
Topology, geometry and the Einstein
flow

• Objects of study

• Questions

• Some basic topology/geometry

• Classification of 3-manifolds by geometry

• Connections with the expanding direction

of cosmological spacetimes
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Cosmological vacuum spacetimes

Definition 1 A cosmological vacuum space-

time is a globally hyperbolic Lorentz mfd with

Ric = 0 and compact spatial Cauchy surfaces.

Definition 2 A Lorentz mfd is globally hyper-

bolic if and only if there is a hypersurface Σ such

that all inextendible causal curves intersect Σ

exactly once.

The topology of a globally hyperbolic space-

time is I ×Σ, where I is an interval.

Expanding direction: there is a causally geodesi-

cally complete direction.
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Questions

Does the Einstein evolution in some sense ho-

mogenize and isotropize?

Are there attractors of the Einstein flow?

Note that some of these questions only make

sense with respect to a foliation. Unless oth-

erwise specified, I will have a constant mean

curvature (CMC) foliation in mind.
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Characterizing topology by geometry

Dream: Given that a manifold admits a Rie-

mannian metric, and that this metric has cer-

tain local properties, I would like to determine

the manifold up to diffeomorphism.

Problem 1: R
2 and R

2 − {0} with the stan-

dard metrics are the same locally, but they’re

topologically not the same.

Solution 1: R2 − {0} is not geodesically com-

plete. There are geodesics which end artifi-

cially at the origin.

Problem 2: Consider R with the standard met-

ric, and the Riemannian manifold obtained by

identifying points at integer distance from each

other in this manifold (i.e. S1).

Solution 2: Demand simple connectedness.
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Basic topology

Definition 3 A manifold M is said to be sim-

ply connected if any loop, i.e. continuous func−
tion γ : [a, b]→M , γ(a) = γ(b), can be continu−
ously deformed to a point, i.e. there is a cont−
inuous

F : [a, b]× [0,1]→M, F (t,0) = γ(t),

F (t,1) = γ(a), F (0, s) = F (1, s) = γ(a).

Ex: Sk, k ≥ 2 and R
n are simply connected.

S1, R2 − {0} and Tn are not.

5



Universal covering space

Given M , there is an M̃ and a map π : M̃ →M

(covering map):

• M̃ is simply connected

• Given p ∈ M , there is an open U 3 p such

that π−1(U) = ∪αUα, with different Uα dis-

joint and π|Uα a diffeomorphism to U

M̃ is called the universal covering space.

Ex: The universal covering space of S1 is R,

and the covering map π : R→ S1 is given by

π(t) = e2πit.
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Deck transformations

Let M̃ be the universal covering space of M

and π be the covering projection.

Definition 4 A deck transformation is a diffeo−
morphism φ of M̃ such that π ◦ φ = π.

Ex: φn(x) = x+ n acting on R.

The deck transformations form a nice group of

diffeomorphisms Γ.

Conversely, given Γ (nice) acting on M̃ (simply

connected), there is an M and a π such that

M̃ is the universal covering space of M with

covering projection π.

Notation: M = M̃/Γ. Ex. S1 = R/Z.
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Connections to standard cosmology

Topology: I ×Σ, Σ(t) = {t} ×Σ.

Isotropy etc. → Σ(t) has constant curvature,

i.e. 3Rabcd = Khc[ahb]d, K constant.

Theorem 1 If (Σn, g) is a connected, simply

connected and geodesically complete Rieman-

nian mfd of constant curvature, then (Σn, g)

is isometric to hyperbolic n-space, Rn or the

n-sphere.
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Compact, orientable 2-mfds

Classification strategy:

• Each orientable, compact 2-dimensional mfd

M has a constant scalar curvature metric

• ⇒ M̃ is R2, S2 or H2

• Classify the nice subgroups of the isometry

group
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3-mfds?

In the 3-dim case, there are eight “canonical”

geometries - the Thurston geometries. Univer-

sal covers: R3, S2 × R and S3 (topologically).

For topological reasons, most manifolds will

not allow a geometry.

Idea: cut the manifold into pieces, each of

which allows a canonical geometry.
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Connected sum

M1, M2, n-mfds. Cut out n-balls in each of

them and glue them together along the bound-

ary. Result: connected sum of M1 and M2,

denoted

M1#M2.

Note: S3 special.

A 3-mfd is prime if it is not the 3-sphere and

cannot be written as a non-trivial connected

sum of closed 3-mfds.
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Prime decomposition

Theorem 2 Let M be a closed, oriented 3-

mfd, which is not S3. Then M has a finite

decomposition as a connected sum

M = M1# · · ·#Mk,

where each Mi is prime. The collection {Mi}
is unique up to permutation of the factors.

A 3-mfd M is irreducible if every smoothly em-

bedded 2-sphere in M bounds a 3-ball.

Fact 1: Irreducible ⇒ prime.

Fact 2: Prime+orientable⇒ irreducible or S2×
S1.
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Prime decomposition - geometries

If M is not S3, then

M = (K1# · · ·#Kp)#(L1# · · ·#Lq)#(#r
1S

2×S1)

Ki: closed, irreducible, aspherical.

Li: closed, irreducible, finitely covered by ho-

motopy 3-spheres.

A Thurston geometry - universal covering space

R
3, S3 or S2 × R

R
3 → only one Ki factor.

S3 → S3 or only one Li factor.

S2 × R→ S2 × S1.
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Seifert fibred spaces

A 3-manifold is said to be a Seifert fibered

space if it satisfies the following two condi-

tions:

1. It can be written as a disjoint union of cir-

cles;

2. Each circle fiber has an open neighbour-

hood U satisfying:

• U can be written as a disjoint union of

circle fibers,

• U is isomorphic either to a solid torus

or a cylinder where the ends have been

identified after a rotation by a rational

angle.
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Geometrization of a K factor

Conjecture:

K = H ∪ S,

where H is a finite collection of complete con-

nected hyperbolic mfds of finite volume em-

bedded in K, and S is a finite collection of

Seifert fibered spaces. The union is along 2-

tori in some canonical way.
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Topology - Bianchi

If M is not S3, then

M = (K1# · · ·#Kp)#(L1# · · ·#Lq)#(#r
1S

2×S1)

Bianchi:

Kantowski-Sachs: S2 × S1.

IX: S3 or quotient.

V, VIIh: hyperbolic.

VI0 (Sol): Graph.

Rest: Seifert fibered.
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Cosmology, setup

Consider a cosmological vacuum spacetime (M, g)

with a Cauchy surface Σ.

Assume that the prime decomposition of Σ

consists of one K factor.

Assume there is a CMC foliation exhausting

the interval [H0,0).
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Geometry of the leaves

Στ - hypersurface of constant mean curvature

τ .

ĝτ - Riemannian metric induced on Στ .

One expects the volume of (Στ , ĝτ) to tend to

infinity and the metric ĝτ to become more and

more flat.

Solution: Rescale.
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Rescaling

Σ fixed Cauchy surface.

t̂(Στ) = sup
γ

∫ 1

0
[−〈γ′, γ′〉]1/2ds,

where the supremum is taken over all timelike

curves γ with γ(0) ∈ Σ and γ(1) ∈ Στ .

Define

gτ = t̂−2(Στ)ĝτ .

The foliation is I ×Σ, and I will identify Στ =

{τ} ×Σ with Σ.

Object of study:

(Σ, gτ).
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Conjecture

Conjecture: Σ = K can be written as Σ =

H ∪ S, where

• On each component of H, gτ converges

to a complete hyperbolic metric of finite

positive volume.

• On S, gτ collapses in the sense that the

volume of S with respect to gτ converges

to zero, and the length of the circle fibers

tends to zero.
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Cf. Collins and Hawking

Collins and Hawking (1973):

“We show that the set of spatially homoge-

neous cosmological models which approach isotropy

at infinite times is of measure zero in the space

of all spatially homogeneous models.”

General spatially homogeneous cosmological mod-

els: VIh, VIIh, VIII and IX.
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Support?

Lars Andersson and Vincent Moncrief consid-

ered perturbations of initial data corresponding

to a spacetime of the form:

ḡ = −dt2 + t2γ, M̄ = (0,∞)×M

where (M,γ) is a compact hyperbolic mfd.

For small data:

1) Future global foliation by CMC hypersur-

faces and future causal geodesic completeness.

2) After rescaling, the metric and second fun-

damental form converge to the corresponding

objects for the standard model.
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U(1)

Yvonne Choquet-Bruhat and Vincent Moncrief

considered a situation in which one has U(1)

symmetry. Topology:

Σ× U(1)× R,

Σ compact higher genus surface. For small

data with U(1) symmetry:

1) Future global CMC foliation and future causal

geodesic completeness.

2) Collapse of the circle fibers after rescaling.
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T3-Gowdy

The Gowdy spacetimes with T3 topology have

a U(1)× U(1) isometry group.

1) Future global existence in CMC and areal

time coordinate and future causal geodesic com-

pleteness.

2) Collapse of the Seifert fibres (in fact col-

lapse along 2-tori) and collapse of the volume

in the areal time coordinate.
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Conclusions

• There is a general picture for the expanding

direction of cosmological spacetimes if the

spatial topology is a simple K-factor.

• Everything known to me fits into this pic-

ture.

• The methods available makes the study of

most topologies impossible at this time.
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