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Abstract. Consider a globally hyperbolic cosmological spacetime. Topologi-
cally, the spacetime is then a compact 3-manifold in cartesian product with an

interval. Assuming that there is an expanding direction, is there any relation

between the topology of the 3-manifold and the asymptotics? In fact, there
is a result by Michael Anderson, where he obtains relations between the long-

time evolution in General Relativity and the geometrization of 3-manifolds.
In order to obtain conclusions however, he makes assumptions concerning the
rate of decay of the curvature as proper time tends to infinity. It is thus of

interest to find out if such curvature decay conditions are always fulfilled. We
consider here the Gowdy spacetimes, for which we prove that the decay con-

dition holds. However, we observe that for general Bianchi VIII spacetimes,
the curvature decay condition does not hold, but that some aspects of the
expected asymptotic behaviour are still true.

1. Introduction

The objects of study in this paper are cosmological spacetimes. We shall assume
them to be globally hyperbolic, so that topologically, they are of the form I ×M ,
where M is a compact 3-manifold. We shall also only consider spacetimes which
have one expanding direction, i.e. there is one time direction in which spacetime is
causally geodesically complete. The question is then, what is the relationship be-
tween the asymptotic behaviour and the topology of the compact Cauchy surfaces?
Anderson, Fischer and Moncrief have written several papers on the subject, see [2]
and [7] and the references cited therein. In the current paper, we are concerned
with questions raised in [2] regarding the relationship between the asymptotics and
geometrization. The special case of interest here is when one has a globally hy-
perbolic vacuum spacetime foliated by compact constant mean curvature (CMC)
hypersurfaces, though in the case of Gowdy, we shall also be interested in another
geometrically defined foliation. We shall assume that σ(Σ) ≤ 0 for any CMC hy-
persurface (for a definition of the σ-constant of a compact 3-manifold, see [1]) or,
in other words, that Σ does not admit a metric of positive scalar curvature, see [2].
Furthermore, we shall assume that the range of the mean curvatures attained in
the foliation exhausts the interval (−∞, 0) and that the spacetime is future causally
geodesically complete. In fact, we shall only be interested in the expanding direc-
tion, so it is enough if we the foliation exhausts the interval [H0, 0) for some H0 < 0,
and sometimes future causal geodesic completeness will be a consequence of other
assumptions. In this setting we wish to consider the behaviour of the geometry
induced on the leaves of the foliation as proper time tends to infinity. Let us recall
some definitions from [2].

1
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Definition 1.1. Let Σ be a closed, oriented and connected 3-manifold, satisfying
σ(Σ) ≤ 0. A weak geometrization of Σ is a decomposition of Σ,

(1) Σ = H ∪G,
where H is a finite collection of complete connected hyperbolic manifolds of finite
volume embedded in Σ and G is a finite collection of connected graph manifolds
embedded in Σ. The union is along a finite collection of embedded tori T = ∪Ti,
T = ∂H = ∂G. A strong geometrization of Σ is a weak geometrization as above,
for which each torus Ti in T is incompressible in Σ, i.e. the inclusion of Ti into Σ
induces an injection of fundamental groups.

For more details concerning the terminology, we refer to [2] and the references cited
therein. Graph manifolds are built by gluing together Seifert fibred spaces along
toral boundary components. Since we shall only be concerned with Seifert fibred
3-manifolds in this paper, the details of these constructions are not of any greater
importance here. Let us however define the concept Seifert fibred space.

Definition 1.2. A 3-manifold is said to be a Seifert fibred space if it satisfies the
following two conditions:

(1) It can be written as a disjoint union of circles.
(2) Each circle fibre has an open neighbourhood U satisfying:

• U can be written as a disjoint union of circle fibres,
• U is isomorphic either to a solid torus or a cylinder where the ends

have been identified after a rotation by a rational angle.

When we say that U is isomorphic to a solid torus, we mean that U is diffeomorphic
to a solid torus and that the circle fibres of U are mapped to the natural circle fibres
of the solid torus under the diffeomorphism.

Note that there are different definitions of Seifert fibred spaces in the literature. In
particular, our definition coincides with the original definition by Seifert but not
with that of Scott [14].

Since the geometry on the leaves of the foliation becomes more and more flat, it is
natural to rescale the metric in some way. Following [2], we shall use the proper
time distance to a fixed Cauchy surface in order to do so. Let Σ be a fixed Cauchy
surface and define, for an arbitrary spacetime point p,

t̂(p) = sup
γ

∫ 1

0

[−〈γ′, γ′〉]1/2ds

where the supremum is taken over timelike curves γ with γ(0) ∈ Σ and γ(1) = p and
〈·, ·〉 denotes inner product with respect to the spacetime metric. We also define

t̂(Σ′) = sup
p∈Σ′

t̂(p)

for a Cauchy surface Σ′. Let the leaves of the foliation be indexed by a parameter
s. In the case of a CMC foliation, the parameter can be chosen to be the mean
curvature of the corresponding leaf, and in the case of Gowdy, the parameter will
be the so called areal time coordinate. We are interested in the interval [s0, smax),
where s0 corresponds to some arbitrary initial hypersurface (filling the role of Σ
above) and smax corresponds to infinite expansion, i.e. smax = 0 in the CMC case
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and smax = ∞ in the case of the areal time coordinate in Gowdy. Let ĝs be the
Riemannian metric induced on the leaf Σs by the spacetime metric and define

gs = t̂−2(Σs)ĝs.

The following weak asymptotics problem was raised in [2]. Suppose that Σ is a
closed, oriented, connected 3-manifold with σ(Σ) ≤ 0. Suppose further that the
vacuum spacetime is future causally geodesically complete and that the CMC folia-
tion exhausts the future development. Then for any sequence si → smax, the slices
(Σsi , gsi) have a subsequence asymptotic to a weak geometrization of Σ. More pre-
cisely, there should be a division of Σ as in (1) and on the region H, the metrics gsi
should converge to complete hyperbolic metrics of finite volume, while on G, the
metrics collapse the graph manifold with bounded curvature. When we say that
a region collapses we mean that the injectivity radius of that region converges to
zero. If a region collapses even though the curvature remains bounded, we shall say
that is collapses in the sense of Cheeger-Gromov.

This conjecture should be compared with the work of Andersson and Moncrief [3],
Choquet-Bruhat and Moncrief [4] and Fischer and Moncrief [7]. In [3], the authors
considered the future development of perturbations of spatially compact variants
of the k = −1 Friedmann-Robertson-Walker vacuum spacetime. They proved that
the future development is covered by CMC hypersurfaces exhausting the maxi-
mal range, and that it is future causally geodesically complete. Furthermore, the
rescaled metric on the spatial hypersurfaces was shown to converge to the hyper-
bolic one. In [4], the authors considered Cauchy surfaces that have the topology of a
trivial circle bundle over a higher genus surface and they restricted their attention to
small, polarized, U(1)-symmetric data. They proved that the future development is
foliated by CMC hypersurfaces exhausting the maximal range. Furthermore, they
stated that causal geodesic completeness should hold, though they did not prove
it. However, this was shown for a larger class of spacetimes in [5], a paper which
extends the results of [4] to the non-polarized case, using the results of [6]. Finally,
they showed that the Cauchy surfaces should undergo a Cheeger-Gromov type col-
lapse. In [7], some known spatially homogeneous examples were studied and the
expected behaviour was confirmed. Note that in all the cases mentioned above,
either H = ∅ or G = ∅ in the division (1). The reason for this is the fact that all
results, as far as we are aware, can be divided into the category of small data results
and the category of results for a situation in which there is symmetry. The small
data category may seem to be more general, but since it presupposes the existence
of a symmetric solution around which to perturb, it is not more general in terms
of spatial topology. In other words, all results known require the spatial manifold
to allow a highly symmetric metric, and this reduces the number of allowed spatial
topologies.

In [2], the following statement was proved. Consider a spacetime which is the
maximal development of vacuum initial data, with σ(Σ) ≤ 0, where Σ is the initial
hypersurface, and assume that it is foliated to the future by CMC hypersurfaces
exhausting the maximum range. Assume furthermore that the curvature satisfies

(2) |R|(p) + t̂(p)|∇R|(p) ≤ C

t̂2(p)
,
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where |R|2 is defined as the sum of the squares of the components of the Riemann
curvature tensor with respect to an orthonormal frame, where the timelike unit
vector in the frame is the future oriented normal to the foliation (the definition of
|∇R|2 is similar). Then the spacetime is future causally geodesically complete and,
for any sequence si → smax, the slices (Σsi , gsi) have a subsequence asymptotic to
a weak geometrization.

Due to this theorem, it is of interest to analyze how curvature decays in expand-
ing cosmological spacetimes. In the following, we shall only consider whether the
estimate

(3) |R|(p) ≤ C

t̂2(p)
,

holds or not. In the case of Gowdy, it turns out that such an estimate holds, at least
relative to the foliation defined by the areal time coordinate. In the case of locally
rotationally symmetric Bianchi VIII, the estimate also holds, but it turns out that
for general Bianchi VIII it does not. In that case t̂(p) ln t̂(p)|R|(p) converges to a
positive number as p tends to a point in the infinite future. In fact, in the case of
general Bianchi VIII, one does not get a better estimate even if one considers the
Kretschmann scalar

(4) κ = RαβγδR
αβγδ.

It is then of interest to consider the Ricci curvature of gsi . It turns out that in
general, the Ricci curvature does not have any better decay, but that there is a
time sequence such that one does get the expected decay. This time sequence
corresponds to the metric being locally rotationally symmetric. Concerning the
topology, we have the following results. In the case of Gowdy, the topology is T 3,
and after rescaling the 3-tori collapse along 2-tori. In the Bianchi VIII case, the
topology is that of a non-trivial circle bundle over a higher genus surface. After
rescaling one obtains the conclusion that the length of the circle fibers converges to
zero.

1.1. Gowdy spacetimes. The Gowdy spacetimes is a class of vacuum spacetimes
with a two dimensional group of isometries. Of the spatial topologies compatible
with the symmetry requirements, only T 3 is expected to be compatible with infinite
expansion. For this reason, we shall only be interested in such a spatial topology
in this paper. There are natural conditions defining the Gowdy spacetimes, see [12]
and references therein, but we shall not write them down here. For the purposes of
the present paper, a Gowdy T 3 spacetime is defined as a Lorentz manifold R+×T 3,
where R+ = (0,∞), with metric

(5) g = t−1/2eλ/2(−dt2 + dθ2) + t[eP dσ2 + 2ePQdσdδ + (ePQ2 + e−P )dδ2],

where P , Q and λ only depend on t and θ, satisfying Einstein’s vacuum equations.
In terms of P , Q and λ, the equations are

Ptt +
1
t
Pt − Pθθ − e2P (Q2

t −Q2
θ) = 0(6)

Qtt +
1
t
Qt −Qθθ + 2(PtQt − PθQθ) = 0,(7)
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and

λt = t[P 2
t + P 2

θ + e2P (Q2
t +Q2

θ)](8)

λθ = 2t(PθPt + e2PQθQt).(9)

The time coordinate t appearing in (5) is called the areal time coordinate. The
reason for this is that the area of the two torus given by fixing t and θ is t. On the
other hand, the trace of the second fundamental form need not be constant on the
hypersurfaces of constant t. One might then naively expect this to approximately be
the case asymptotically. However, there are metrics of the form (5) such that there
is a time sequence tk →∞ with the property that the quotient of the maximum and
the minimum of |trktk | tends to infinity, where ktk is the second fundamental form
of the hypersurface defined by t = tk. We refer the reader to [13] for a proof of this
fact. Thus there is certainly a difference between the CMC foliation and the areal
time coordinate foliation. Since most of the analysis concerning Gowdy spacetimes
has been carried out in the areal time coordinate and since this coordinate has a
natural geometric definition, we shall however only consider this choice here. In the
end we are interested in getting estimates for the curvature. In [12], we analyzed
the asymptotics of solutions to (6)-(7). However, the analysis was not complete. In
particular, [12] only contains estimates of the first derivatives of P and Q, and this
is not sufficient for computing curvature. The first step is to remedy this situation.

Theorem 1. Consider a solution to (6)-(7). Then

(10) ‖(∂kθ ∂tP )2 + (∂k+1
θ P )2 + e2P [(∂kθ ∂tQ)2 + (∂k+1

θ Q)2]‖C0(S1,R) ≤ Ck
(ln t)2k

t
for t ≥ 2 and k ≥ 0.

Remark. The above estimates together with the equations (6)-(7) yield estimates
for the higher order derivatives involving an arbitrary number of time derivatives.
In the polarized case, i.e. when Q = 0, there is an improved estimate. In fact, one
does not need the logarithms. To see this, note that the case k = 0 of (10) was
proved in [12] and that in the polarized case, the equation remains the same under
differentiation with respect to θ.

The proof is to be found at the beginning of section 2. Define the proper time
distance between the hypersurfaces defined by t0 and t to be τ(t0, t), cf. (18).
Then the decay estimate for the curvature is as follows.

Theorem 2. Consider a metric of the form (5), where P , Q and λ satisfy (6)-(9).
Assume furthermore that P and Q are not both independent of θ for all t. Then for
every t0 > 0, there is a positive constant C(t0) and a T (t0) such that for t ≥ T (t0),

(11) |R|(t) ≤ C(t0)τ−2(t0, t),

where |R| is defined with respect to the areal time coordinate foliation.

Remark. When considering metrics of the form (5), the spatially homogeneous
solutions have a special type of behaviour. In particular, if there is some spatial
variation, λ tends to infinity linearly, but if there is no spatial variation, λ tends to
infinity logarithmically, cf. [12]. Since P cannot grow faster than logarithmically
and Q cannot grow faster than polynomially, cf. [12], it is clear that in the spatially
inhomogeneous case, the factor in front of −dt2 + dθ2 tends to infinity exponen-
tially whereas all the other factors tend to infinity at worst polynomially. In other
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words, all the expansion is in the factor in front of −dt2 + dθ2. In the spatially
homogeneous case, there is however no such clear distinction between the different
factors, since λ tends to infinity logarithmically. For this reason we focus on the
spatially inhomogeneous case and leave the homogeneous case to the reader.

The proof is to be found at the end of section 2. Finally, let us say something about
the rescaled Riemannian metric on the hypersurfaces of constant areal time. The
proof is also to be found at the end of section 2.

Proposition 1. Consider a metric of the form (5), where P , Q and λ satisfy (6)-
(9). Assume furthermore that P and Q are not both independent of θ for all t. Let
ĝt be the Riemannian metric induced on the hypersurface of constant areal time t,
and let gt = ĝt/τ

2(t0, t). Then gt is a metric on T 3, which can be written

gt = f1(t, θ)dθ2 + f2(t, θ)dδ2 + f3(t, θ)dδdσ + f4(t, θ)dσ2.

The family f1(t, ·) of functions is bounded in C1 and from below by a positive con-
stant, for t ≥ t0 + 1. For i ≥ 2, k ≥ 0 and t ≥ t0 + 1, we have the following
estimate,

‖fi(t, ·)‖Ck ≤ Ck
{ln[1 + τ(t0, t)]}αk

τ2(t0, t)
,

where αk and Ck are positive constants.

Remark. By the conclusions of the proposition and the Arzela-Ascoli theorem,
there is, for any time sequence tk →∞, a subsequence such that f1(tk, ·) converges
to a positive continuous function (the limit function will of course be Lipschitz).
Furthermore, it is clear that the metric collapses in the two-torus direction defined
by δ and σ. Finally, if it were possible to improve the estimate (10) in such a way
that the logarithms do not occur, f1(t, ·) would be bounded in any Ck norm for
t ≥ t0 + 1. In particular, in the polarized Gowdy case, we have such bounds.

1.2. Bianchi VIII. For proofs of the statements made below, we refer the reader
to [11] and the references cited therein. We define Bianchi VIII spacetimes in terms
of initial data. Bianchi VIII initial data are given by (G, g, k), where G is a Lie
group of Bianchi type VIII (to be defined below), g is a left invariant metric, k is a
left invariant symmetric two tensor and g and k satisfy the constraint equations. In
practice, G can be assumed to be the universal covering group of Sl(2,R). However,
in general, a Lie group G is said to be of Bianchi type VIII if it has a basis e′i of
the Lie algebra satisfying

[e′i, e
′
j ] = γkije

′
k,

with γkij = εijln
lk, where εijl is antisymmetric in all its indices, ε123 = 1, and nlk

is diagonal with diagonal components ni such that n1 < 0 and n2, n3 > 0. Given
initial data, there is a basis e′i satisfying the conditions of the previous sentence
such that g is orthonormal with respect to this basis and k is diagonal. We call
such a basis a canonical basis. Such bases are not unique, but it turns out that e′1
is well defined up to a sign. Let ki = k(e′i, e

′
i). Then the initial data are said to

be of NUT type if k2 = k3 and n2 = n3. Given initial data, one can construct a
globally hyperbolic Lorentz manifold (I ×G, ḡ), where I is an open interval and ḡ
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is of the form

(12) ḡ = −dt2 +
3∑
i=1

a2
i (t)ξ

i ⊗ ξi,

where the ξi are the duals of e′i, a canonical basis, and ai(0) = 1. Finally Ric[ḡ] = 0
and the Riemannian metric and the second fundamental form induced on Σ =
{0} ×G by ḡ are given by g and k, after identifying G with Σ in the obvious way.
The development is future causally geodesically complete and independent of the
canonical basis chosen. If the data are not of NUT type, the development is C2-
inextendible, in fact, the Kretschmann scalar (4) is unbounded to the past, cf. [8].
Finally, if the data are of NUT type, a2(t) = a3(t) for all t.

We can, without loss of generality, assume G to be S̃l(2,R), the universal covering
group of Sl(2,R). Since S̃l(2,R) is diffeomorphic to R3, it is of interest to know
when the geometry allows compactifications of the spatial hypersurfaces. In [11]
we showed that if Γ is a free and properly discontinuous subgroup of the isometry
group of the initial data (G, g, k), then {Id} × Γ is a free and properly discontin-
uous subgroup of the isometry group of the development. By taking the quotient,
we thus get developments such that the corresponding CMC hypersurfaces have
topology G/Γ. Furthermore, the compact manifold G/Γ must be Seifert fibred and
e′1 corresponds to the Seifert fibre direction. We also proved that a1 = l0 +O(t−1)
in the NUT case and a1(t) = c0(ln t)1/2[1 + O(ln ln t/ ln t)] in the non-NUT case.
Furthermore ai(t)/t → αi > 0 for i = 2, 3. Thus, after rescaling, the Seifert fibred
spaces collapse as expected. Note that for each p > 1, there is a subgroup Ξp of
S̃l(2,R) such that the quotient of S̃l(2,R) by Ξp (when Ξp is viewed as a group
of isometries by acting on the left) is diffeomorphic to the unit tangent bundle of
a compact orientable surface of genus p with respect to some hyperbolic metric.
Thus all initial data allow infinitely many different compactifications. However,
the following holds.

Theorem 3. Consider a Bianchi VIII spacetime. If it is of NUT type, there are
constants c0, c1 > 0 and a T > 0, such that

c0t
−3 ≤ |R|(t) ≤ c1t−3

for all t ≥ T . If it is of non-NUT type, there is a constant c0 > 0 such that

lim
t→∞

t ln t|R|(t) = c0.

Furthermore, there are constants ci > 0 and sequences ti,k →∞, i = 1, 2, such that

lim
k→∞

t2i,k(ln ti,k)2κ(ti,k) = (−1)ici,

where κ is defined in (4).

The proofs of this result and the next are to be found in section 3.

One can then ask the question if the Ricci curvature of the spatial hypersurfaces
behaves better. This turns out not to be the case in general, but there is in fact a
time sequence along which it behaves well.

Proposition 2. Consider a Bianchi VIII spacetimes which is not of NUT type.
Then there are time sequences ti,k → ∞, i = 1, 2, and positive constants ci such
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that
lim
k→∞

t21,k(ln t1,k)2(RijRij)(t1,k) = c1, t42,k(RijRij)(t2,k) ≤ c2,

where the last inequality is valid for all k, and Rij(t) denotes the Ricci tensor of
the spatial hypersurface of homogeneity defined by t, with metric induced by ḡ.

Remark. The time sequence t2,k corresponds to the induced Riemannian metric
being locally rotationally symmetric. Due to the existence of the sequence t1,k, the
conjecture embodied in the weak asymptotics problem is not correct.

2. Curvature estimates for Gowdy

The expanding direction of Gowdy spacetimes was considered in [12]. The leading
order behaviour for the functions P , Q and λ was sorted out and (10) was proved
to hold for k = 0. In this paper, we are interested in the behaviour of curvature
quantities, and thus we need to concern ourselves with the asymptotic behaviour
of higher order derivatives.

Proof of Theorem 1. By [12], we know that the conclusion holds for k = 0. Define

Ak,± =
t

2
[(∂kθ ∂tP ± ∂k+1

θ P )2 + e2P (∂kθ ∂tQ± ∂k+1
θ Q)2],

Ek(t) =
∑
±
‖Ak,±(t, ·)‖C0(S1,R).

Let us make the inductive assumption that

E1/2
m (t) ≤ Cm(ln t)m

for m = 0, ..., k − 1 and t ≥ 2. Observe that since (10) holds for k = 0, this holds
for k = 1. Compute, for k ≥ 1,

(13) (∂t ∓ ∂θ)Ak,± = I1,k,± + I2,k,±,

where

I1,k,± =
1
2
{−(∂kθPt)

2 + (∂kθPθ)
2 + e2P [−(∂kθQt)

2 + (∂kθQθ)]}

−te2P (Pt ± Pθ)[(∂kθQt)2 − (∂kθQθ)
2]

+te2P (Qt ±Qθ)[(∂kθQt ∓ ∂kθQθ)(∂kθPt ± ∂kθPθ)
−(∂kθQt ± ∂kθQθ)(∂kθPt ∓ ∂kθPθ)]

and

I2,k,± = t{∂kθ [e2P (Q2
t −Q2

θ)]− 2e2P (Qt∂kθQt −Qθ∂kθQθ)}(∂kθPt ± ∂kθPθ)

−2te2P
k−1∑
j=1

(
k
j

)
[∂jθPt∂

k−j
θ Qt − ∂jθPθ∂

k−j
θ Qθ](∂kθQt ± ∂kθQθ).

Fix θ and define γ±(u) = (u, θ ± u). For f : R+ × S1 → R, let f± = f ◦ γ±. Note
that

∂uf± = [(∂t ± ∂θ)f ]±.
Compute

(14) Ak,±[γ∓(u)] = Ak,±[γ∓(u0)] +
∫ u

u0

[(∂t ∓ ∂θ)Ak,±]∓(t)dt.



ON CURVATURE DECAY IN EXPANDING COSMOLOGICAL MODELS 9

Note that we have (13) and that each of the terms in I1,k,± ◦ γ∓ can be written,
disregarding numerical factors, as a sum of terms of the form

f1∓f2∓∂uf3∓.

Here, the possibilities for f1 are

(15) 1, e2P , ue2P (Pu ± Pθ), ue2P (Qu ±Qθ),
the corresponding estimates for |f1| and |∂uf1∓| being, respectively,

1, Ce2P , Cu1/2e2P , Cu1/2eP and 0, Cu−1/2e2P∓ , Ce2P∓ , CeP∓ ,

where we have used (6)-(7) and the fact that (10) holds for k = 0. The possibilities
for f2 are

(16) (∂u ± ∂θ)∂kθP, (∂u ± ∂θ)∂kθQ,
the corresponding estimates for |f2| and |∂uf2∓| being, respectively
(17)

u−1/2E
1/2
k , u−1/2e−PE

1/2
k and u−1E

1/2
k +

(lnu)k

u
, e−P∓

[
u−1E

1/2
k +

(lnu)k

u

]
,

up to numerical factors. The reason for the latter is that

∂u[(∂u ± ∂θ)∂kθP ]∓ = [∂kθ (Puu − Pθθ)]∓ =
{
− 1
u
∂kθPt + ∂kθ [e2P (Q2

t −Q2
θ)]
}
∓
.

The first term on the right hand side satisfies a better estimate than the second to
last expression in (17), and the terms resulting from the second term when at least
one derivative hits the factor e2P are also better. What remains to be considered
are terms of the form

[e2P (∂j1θ Qt∂
j2
θ Qt − ∂

j1
θ Qθ∂

j2
θ Qθ)]∓,

where j1 + j2 = k. These terms can be estimated by the second to last expression
in (17) due to the induction hypothesis. The argument for the second possibility
for f2 is similar. The possibilities for f3 are ∂kθP, ∂

k
θQ, and the corresponding

estimates for |f3| are
(lnu)k−1

u1/2
, e−P

(lnu)k−1

u1/2

due to the induction hypothesis (note that k ≥ 1). Consider∫ u

u0

I1,k,± ◦ γ∓(t)dt.

Up to numerical factors, this integral can be written as a sum of terms of the form∫ u

u0

f1∓f2∓∂tf3∓dt = [f1∓f2∓f3∓]uu0
−
∫ u

u0

[∂tf1∓f2∓f3∓ + f1∓∂tf2∓f3∓]dt.

Note that not all combinations occur and that when taking the products, all factors
of eP in the estimates cancel. Using the definition of I1,k,± and the estimates written
down above, we get∣∣∣∣∫ u

u0

I1,k,± ◦ γ∓(t)dt
∣∣∣∣ ≤ C + C

(lnu)k−1

u1/2
E

1/2
k (u)

+C
∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) +

(ln t)2k−1

t

]
dt.
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Let us turn to I2,k,±. Up to numerical factors, the first term can be written as a
sum of terms of the form

t∂j1θ P · · · ∂
jl
θ Pe

2P (∂m1
θ Qt∂

m2
θ Qt − ∂m1

θ Qθ∂
m2
θ Qθ)(∂kθPt ± ∂kθPθ),

where ji ≥ 1, mi ≤ k − 1 and j1 + · · · + jl + m1 + m2 = k. Using the induction
hypothesis, this can be estimated by

C
(ln t)k−l

t(l+1)/2
E

1/2
k (t).

If l ≥ 1, this estimate is as good as what we already have, so let us consider terms
of the form

te2P (∂m1
θ Qt∂

m2
θ Qt − ∂m1

θ Qθ∂
m2
θ Qθ)(∂kθPt ± ∂kθPθ),

where m1 +m2 = k but mi ≤ k − 1. Note that

∂m1
θ Qt∂

m2
θ Qt − ∂m1

θ Qθ∂
m2
θ Qθ =

1
2

[(∂m1
θ Qt ± ∂m1

θ Qθ)(∂m2
θ Qt ∓ ∂m2

θ Qθ)

+(∂m1
θ Qt ∓ ∂m1

θ Qθ)(∂m2
θ Qt ± ∂m2

θ Qθ)].

In other words, we need only concern ourselves with terms of the form

te2P (∂m1
θ Qt ± ∂m1

θ Qθ)(∂m2
θ Qt ∓ ∂m2

θ Qθ)(∂kθPt ± ∂kθPθ).

We can then argue as before, with f1 = te2P (∂m1
θ Qt±∂m1

θ Qθ), f2 = (∂kθPt±∂kθPθ)
and f3 = ∂m2

θ Q. Note that since m1 + m2 = k and mi ≤ k − 1, we have mi ≥ 1.
The arguments for the remaining terms in I2,k,± are similar, and by (13) we get∫ u

u0

[(∂t ∓ ∂θ)Ak,±]∓(t)dt ≤ C + C
(lnu)k−1

u1/2
E

1/2
k (u)

+C
∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) +

(ln t)2k−1

t

]
dt.

Taking the supremum of the right hand side in (14), we thus get

Ak,±[γ∓(u)] ≤ ‖Ak,±(u0, ·)‖C0(S1,R) + C + C
(lnu)k−1

u1/2
E

1/2
k (u)

+C
∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) +

(ln t)2k−1

t

]
dt.

Taking the supremum of the left hand side (note that there is a θ hidden in γ±)
and adding the two estimates, we get

Ek(u) ≤ C + C
(lnu)k−1

u1/2
E

1/2
k (u)

+C
∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) +

(ln t)2k−1

t

]
dt.

Note that

C
(lnu)k−1

u1/2
E

1/2
k (u) ≤ 1

2
C2 (lnu)2k−2

u
+

1
2
Ek(u).

Defining
Êk(u) = Ek(u) + (lnu)2k,
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we thus get the estimate

Êk(u) ≤ C + C

∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) +

(ln t)2k−1

t

]
dt

≤ C + C

∫ u

u0

(ln t)k−1

t
Ê

1/2
k (t)dt.

By a Grönwall’s lemma type argument, we conclude that

Êk(u) ≤ Ck(lnu)2k

for u ≥ u0. This completes the induction proof. 2

Before we come to the curvature estimate, let us define

(18) τ(t, t0) = sup
γ

∫ t

t0

[−〈γ′(s), γ′(s)〉]1/2ds,

where the supremum is taken over smooth timelike curves γ(s) = [s, x(s)] where x
takes values on T 3. Note that for an arbitrary smooth timelike curve joining the
hypersurface corresponding to t0 with the hypersurface corresponding to t, one can
change the parameterization so that it is of the above mentioned form.

Proposition 3. Consider a metric of the form (5), where P , Q and λ satisfy (6)-
(9). Assume furthermore that P and Q are not both independent of θ for all t.
Given t0 > 0 there are positive constants c(t0) and C(t0) such that for t ≥ t0 + 1,

(19) c(t0)t−1/4e〈λ〉(t)/4 ≤ τ(t, t0) ≤ C(t0)t−1/4e〈λ〉(t)/4.

Proof. Note that since (10) holds for k = 0, |λθ| is bounded to the future, and
consequently,

(20) |λ(t, θ)− 〈λ〉(t)| ≤ C(t0)

for t ≥ t0. Let us estimate

t1/4e−〈λ〉(t)/4
∫ t

t0

[−〈γ′(s), γ′(s)〉]1/2ds

≤
∫ t

t0

(
t

s

)1/4

exp{[λ(s, θ(s))− 〈λ〉(t)]/4}ds

≤ C(t0)
∫ t

t0

(
t

s

)1/4

exp{[〈λ〉(s)− 〈λ〉(t)]/4}ds.

However, by Theorem 1.6 of [12] we have

(21) |〈λt〉(t)− c0| ≤ C(t0)t−1

for t ≥ t0, where c0 > 0, assuming the solution is not independent of θ. Thus

〈λ〉(s)− 〈λ〉(t) ≤ −c0(t− s) + C(t0) ln
t

s
.
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We conclude that

t1/4e−〈λ〉(t)/4
∫ t

t0

[−〈γ′(s), γ′(s)〉]1/2ds

≤ C(t0)
∫ t

t0

(
t

s

)α(t0)

exp[−c0(t− s)/4]ds

= C(t0)
∫ 1

t0/t

u−α(t0) exp[−c0t(1− u)/4]tdu.

If t ≤ 2t0, this integral is bounded. If t ≥ 2t0 we can divide the integral into two
parts. Let us estimate∫ 1

1/2

u−α(t0) exp[−c0t(1− u)/4]tdu ≤ 2α(t0)

∫ 1

1/2

exp[−c0t(1− u)/4]tdu ≤ 4
c0

2α(t0).

We also have∫ 1/2

t0/t

u−α(t0) exp[−c0t(1− u)/4]tdu ≤ 4
c0

(
t

t0

)α(t0)

exp[−c0t/8]

which is bounded by a constant depending on t0. Note that the constants involved
in the arguments above are independent of the curve γ. Thus

τ(t, t0) ≤ C(t0)t−1/4e〈λ〉(t)/4.

In order to get the opposite inequality, consider the curve γ(s) = (s, x0) where x0

is a fixed point on T 3. We get

t1/4e−〈λ〉(t)/4
∫ t

t0

[−〈γ′(s), γ′(s)〉]1/2ds =
∫ t

t0

(
t

s

)1/4

exp{[λ(s, θ0)− 〈λ〉(t)]/4}ds

≥ c(t0)
∫ t

t0

exp{[〈λ〉(s)− 〈λ〉(t)]/4}ds

where c(t0) is a positive constant. Assuming t ≥ t0 + 1, we can use (21) to prove
that ∫ t

t0

exp{[〈λ〉(s)− 〈λ〉(t)]/4}ds ≥
∫ t

t−1/2

exp{[〈λ〉(s)− 〈λ〉(t)]/4}ds

≥ c(t0) > 0.

The proposition follows. 2

Proof of Theorem 2. Note that there is no loss of generality in choosing the vectors
orthogonal to e0 to be

e1 = t1/4e−λ/4∂θ, e2 = t−1/2e−P/2∂σ, e3 = t−1/2eP/2(−Q∂σ + ∂δ).

It will be convenient to introduce the notation φ = t1/4e−λ/4. Note that

(22) c(t0) ≤ φ(t, θ)τ(t0, t) ≤ C(t0)

for t ≥ t0 + 1 and θ ∈ S1 due to (20) and (19). Let Γαβγeα = ∇eβeγ . Then

〈Reµeνeα, eβ〉 = eν(Γδµα)ηδβ − eµ(Γδνα)ηδβ + ΓδµαΓκνδηκβ − ΓδναΓκµδηκβ

+ηδβγκµνΓδκα,

where η is the Minkowski metric and where [eα, eβ ] = γκαβeκ defines γκµν . The above
formulas indicate what sign conventions we are using. One can check that all the
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terms except eν(Γδµα)ηδβ−eµ(Γδνα)ηδβ can be estimated by φ2. Furthermore, due to
the estimate (10), one sees that the only problem consists in second derivatives of λ.
However, one can check that these derivatives only occur in the combination λtt−λθθ
which is O(t−1/2) due to (10) and the equations. This proves that |R| ≤ Cφ2, which
together with (22) proves (11). 2

Proof of Proposition 1. Using the notation of the previous proof, f1 = φ−2τ−2(t0, t).
Due to (22), we conclude that f1(τ, ·) is bounded from above and from below by
positive constants. Since λθ is bounded, due to (10) for k = 0, ∂θf1 is bounded.
The conclusions concerning f1 follow. Note that if we had an estimate of the form
(10) without the logarithms, ∂kθλ would be bounded to the future for any k ≥ 1,
and consequently f1(t, ·) would be bounded in any Ck norm for t ≥ t0 + 1. Due
to the results of [12], P does not grow faster than logarithmically and Q does not
go to infinity faster than polynomially. Combining this information with (10), we
conclude that ∂kθP converges to zero for any k ≥ 1 and that ∂kθQ does not grow
faster than polynomially. Due to (19) and the fact that 〈λ〉 = c0t+O(ln t), where
c0 > 0, cf. (21), we conclude that for large t, t and ln[1 + τ(t0, t)] are equivalent.
Adding these pieces together, we get the conclusions of the proposition. 2

3. Bianchi VIII

In this section we prove Theorem 3 and Proposition 2. The results necessary in
order to carry out the computations are all taken from [11]. However, we refer the
reader to [10] and the appendices of [9] for more details on curvature computations
in the current setting.

Proof of Theorem 3. Let e0 = ∂t and ei = (ai)−1e′i (no summation) for i = 1, 2, 3,
with terminology as in subsection 1.2. Let Greek indices range from 0 to 3 and
Latin indices from 1 to 3. Define [eα, eβ ] = γδαβeδ. Due to the form (12) and the
fact that e′i is a canonical basis, we have γ0

ij = γ0
0i = 0. Furthermore, we can define

n, θ and k by

γkij = εijln
lk, γi0j = −θij and k(ei, ej) = 〈∇eie0, ej〉.

Then nlk is diagonal, and the diagonal components will be denoted by ni. Fur-
thermore θij is diagonal, and coincides with −k(ei, ej). In what follows, we shall
raise and lower Latin indices with δij , and we shall consequently not be very careful
when it comes to indices being upstairs or downstairs. Let θ denote the trace of θij
and let σij be the traceless part. Since θ is never zero in the case of Bianchi VIII,
cf. Lemma 21.5 of [9], we can define

Σij =
σij
θ
, Ni =

ni
θ
, Σ+ =

3
2

(Σ22 + Σ33), Σ− =
√

3
2

(Σ22 − Σ33).

The relevant curvature quantities can be written

κ = RαβγδR
αβγδ = 8(EijEij −HijH

ij), |R|2 = 8(EijEij +HijH
ij)
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where

Eij =
1
3
θσij −

(
σ k
i σkj −

1
3
σklσ

klδij

)
+ sij

Hij = −3σk(inj)k + nklσ
klδij +

1
2

tr(n)σij

sij = bij −
1
3

tr(b)δij

bij = 2n k
i nkj − tr(n)nij ,

cf. p. 19 and p. 40 of [15]. Note that Eij and Hij define diagonal traceless
matrices. In order to relate these expressions to the variables defined above, it will
be convenient to define H̃i = Hii/θ

2, Ẽi = Eii/θ
2. Then

H̃1 = N1Σ+ +
1√
3

(N2 −N3)Σ−

H̃2 = −1
2
N2(Σ+ +

√
3Σ−) +

1
2

(N3 −N1)
(

Σ+ −
1√
3

Σ−

)
Ẽ2 − Ẽ3 =

2
3
√

3
Σ−(1− 2Σ+) + (N2 −N3)(N2 +N3 −N1)

Ẽ2 + Ẽ3 =
2
9

Σ+(1 + Σ+)− 2
9

Σ2
− −

2
3
N2

1 +
1
3

(N2 −N3)2 +
1
3
N1(N2 +N3).

Note that all other components of Ẽi and H̃i can be computed from this due to the
fact that Eij and Hij both define traceless matrices.

Let us consider the case when the initial data are of NUT type. The relevant
statements concerning the asymptotics are then to be found on pp. 1955–1956 of
[11]. In this case Σ− = 0, N2 = N3 and∣∣∣∣Σ+ −

1
2

∣∣∣∣+
∣∣∣∣(N1N2)(τ) +

1
4

∣∣∣∣+
∣∣∣N2e

−3τ/2 − cN
∣∣∣ ≤ Ce−3τ/2

for some positive constants cN and C and for τ ≥ 0. Furthermore, there are positive
constants cθ, C such that ∣∣∣∣ 1

θ(τ)
− cθe3τ/2

∣∣∣∣ ≤ C
for τ ≥ 0. Finally, t and τ are related through

|t(τ)− 2cθe3τ/2| ≤ C(1 + τ)

for all τ ≥ 0. We conclude that H̃i and Ẽi are all O(e−3τ/2) = O(θ). We conclude
that |R|2 = O(θ6) = O(t−6). This proves the upper bound in the theorem. In order
to prove the lower bound, we need only observe that

lim
t→∞

tH̃1 = − cθ
4cN

6= 0.

Let us consider the general case. The necessary information is contained in Propo-
sition 6, Corollary 7 and Corollary 8 of [11]. Note that in these results,

h := Σ2
− +

3
4

(N2 −N3)2, v := −N1(N2 +N3)− 1
2
, u := Σ+ −

1
2
.

We have

(23) Σ2
− +

3
4

(N2 −N3)2 =
1
4τ

+O

(
ln τ
τ2

)
, Σ+ =

1
2

+O(τ−1)
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and

N1(N2 +N3) = −1
2

+O(τ−2).

By (82) of [11], we also have

(24) N2 = cNτ
−3/4e3τ/2

[
1 +O

(
ln τ
τ

)]
for some positive constant cN . In combination with the above equations, this proves
that N1 converges to zero exponentially. In view of the above equations, we have

H̃1 = O(τ−1),

H̃2 = −1
2
N2(Σ+ +

√
3Σ−) +

1
2
N2

(
Σ+ −

1√
3

Σ−

)
+O(τ−1/2)

= − 2√
3
N2Σ− +O(τ−1/2),

Ẽ2 − Ẽ3 = 2N2(N2 −N3) +O(τ−1)

Ẽ2 + Ẽ3 = O(τ−1).

Thus

θ−4|R|2 = 8
[

3
2

(Ẽ2 + Ẽ3)2 +
1
2

(Ẽ2 − Ẽ3)2 + H̃2
1 + H̃2

2 + (H̃1 + H̃2)2

]
= 8[2N2

2 (N2 −N3)2 +
8
3
N2

2 Σ2
− +N2O(τ−1)]

=
64
3
N2

2 [Σ2
− +

3
4

(N2 −N3)2 +N−1
2 O(τ−1)].

Taking (23) into account, we conclude that

(25) lim
τ→∞

τN−2
2 θ−4|R|2 =

16
3
.

On p. 1972 of [11], it is shown that there is a positive constant αθ such that

1
θ

=
αθ
τ1/4

e3τ/2

[
1 +O

(
ln τ
τ

)]
, t =

2αθ
τ1/4

e3τ/2

[
1 +O

(
ln τ
τ

)]
.

Combining this with (24), we conclude that there are positive constants ci, i =
1, 2, 3, such that

lim
τ→∞

t−2(τ)τN2
2 (τ) = c1, lim

τ→∞
t(τ)θ(τ) = c2, lim

τ→∞
τ [ln t(τ)]−1 = c3.

Combining this with (25), we conclude that there is a positive constant c0 such that

lim
t→∞

t ln t|R|(t) = c0.

Since there are sequences τi,k → ∞, i = 1, 2, such that Σ−(τ1,k) = 0 and (N2 −
N3)(τ2,k) = 0, cf. [11], the conclusions concerning the Kretschmann scalar follow
by similar arguments. 2

Proof of Proposition 2. Let Ric denote the Ricci curvature of a spatial hypersurface
of homogeneity. One can compute that

Ric(ei, ej) = 2niknkj − tr(n)nij − nklnklδij +
1
2

[tr(n)]2δij ,
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with terminology as in the proof of Theorem 3. Let Ri = Ric(ei, ei). We get

θ−2R1 =
1
2
N2

1 −
1
2

(N2 −N3)2, θ−2R2 =
1
2
N2

2 −
1
2

(N1 −N3)2

and similarly for R3. We see that θ−2R1 tends to zero and that

θ−2R2 =
1
2

(N2 +N3)(N2 −N3)− 1
2
N2

1 +N1N3.

The statement concerning R3 is similar. Note that there are time sequences τi,k →
∞, i = 1, 2, such that

lim
k→∞

(N2 −N3)(τ1,k)τ1/2
1,k = c0,

for some positive constant c0, and such that (N2 − N3)(τ2,k) = 0. Once one has
made the above observations, the argument is similar to the end of the proof of
Theorem 3. 2
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