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ABSTRACT. Given a bounded domain Q C R" x (0, 00) and an L
-function p > 0 with compact support (C Q). Assume that there
exists a function u, satisfying the following overdetermined (free)
boundary value problem

div(|Vul[P~2Vu) — Dyu = —p(z, t) in Q,

u=0 on 90 N {t > 0},
—Ou/ov =1 on 9N N {t > 0},
u(z,0) = f(z),

where 1 < p < oo, f € C°(R") and v is the spatial outward unit
normal vector on 92.

Under certain geometrical conditions we prove that the above
problem has at most one solution (u, ), if any at all.

1. INTRODUCTION

1.1. Problem setting. In this paper we consider a free boundary
problem of p-parabolic type related to heat combustion with power
law nonlinearity. Our purpose is to obtain some uniqueness results
inforced by geometric features of solutions of our problem. Let us
denote R := R™ x (0,00) and consider the following question: For
a given bounded function p > 0, and f € C°(R") find and describe
properties of a domain ) C RTI and a function

u € C(0,T; L*(R™)) N LP(0, T; WP (R™))

(see [D; page 2 and 7| for a definition of these spaces), satisfying the
following overdetermined boundary value problem

Apu — Dyu = —p(z, t) in ,

u=0 on 0Q N {t > 0},
(1.1) —O0u/ov =1 on 0Q N {t > 0},

u(z,0) = f(z),

suppu C €2,
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where

Apu = div(|VulP~*Vu), (1<p<o0),
is the p-Laplace operator and v is the spatial outward unit normal
vector on 9f) (we assume 0f) to be C! in spatial direction). Here the
differential equation is in the following weak sense: For all T > 0 and
any function

v e WH(0,T; L*(R")) N LP(0, T; W, P(R"))
(see [D; page 2 and 7] for a definition of these spaces)

//(|Vu|p_2Vu - Vv — uDw)dzdt — / Jvdx
Q Qn{t=0}

=/ |Vu\p2vd0(cosoz)+//;w dz dt,
29N{R % (0,7} 0

where do is the area element on Q2N {R" x (0,7)} and « is the angle
formed by the outward normal v(z,t) at a point (z,t) € 0Q N {R" x
(0,7)} and the hyperplane R” x {t¢}.

The questions of existence, uniqueness and regularity of solutions to
several related problems have been studied by many authors during few
years. In particular, when p = 2, u = 0, and u > 0, the existence of
weak solutions has been proven in [C-V]. The equation Au+ ) a;u,, —
u; = 0 was studied in [L-V-W], and some uniqueness results were shown
under certain conditions. Similar results are known in the elliptic case.
When the operator is the ordinary Laplacian one can find in [GS] and
[Sh] some results concerning the existence of solutions, depending on
p. In addition, some uniqueness results have been obtained in [H-S1]
and [H-S2] for p-Laplacian (1 < p < 00).

In this paper we’ll apply some of the techniques from those papers,
adopted and modified for the current purposes. Let us recall the impor-
tant details of the methods, used in this paper: 1) A Strong comparison
principle, and 2) Hopf boundary point lemma. For 1) we note that a
Strong comparison principle doesn’t hold for singular/degenerate oper-
ators, such as the p-parabolic one (see for instance [B]). However, in our
situation we can use boundary gradient condition in (1.1), which forces
the equation to be nondegenerate in a local sense near the boundary.
Therefore, a local Strong comparison principle holds.

In this paper we will not consider the question of existence or regu-
larity of solutions to (1.1). We only analyze the question of uniqueness
of the solutions, provided they exist. By imposing geometric condi-
tions, such as convexity in space and monotonicity (in time direction)
of the domains, we will be able to prove some uniqueness results for
our problem.
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2. MAIN RESULT

2.1. In this section we state and prove our main result.

First we need some notations: We set Q;(7) := ; N {t = 7} and
throughout this paper we assume Q(7) N Qy(7) (for 7 > 0) to be
convex, ) to be C! in spatial direction. For a point

(z', 1) € Qi(t) NOY(t), (i #7345 =1,2)
we denote by ITI(z!, t!) the supporting plane to Q; (})NQ (¢1) at (z!, ).
We also set ITT(z', #!) to be the n-dimensional half-space in R**! that
has II(z', ¢) as its boundary and such that it doesn’t intersect the set
Q (1) N Qy(th).

Let us notice that in this paper each (2; is assumed to be non-
decreasing in t, i.e. ;(t1) C Q;(t2), when t; < t5.

For a bounded domain ) C R" and for 7" > 0 we will denote by
Q7 the cylindrical domain @ x (0,7). We also define the parabolic
boundary 3,9 of a domain  C R*** to be the set of all points (z,t) €

09 such that for any € > 0, the cylinder B(z,¢) X (—¢ + ¢, ) contains
points not in 2.

Theorem 2.1. Let i1 > 0 be a bounded function with compact support
and suppose that functions u; € C(0,T; L*(R™)) N LP(0,T; WHP(R™))
(1 <p <oo;j=1,2) are solutions to (1.1), and Q;(1) bounded, for
all 7 > 0. Assume moreover that each €); is non-decreasing in t, then
the following hold

a) If Q1 (1) is convex for all T > 0, then Qy C Q4.

b) If Q1(1) N Qy(7) is convex for all T > 0, then Qy = Q.

c¢) If both Qi (1) and Qa(7) are convex for all T > 0, then Qy = Qo
and u; = us.

It is known, that condition (1.1) implies that u;(x,t) are Cp* N
CP%(Q;) (for some 0 < o < 1, j = 1,2); see [D].

Some Lemmas. In this paper we will repeatedly use the following
lemma.

Lemma 2.2. Let Qr C Rﬁ“ be a cylindrical domain, and vi,vy €
C(0,T; L*(Q7)) N LP(0,T; WP(Q7)); Qr C Qf, with

(21) Apvl - Dt’l)l S AP’UQ — DtUQ m QT-

Then the following hold:
a) (The Weak Comparison Principle) If vi > vy on 0,Qr then
v, > U in Qr.
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b) (Hopf’s Comparison Principle) Suppose vi > vy in Qr, v1 (o, 1) =
vo(Zo, to) for some (z9, o) € 0,Qr. If in addition |Vuvy| > 0 in Qr, then

ov v . .
8—1(320, ty) < a—z(aco, to), where v is the unit outward normal vector on
v v

GQT, at (x(),to).
c¢) (Strong Comparison Principle) If v; > vy, v1 Z vy on 0,Qr and
|Vug| > 0 in Qr, then vy > vy in Qr.

The proofs of propositions a)-c¢) of Lemma 2.2 are similar to the
elliptic case (see [T], Lemma 3.2, Propositions 3.3.1, 3.3.2) and one
can obtain those by appropriate changes. However, for the reader’s
convenience we give exact references for the proofs: Weak comparison
principle is proven in [D], p. 160, Lemma 3.1. Hopf’s and Strong
comparison principles can be found in [A-G], Lemma 2.1 and Lemma
1.1.

Remark 2.3. Tt is crucial that the relation |Vwvy| > 0 holds for the
function ve. In our applications of this lemma we will always consider
a small subdomain with (z, %) on its boundary. Since the magnitude
of the gradient of any solution to (1.1) approaches one, continuously,
the required condition in the lemma is fulfilled, near the boundary for
solutions to (1.1). In the sequel we will omit mentioning this argument.

Next, we need to prove some lemmas.

Lemma 2.4. Let (u,$2) be a solution to (1.1). Consider a hyperplane
H, which is ortogonal to R" and cuts off 2 a cap ', such that Q' N
supp(p) =0, @ N{t =0} =0. Then

(2.2) d(t):= sup dist(z,H) < sup u.
z€dQ/ (1) Hn{t<r}

Moreover, if (x°,1°) € H is such that u(z°,t°) = sup yn <,y u, then

o, o .0
(2.3) 5@ 1) <~1,

where 1 is the unit normal vector to H pointing inwards €Y.

Proof. Since the problem is invariant under rotation around the ¢-axis

and translation, we may assume that H = {z; = 0}, and ' = {z; >
0}NQ(7). Now let (z,7) € 0Q'(7), be such that d(7) = dist(z, H) and

observe that by boundary condition of (1.1) %(2,7’) = —1. Then

3301
define
h(z,t) = s(d(1) — x1),
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where

__ SUPpn{i<r} U

d(7)
It is obvious that
(24) Ayp—Dih=A,u—Du=0inQ',  wu(z,7) = h(z,7) =0.

Since also h = supyny<yuwon H, h > 0 and u = 0 on 952, we must
have -

(2.5) h>u on 0 Nn{t <7}

Now using Lemma 2.2 a)-c) we arrive at

oh ou
g = —" il =1
s= P (a) < () = -1,
ie.
su u
(2.6) SWhnii<ry ¥ _ 1,

d(r)

which proves (2.2). Next using (2.4)-(2.6) and the fact that u(z?,t%) =
h(z°, %) (here z° = 0,#° < 7) we obtain

8l(x7t)— (1‘71’-) aml(xvt) s < ’

i.e. (2.3) holds.

Lemma 2.5. Let u be any solution to (1.1) and extend it to the entire
R by defining it to be zero in Ry \ Q. Then

Aplu—c) = Dilu—c) > —,
for any constant c.

Proof. Take a small neighborhood N of 052 such that supp(u)NN =
(0, and define

_J max(u,0) in NN,
R RAHI\Q.

Then, v is p-subcaloric in N (see [D], p. 18). Hence v — ¢, is p
-subcaloric in N, which is the desired result.
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2.1. Proof of Theorem 2.1. Since the proofs of (a) and (b) are simi-
lar, we only prove (a); (c) follows from (a) or (b). Suppose €25\ 2; # 0.
Extend u; by zero to R**!'\ Q;, for j = 1,2, and let (2°,¢°) € 9%, be
such that uy(z°,¢%) = supyq, us. We see at once that uy(z°,¢°) > 0 by
weak maximum principle applied to ug in Q9 \ ;. Define now w(z,t) =
ug(z,t) —uz(z°,¢°) in Q. Then by Lemma 2.5 Ayw—Dyw > —p. Hence

pr — th Z Apul - Dtul in Qla w S up on 891 N {t > 0}

and
w(x®, %) = uy (2°,%) = 0.

We may thus apply Lemma 2.2 to deduce that

Ouz o0y 0 000 9% 0 0y
ay(xat)_ay(mat)>ay(xat)_ 1
i.e.
(2.7) %(:& ) > —1.

Now, using the convexity in space, non-decreasing property of Q; (%)
and that supp(p) C € N Qy, we can take a supporting plane I1(z°,°)
such that Q;(tg) Ny (ty) C I (2°,¢%), i.e. the assumptions of Lemma
2.4 are fulfilled (when ¢ < t°). But then, (2.7) contradicts (2.3). This
completes the proof of the theorem.
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