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Abstract. In a recent paper by Thomas Jurke, it was proved that the asymp-
totic behaviour of a solution to the polarized Gowdy equation in the expanding

direction is of the form α ln t+β+ t−1/2ν+O(t−3/2), where α and β are con-

stants and ν is a solution to the standard wave equation with zero mean value.
Furthermore, it was proved that α, β and ν uniquely determine the solution.

Here we wish to point out that given α, β and ν with the above properties,
one can construct a solution to the polarized Gowdy equation with the above
asymptotics. In other words, we show that α, β and ν constitute data at the

moment of infinite expansion. We then use this fact to make the observation
that there are polarized Gowdy spacetimes such that in the areal time coordi-

nate, the quotient of the maximum and the minimum of the mean curvature
on a constant time hypersurface is unbounded as time tends to infinity.

1. Introduction

1.1. Motivation. Recently, conjectures have appeared concerning the asymptotic
behaviour of solutions to Einstein’s equations in the expanding direction of cos-
mological spacetimes, cf. [1] and [2] and references therein. The conjectures are
usually phrased in terms of a constant mean curvature foliation. In some situa-
tions, it is however of interest to consider other foliations, and this motivates the
question what the relation is between the asymptotic behaviour in the different
foliations. To try to obtain results in all generality is unrealistic. A problem which
is more reasonable is to consider subclasses of spacetimes with symmetries. One
subclass which has attracted attention is the Gowdy spacetimes. In this case, there
is a two dimensional group of isometries that acts on spatial hypersurfaces, so that
the relevant equations are a system of hyperbolic equations in 1 + 1 dimensions.
Most of the work concerning this class has been done in the so called areal time
coordinate. The corresponding foliation does not have constant mean curvature
hypersurfaces, but it has a natural geometric definition. It is thus of interest to
get a feeling for what the relation is between the constant mean curvature foliation
and the areal time coordinate foliation in Gowdy spacetimes. One conjecture one
could formulate is that all reasonable foliations should behave in a similar way in
the asympotic regimes. It is then natural to ask if the quotient of the maximum
and the minimum of the absolute value of the mean curvature of the hypersurfaces
of constant areal time is bounded in the expanding direction? If it is not bounded,
we have an indication that there is a difference between the two foliations.

A curious fact concerning the Gowdy spacetimes is that it is in some sense possible
to prescribe data “at the singularity”, cf. [4] and [5]. The data give the leading
order asymptotic behaviour close to the singularity and uniquely determine the
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solution. It is of some interest to find out if it is possible to do something similar
in the expanding direction.

1.2. Gowdy spacetimes. The Gowdy spacetimes is a class of vacuum spacetimes
with a two dimensional group of isometries. Of the spatial topologies compatible
with the symmetry requirements, only T 3 is expected to be compatible with infinite
expansion. For this reason we shall only be interested in such a spatial topology
in this paper. There are natural conditions defining the Gowdy spacetimes, see [6]
and references therein, but we shall not write them down here. For the purposes of
the present paper, a T 3-Gowdy spacetime is defined as a Lorentz manifold R+×T 3,
where R+ = (0,∞), with metric

(1) g = t−1/2eλ/2(−dt2 + dθ2) + t[eP dσ2 + 2ePQdσdδ + (ePQ2 + e−P )dδ2],

where P , Q and λ only depend on t and θ, satisfying Einstein’s vacuum equations.
In terms of P , Q and λ, the equations are

Ptt +
1
t
Pt − Pθθ − e2P (Q2

t −Q2
θ) = 0(2)

Qtt +
1
t
Qt −Qθθ + 2(PtQt − PθQθ) = 0,(3)

and

λt = t[P 2
t + P 2

θ + e2P (Q2
t +Q2

θ)](4)

λθ = 2t(PθPt + e2PQθQt).(5)

Note that translations in σ and δ constitute isometries of the solution, and in this
way we obtain an action by isometries of T 2 on the spacetime. The area of the orbit
obtained by letting T 2 act in this way is t, hence the name areal time coordinate. It
is important to note that the equations (2)-(3) do not depend upon λ. In practice,
one can thus analyze the behaviour of solutions to these equations separately, and
then deduce consequences for λ. Note that the initial data for P and Q have to
satisfy a condition for this procedure to make sense, namely, the integral of the
right hand side of (5) has to vanish. This is however the only restriction on the
choice of initial data. Here we are interested in the polarized subcase which is
defined by Q = 0. The two non-linear equations (2)-(3) then simply become one
linear equation. We shall refer to (2) with the terms involving Q set equal to zero
as the polarized Gowdy equation.

1.3. Results. Due to results of [3], each solution to the polarized Gowdy equation
can be written

(6) P = α ln t+ β + t−1/2ν + ψ,

where ν is a solution of the flat wave equation, ψ = O(t−3/2) and similarly for the
first derivatives of ψ. The result above tells us that given a solution to the polarized
equation, there is a solution to the flat wave equation ν such that (6) holds. It is
then of interest to find out if one is actually allowed to specify ν. This turns out
to be the case.

Proposition 1. Let α, β ∈ R and let ν ∈ C∞(R+ × S1,R) satisfy

(7) νtt − νθθ = 0 and
∫
S1
ν(t, θ)dθ = 0,
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the last equation being valid for all t ∈ R+. Then there exists a unique

(8) ψ ∈ C∞(R+ × S1,R),
∫
S1
ψ(t, θ)dθ = 0,

the last equation being valid for all t ∈ R+, such that first derivatives of ψ are
o(t−1/2) in L2 as time tends to infinity and such that P defined by (6) satisfies

(9) Ptt +
1
t
Pt − Pθθ = 0.

The constructed ψ has the property that it and all its derivatives are of the order
O(t−3/2) as time tends to infinity. Finally, if

(10)
∫
S1

(νtνθ)(t, θ)dθ = 0,

(note that the left hand side is independent of time due to (7)), the integral of the
right hand side of (5) is zero, so that λ is well defined, and (1), where Q is set
equal to zero, defines a solution to Einstein’s vacuum equations.

Remark. It would of course be interesting to prove a similar result in general. Even
though there is information concerning the mean value in this case, cf. [6], it is
however not so clear what the exact statement should be.

An immediate corollary to this statement is the following.

Corollary 1. There is a solution P to (2)-(3) with Q = 0 and a solution λ to
(4)-(5) with Q = 0 such that the following holds: There is a sequence tl →∞ and
sequences θ1,l, θ2,l ∈ S1 such that if k is the second fundamental form of constant t
hypersurfaces, then

lim
l→∞

−(trk)(tl, θ2,l)
−(trk)(tl, θ1,l)

=∞.

Remark. Regardless of convention, trk is always bounded away from zero on a fixed
constant t hypersurface.

2. Proofs

Let us start by proving that one can specify data at the moment of infinite expan-
sion.

Proof of Proposition 1. That P satisfies (9), where P is given by (6) and ν satisfies
(7), is equivalent to ψ satisfying

(11) ψtt +
1
t
ψt − ψθθ = −1

4
t−5/2ν.

Given initial data for some T > 0, one can of course solve this equation. The
problem is to ensure that the solution has the desired asymptotics. What we wish
to do is to put zero initial data at infinity. We do this by considering a sequence of
solutions each defined by setting the initial data to zero at a later and later time.

Consider a solution to (11) defined by giving zero initial data at t = T ≥ 1. Due
to the second equation of (7) and (11), we obtain

∂t

[
t

∫
S1
ψtdθ

]
= 0.
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Combining this with the fact that the initial data are zero at t = T , we get the
conclusion that the second property in (8) holds for all t. Let us define

H =
1
2

∫
S1

(ψ2
t + ψ2

θ)dθ(12)

Γ =
1
2t

∫
S1
ψψtdθ.(13)

Note that for t ≥ 1,

(14) |Γ| ≤ 1
2t
H,

1
2
H ≤ H + Γ ≤ 3

2
H,

where the first inequality comes from the fact that ψ has zero mean value, and the
second comes from the first and the fact that we are only interested in the region
t ≥ 1. Compute

dH

dt
= −1

t

∫
S1
ψ2
t dθ −

1
4
t−5/2

∫
S1
νψtdθ,

dΓ
dt

= −2
t
Γ +

1
2t

∫
S1

(ψ2
t − ψ2

θ)dθ − 1
8
t−7/2

∫
S1
νψdθ.

Due to (14) and the fact that t ≥ 1, we have

1
t
|Γ| ≤ 1

t2
(H + Γ).

Furthermore,∫
S1
|νψt|dθ ≤

√
2‖ν‖L2(S1,R)H

1/2,

∫
S1
|νψ|dθ ≤

√
2‖ν‖L2(S1,R)H

1/2,

where the last inequality is due to the fact that the mean value of ψ is zero. Com-
bining the above equations and inequalities, we get the conclusion that

d(H + Γ)
dt

≥ −
(

1
t

+
1
t2

)
(H + Γ)− t−5/2‖ν‖L2(S1,R)(H + Γ)1/2,

where we have used the fact that t ≥ 1. Define

(15) E = te−1/t(H + Γ).

We have
dE
dt
≥ −t1/2e−1/(2t)t−5/2‖ν‖L2(S1,R)E1/2 ≥ −t−2‖ν‖L2(S1,R)E1/2.

Let T1 ∈ [1, T ] and integrate the above inequality from T1 to T , keeping in mind
that E(T ) = 0. We get

E1/2(T1) ≤ 1
2

∫ T

T1

t−2‖ν‖L2(S1,R)dt.

Let
‖ν‖L∞L2(R+×S1,R) = sup

t∈R+

‖ν(t, ·)‖L2(S1,R).

Note that this is finite due to the fact that∫
S1

(ν2
t + ν2

θ )dθ
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is constant in time and since the L2-norm of ν is dominated by the L2-norm of νθ
due to the fact that the mean value of ν is zero. We get

E(T1) ≤ 1
4
‖ν‖2L∞L2(R+×S1,R)T

−2
1 ,

so that
H(T1) ≤ e

2
‖ν‖2L∞L2(R+×S1,R)T

−3
1 .

Note in particular that the bound is independent of T . Furthermore, the construc-
tion behaves well under differentiation of ψ with respect to θ. In fact, ∂kθψ has the
same properties as ψ, we need only replace ν with ∂kθ ν, which is of course a solution
to the wave equation. In particular, if we define

Hk =
1
2

∫
S1

[(∂kθ ∂tψ)2 + (∂k+1
θ ψ)2]dθ,

then

(16) Hk(T1) ≤ e

2
‖∂kθ ν‖2L∞L2(R+×S1,R)T

−3
1 .

Our algorithm for constructing the desired ψ is to choose a sequence Tn →∞ with
Tn ≥ 1 and then define solutions ψ(n) to (11) by demanding that the initial data be
zero at t = Tn. We then prove that [ψ(n)(1, ·), ψ(n)

t (1, ·)] form a Cauchy sequence in
any Ck norm. Finally, we let ψ be the solution to (11) defined by the corresponding
initial data. Since the sequence ψ(n) satisfies bounds of the form (16) in [1, Tn), we
get the conclusion that ψ satisfies this bound for all future times. What remains to
be done is thus to prove that the ψ(n) define a Cauchy sequence in the above sense.

Let 1 ≤ Tn ≤ Tm and define
ψ̃ = ψ(n) − ψ(m).

Note that ψ̃ satisfies (9). Let us define H̃ and Γ̃ as in (12) and (13) respectively,
but with ψ replaced with ψ̃. By arguments similar to the ones for H and Γ, we get
the conclusion that

(17)
dẼ
dt
≥ 0,

where Ẽ is defined as in (15) but with H and Γ replaced with H̃ and Γ̃. We conclude
that

H̃(1) ≤ 2eẼ(1) ≤ 2eẼ(Tn) ≤ 3eTnH̃(Tn) ≤ 3e2

2
‖ν‖2L∞L2(R+×S1,R)T

−2
n ,

where we have used the fact that H̃(Tn) is the energy of ψ(m), and the inequal-
ity (16). Note that we also have similar estimates for the derivatives. Thus the
sequence [ψ(n)(1, ·), ψ(n)

t (1, ·)] forms a Cauchy sequence in any Ck-norm. Let ψ
be the solution to (11) corresponding to the resulting smooth initial data. By the
estimate (16), we get the desired decay estimates for ψ and its derivatives, and by
construction, ψ has zero average and P defined by (6) satisfies (9).

One way to obtain uniqueness is from the results of [3] or [6], however, since the
proof is quite short, we shall write it down here. Assume that P defined by (6) with
ψ replaced by ψ2 is a solution to (9). Assume furthermore that the average of ψ2 is
zero and that its first derivatives are o(t−1/2) in L2. We conclude that ψ̃ = ψ−ψ2

is a solution to (9) and that the first derivatives are o(t−1/2) in L2. Just as before,
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we get (17). However, Ẽ ≥ 0, and due to our assumptions, Ẽ converges to zero. We
conclude that Ẽ is identically zero, i.e. that ψ = ψ2.

Finally, let us prove that (10) implies that the integral of the right hand side of (5)
is zero. Note that

c1 =
∫
S1
t(PtPθ)(t, θ)dθ, and c2 =

∫
S1

(νtνθ)(t, θ)dθ

are both independent of t due to (2) and (7) respectively, with Q = 0 in the former
case. However, due to the fact that we have (6) where ψ and its derivatives are
O(t−3/2), we get the conclusion that

tPtPθ = νtνθ +O(t−1/2).

Consequently c1 = c2 +O(t−1/2), so that c1 = c2. 2

Proof of Corollary 1. Let us introduce the notation φ = t1/4e−λ/4. The trace of
the second fundamental form of a hypersurface of constant areal time is given by

(18) trk = −1
4

(λt + 3t−1)φ.

Let us specify α = β = 0 and ν = sin θ sin t. Then condition (10) is fulfilled, so
that we get a solution to Einstein’s vacuum equations corresponding to this data
at infinity. Using (6), our choice of data and the fact that ψ and its derivatives are
O(t−3/2), we get the conclusion that

λt = ν2
t + ν2

θ +O(t−1).

Taking into account what ν is, we get the conclusion that if we let tl = lπ, θ1,l = π
and θ2,l = π/2 then

(19) λt(tl, θ1,l) = O(t−1
l ), λt(tl, θ2,l) = 1 +O(t−1

l ).

If θi ∈ S1, i = 1, 2 and t ∈ R+, then

(20)
φ(t, θ1)
φ(t, θ2)

= exp
{
−1

4
[λ(t, θ1)− λ(t, θ2)]

}
.

Note that λθ is bounded for t ≥ 1, so that the quotient (20) satisfies a uniform
upper and strictly positive lower bound for t ≥ 1. Combining this observation with
(18) and (19), we conclude that the sequences tl and θi,l, i = 1, 2 have the desired
properties. 2
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