granted. How-
ever, he did obtain quite general results. The most fundamental ingredient of the
argument is the Hamiltonian constraint (4). This equation can be written

(trḡk̄)2 = −3

2
S̄ +

3

2
σ̄ij σ̄

ij + 3ρ+ 3Λ, (11)

where σ̄ij are the components of the trace free part of the second fundamental
form. Assuming the matter to satisfy the dominant energy condition (i.e., the
requirement that T (u, v) ≥ 0 for future directed timelike vectors), the energy
density ρ is non-negative. Considering (11), it is thus clear that the only term
on the right hand side which might be negative is the first one. However, the
sign of the scalar curvature of the metric induced on the hypersurfaces of spatial
homogeneity is intimately connected with the symmetry type. Before describing
this connection in detail, let us give a formal definition of a spatially homogeneous
spacetime: it is the maximal globally hyperbolic development of homogeneous
initial data (we assume the relevant matter model to be such that the initial value
problem is well posed). Initial data, given by a manifold Σ, a metric ḡ, a symmetric
covariant 2-tensor field, as well as matter fields, are said to be homogeneous if
there is a smooth transitive Lie group action on Σ which leaves the initial data
invariant. In the 3-dimensional case, there are two possibilities. Focusing on the
simply connected setting for simplicity, Σ is either a Lie group or S2 × R. The
latter case is referred to as Kantowski-Sachs in the physics community, and we
shall ignore it in what follows, since the corresponding metrics have positive scalar
curvature; cf. (11). That is not to say that it is not possible to obtain results in
the Kantowski-Sachs setting, but rather that the statements of the corresponding
results would be more involved. Turning to the Lie group setting, SU(2) constitutes
a particular case; it is the only simply connected 3-dimensional Lie group which
admits a left invariant metric with positive scalar curvature. Again, there are
results in the SU(2) setting, but the statements of the results are more involved.
Ignoring Kantowski-Sachs and SU(2) for the moment, the remaining symmetry
types are such that the corresponding invariant metrics have non-positive scalar
curvature. Returning to (11), we conclude that the right hand side has a positive
lower bound. On the other hand, since the left hand side is zero when the volume is
at a local maximum (or minimum), this indicates that there is no local maximum
or minimum. Naively, one would then expect that there is a big bang in one time
direction and infinite expansion in the other. In fact, the corresponding solutions
all have an expanding direction (which we shall refer to as the future). Moreover,
it is possible to say something concerning the future asymptotics: the solution
isotropizes and the matter content becomes irrelevant.

Spatially homogeneous solutions to the Einstein-Vlasov system. As
mentioned above, the results in [24] were based on the assumption that the solution
exists globally to the future. When studying a particular case, it thus has to be
verified that this holds. In the case of the Einstein-Vlasov equations with a positive
cosmological constant, this was done in [14] (the result was later extended to the
case of non-compact support in the momentum directions in [20]). Moreover,
asymoptotic information concerning the solution was obtained. In what follows,
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we wish to describe a stability result for these solutions.

8. Stability in the Einstein-Vlasov setting

Before stating the main stability result, let us define the relevant background initial
data; the definition below is a specialization of [20, Definition 7.21, p. 107] to the
case of the Einstein-Vlasov system with a positive cosmological constant.

Definition 8.1. Let G be a 3–dimensional Lie group and 5/2 < µ ∈ R. Let ḡ and
k̄ be a left invariant Riemannian metric and a left invariant symmetric covariant
2–tensor field on G respectively. Furthermore, let f̄ ∈ D̄∞µ (TG) be left invariant;

in other words, if h ∈ G, then f̄ ◦ Lh∗ = f̄ . Then (G, ḡ, k̄, f̄) are referred to as
Bianchi initial data for the Einstein–Vlasov system with a positive cosmological
constant, assuming they constitute initial data in the ordinary sense.

As discussed in the previous section, the corresponding solutions have an ex-
panding direction (if the universal covering group of the Lie group is not isomorphic
to SU(2)), and it is of interest to prove global non-linear stability in that direction.
It is also important to keep in mind that by letting G = R3 (or G = T3); taking
ḡ and k̄ to be suitable multiples of the standard Euclidean metric; and by making
an appropriate choice of f̄ , one obtains initial data corresponding to a solution
which is consistent with observations. Future stability of solutions consistent with
observations is thus a corollary of the result below. The following theorem is a spe-
cialization of [20, Theorem 7.22, p. 108] to the case of the Einstein-Vlasov system
with a positive cosmological constant.

Theorem 8.2. Let 5/2 < µ ∈ R and (G, ḡbg, k̄bg, f̄bg) be Bianchi initial data for
the Einstein–Vlasov system with a positive cosmological constant, where

• the universal covering group of G is not isomorphic to SU(2),

• trk̄bg = ḡijbgk̄bg,ij > 0.

Assume that there is a cocompact subgroup Γ of the isometry group of the initial
data. Let Σ be the compact quotient. Then the initial data induce initial data on Σ
which, by abuse of notation, will be denoted by the same symbols. Make a choice of
Sobolev norms ‖ · ‖Hl on tensor fields on Σ and a choice of norms ‖ · ‖HlVl,µ

. Then

there is an ε > 0 such that if (Σ, ḡ, k̄, f̄) are initial data for the Einstein–Vlasov
system with a positive cosmological constant with the property that

‖ḡ − ḡbg‖H5 + ‖k̄ − k̄bg‖H4 + ‖f̄ − f̄bg‖H4
Vl,µ
≤ ε,

then the maximal globally hyperbolic development of (Σ, ḡ, k̄, f̄) is future causally
geodesically complete.

It is perhaps worth commenting on the requirement that there be a cocompact
subgroup of the isometry group of the initial data. We expect this requirement to
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be unnecessary (though we have not proven this statment). However, it would then
be necessary to introduce a more complicated notion of distance between initial
data sets in the formulation of stability. The reason for focusing on future causal
geodesic completeness in the conclusions is the physical interpretation that freely
falling test particles (light) follow timelike (null) geodesics. Future causal geodesic
completeness thus implies that freely falling test particles do not exit the spacetime
in finite proper time to the future. In this geometric sense, the solution is thus
future global. It is of course also of interest to write down estimates characterizing
the asymptotic behaviour. This has been done in [20, Theorem 7.16, p. 104–106];
cf. [20, Theorem 7.22, p. 108]. We shall not repeat the technical details here.

In the presence of a positive cosmological constant, solutions are expected to
homogenize and isotropize at late times. In fact, they are expected to appear
de Sitter like, and this rough expectation goes under the name of the cosmic no-
hair conjecture. A more precise formulation of this expectation is given in [2,
Definition 8, p. 7]. We shall not write down the formal definition here, as it
requires a somewhat technical discussion of the causal structure of solutions (the
main point is to focus on the parts of the spacetime that can actually be seen by
observers). However, the solutions that arise as a result of Theorem 8.2 become
de Sitter like asymptotically to the future, in the sense of [2, Definition 8, p. 7].

Even though we have excluded Lie groups whose universal covers are isomor-
phic to SU(2), there are results in that setting. However, it is then necessary to
impose additional conditions. An example of a result which holds when perturbing
isotropic solutions is given in [20, Theorem 7.28, p. 109].

The T3-Gowdy symmetric setting. Beyond the above stability results
concerning spatially homogeneous solutions, there are results in the T3-Gowdy
symmetric setting. The main assumption that characterizes this symmetry class
is the requirement that the initial data be invariant under a 2-torus action. In
practice, the effective number of spacetime dimensions is thus 2. On the other hand,
the symmetry class admits both inhomogeneities and anisotropies. Nevertheless, it
turns out that solutions to the Einstein-Vlasov system in the T3-Gowdy symmetric
setting homogeneize and isotropize. In fact, they are future asymptotically de
Sitter like. Moreover, perturbing the initial data corresponding to a T3-Gowdy
symmetric solution in the class of all solutions yields maximal globally hyperbolic
developments with the same properties. The reader interested in a more detailed
description is referred to [2].

9. On the topology of the universe

In Section 7, we described the solutions that physicists normally use to model the
universe. Note that the justification for using them is based not only on observa-
tions, but also on the philosophical idea that all observers should see something
which is roughly similar (an assumption which cannot be tested). In practice, the
assumption that leads to the standard models is that every observer sees exactly
the same spatially homogeneous and isotropic solution. Clearly, this is asking too
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much, since what we see is not exactly spatially homogeneous and isotropic. An
assumption which would be slightly more reasonable would be to fix a standard
model and to say that every observer should see something which is very close
to that standard model. It is of interest to ask what limitations on the topology
such an assumption imposes; note that the standard perspective, which implies
a locally homogeneous and isotropic spatial geometry, is only consistent with a
topology which is the 3-sphere, hyperbolic space or Euclidean space, or a quo-
tient thereof. However, using methods similar to ones on which the future global
non-linear stability result is based, it turns out to be possible to prove that, given

• a closed 3-manifold, say Σ,

• a standard solution (with flat spatial geometry and R3 spatial topology),

• a time t0 in the existence interval of the standard solution (note that the
matter models discussed here are only valid after decoupling, and we shall
think of t0 as representing decoupling),

• a choice of norm (say Ck-norm) and ε > 0,

there is a solution to the Einstein-Vlasov system with a positive cosmological
constant, such that

• it is the maximal globally hyperbolic development of initial data,

• it is future causally geodesically complete,

• it has spatial topology Σ (globally hyperbolic Lorentz manifolds have topol-
ogy R×Σ, where Σ is a Cauchy hypersurface; Σ is referred to as the spatial
topology),

• every observer considers the solution to be at distance ε away from the chosen
standard solution to the future of t0 and with respect to the chosen Ck-norm,

• the solution is stable with all these properties (in other words, if we per-
turb the corresponding initial data, we obtain a maximal globally hyperbolic
development with the same properties).

Under the given assumptions, it is thus not possible to draw any conclusions con-
cerning the topology of the universe.

The statement is still somewhat imprecise; it is not so clear how to measure the
distance (as percieved by an observer) between the solution and the background
solution. This is a somewhat technical issue, and we refer the interested reader to
[20, Section 7.9] for a discussion.

The above description is somewhat brief, and we refer the reader interested in
more details to [20, Section 7.9] for a mathematical statement of the result, and
to [20, Chapter 34] for a proof.
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