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In this paper we study the regularity properties of solutions to certain overde-
termined problems which are similar to the obstacle problem, but which do not

have a sign assumption. Specifically, we assume that we are given a domain
Q C D, where D is the unit ball B;(0), or the half ball B (0), and a function
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Abstract
Let D be either the unit ball B;(0) or the half ball B; (0), let f be
a strictly positive and continuous function, and let u and €2 C D solve
the following overdetermined problem:

Au(z) = xo(z)f(z) in D, 0€09Q, u=|Vu|=0 in QF,
where x,, denotes the characteristic function of 2, Q¢ denotes the set

D\ ©Q, and the equation is satisfied in the sense of distributions. When
D = B{(0), then we impose in addition that

w(z)=0 on { (2, z,) | 2n =0} .
We show that a fairly mild thickness assumption on ¢ will ensure
enough compactness on u to give us “blow-up” limits, and we show
how this compactness leads to regularity of 0€2. In the case where f is
positive and Lipschitz, the methods developed in Caffarelli, Karp, and

Shahgholian (2000) lead to regularity of 92 under a weaker thickness
assumption.

Introduction

u which satisfies:

Au(z) = xo(#)f(2) in D,
u=|Vu|=0 in Q°=D)\Q,

0 € 09



Here f is a positive continuous function. In the case where D is a half ball,
we impose the additional assumption on the boundary:

u(z)=0 on { (¢, z,) |2, =0} . (1.2)

We want to examine the smoothness of 0S2.

These problems have been studied in many recent papers with either con-
stant f or with u > 0. (See for example [B], [CKS], and [SU].) These types of
problems have also arisen in various problems of mathematical physics. In the
case without the fixed boundary this type of problem comes up in geophysics
and inverse potential theory (see [I], [M], and [St]). Problems where a free
boundary comes into contact with a fixed boundary appear in filtration, and
motion by mean curvature with nonconvex obstacles.

Before we can state our results, we need some definitions. We will fix
0 < A < and we will assume that all constants are automatically allowed to
depend on A, u, and n in addition to any other dependence which is indicated.
(In other words, if we state that a constant depends on only «, for example,
then it is actually allowed to depend on «, A, p, and n.) Any nonnegative
increasing function defined on the nonnegative real numbers which fixes zero
is called a modulus of continuity. If o is a modulus of continuity, then we
define P,(M, o) to be the set of functions v which satisfy

1. Equation (1.1) with D = B,, and a continuous function f which satisfies

A<f<p and  [f(z) - f)| <olllz -yl
(the f and the Q from Equation (1.1) are allowed to depend on )
2. lu/<M in D.

For such a function u we will say that the function “f” and the domain “(2”
correspond to u, and refer to €2 as the nonzero set for u and its complement will
be called the zero set. We define P (M, o) like P,(M, o) but with D := B,
and with Equation (1.2) also assumed. For the situation on the half ball we
distinguish different parts of the boundary of €2 as follows:

XB(u) :=0QN{z, =0} the fized boundary,
FB(u) :=00QnN{z, >0} \ 0B,  the free boundary, and (1.3)
IB(u) :=XB(u) N FB(u) the interface.

We will assume that the origin is part of the free boundary or the interface in
all of the sets of functions we define for the sake of simplicity of notation, but
the equations themselves are translation invariant.
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For a bounded set S C IR", we define its minimum diameter (denoted
m.d.(S)) to be the infimum among the distances between pairs of parallel hy-
perplanes enclosing S. We use the minimum diameter to define two “thickness”
conditions which we will use repeatedly.

1.1 Definition ((e,7)-Thickness). We will say that a point z of the free
boundary is (e, 7)-thick if
d.({Q°u DY N B,
g AU DGNBy(@) (1.4)

r>s>0 S -

(Better terminology might be that the zero set is (e,r)-thick at x, but we
prefer brevity.)

1.2 Definition ((e,7)-Pthickness). We will say that an z of the interface is
(€, 7)-Pthick if

g m.d.(Proj{ z,-01(£° N B,(x)))
r>5>0 S

> €, (1.5)

where Proj,(S) is the orthogonal projection of a set S into the plane 7, and
our minimum diameter in (1.5) is taken with respect to n — 2 dimensional
planes in { z, =0 }.

For € > 0, we define P2(M, o, €) to be the u € P,(M, o) such that 0 is
(€,7/4)-thick, and we define P> (M, o, €)to be the u € PF(M, o) such that
0 is (e,7/4)-Pthick.

1.3 Theorem (Quadratic Growth). If either u € PY(M, o, €) or u €
Pf’Jr(M, o, €), then there exists a constant v which depends on only M, o,
and € such that for any x € By (or B;L/4 as appropriate)

Ju(z)] < 7l (1.6)

1.4 Remark (First Generalization). Our proof of the theorem above will
not use the continuity or the positivity of f. It only requires f € L.

1.5 Remark (Second Generalization). Our use of the minimum diameter
condition to get quadratic growth should be compared with the capacity den-
sity condition of [KS| which also gives a quadratic bound. Note also that we
can use [KS] to weaken our condition (1.4) to one where the sum of the scaled
minimum diameter and the capacity is always greater than e.

We define P,(M, o, €) to be the set of functions u € P,(M, &) whose free
boundary points within r/2 of the origin are all (e, r/4)-thick.
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1.6 Theorem (Nonnegativity Near Q°). If u € 731(M, o, €), then there
erists a constant o depending on M, o, and € such that u > 0 in an o neigh-
borhood of 9 N By 4.

1.7 Remark (Necessity of Thickness for Nonnegativity). Examples
where u becomes negative can be found in the literature. Examples where {2¢
has codimension of at least two can be given explicitly by 222 — 42 in IR? or
(for the contact problem) by z? + zy in the set {z > 0}. On the other hand,
in [KN] (387-390) there are local examples (of codimension one) where 0€2 is
given by the curves

2o =+21? 0<z <1 (1.7)

where v = 4k + 3. These examples can be adapted for the problem where there
is contact with a fixed boundary, and a description of a way to produce such
an adaptation can be found in [SU].

After these theorems have been established, we will be able to invoke the
results of the first author in [B] to conclude the following corollary. Before we
state it, however, we define some notions of flatness. Let S C IR® be a compact
set, and let v > 0. Then S is v— Reifenberg flat if there exists a constant R > 0
such that for every x € S and every r € (0, R] we have a hyperplane L(x,r)
containing x such that

D(L(z,r) N B,(x), SN B,(x)) < 2rv. (1.8)
Here D denotes the Hausdorff distance: If A, B C IR", then

D(A, B) := max{ supd(a, B) , 2161]13) d(b,A) }. (1.9)

a€A

We also define the following quantity, which we call the modulus of flatness,
to get a more quantitative and uniform measure of flatness:

( D(L(z,p) N B,(z), SﬂBp(f”))> _ (1.10)

O(r) := sup
0<p<lr

sup
€S p

Finally, we will say that S is a Reifenberg vanishing set, if
limO(r) =0 . (1.11)

r—0
Reifenberg flatness was introduced by Reifenberg in 1960 (see [R]), and has
appeared implicitly in the work of Kenig and Toro relating boundary regularity
to the regularity of the Poisson kernel (see [KT] and [T]).

1.8 Corollary (Boundary Regularity). Ifu € 731(M, o, €), then 0QN By 4
s a Reifenberg vanishing set with o as its modulus of flatness, and in particular
we can conclude the following:



1. For any x € 0Q N By 4

lim =2 = (1.12)

2. If o is a Holder modulus, then 02N Byy4 s chre.
3. If o is a Dini modulus (i.e. fol(a(r)/r) dr < 00), then 02N Byy is C.

Incidently, even in the case where we assume that u > 0, we still need a
thickness assumption on €2 to get regularity. Schaeffer constructed counter-
examples in [Sc] when no thickness is assumed, and Caffarelli’s celebrated
results in [C1] and [C2] showed that for Holder continuous and positive f,
Q¢ would be either C%* or “cusp-like” at any given point of its boundary.
(In fact v = 4k + 1 in Equation (1.7) admits nonnegative solutions.) For
functions f which are not Dini continuous the counter-example due to the
first author in [B] shows that given our assumptions above, our conclusions
are sharp. (Whether the hypotheses we have above can be weakened is a
subject of further investigation.)

From Theorem (1.3) combined with the characterization of global solutions
found in Theorem B of [SU] we obtain the following corollary by a simple blow-
up argument.

1.9 Corollary (Free and Fixed Boundaries Touch Tangentially). If
u € 'Pf ol (M, o, €), then there ezists a modulus of continuity v, and a positive
constant v which depend on only M, o, and €, such that

00N By C{ (¢, zn) = aa < l2"[9(l[2"]]) } - (1.13)

1.10 Remark. The proof of this corollary does not use more than the fact
that the fixed boundary, { z, = 0 }, is a C' manifold. In [SU] the fixed
boundary has to be C? in order to prove the necessary compactness, but here
we can assume only C! as we get our compactness from the assumption on
thickness of the zero set 2°.

In [SU]J the fact that the free boundary touches the fixed boundary tangen-
tially leads to a proof that 9 is C! in a neighborhood of the point of contact.
In the current situation, the counter-example in [B] can be adapted to show
that even though the free boundary touches the fixed boundary tangentially,
it will not in general be C' in a neighborhood of zero if the Laplacian is not
Dini continuous. The counter-example in question is a function which satis-
fies Aw = x,f for a nonnegative continuous function f, and a set {2 which
has density 1/2 on every point of its boundary, but which “spins” an infinite
number of times around zero. In particular (since w > 0), Caffarelli’s free
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boundary regularity alternative of [C1] and [C2] does not hold in its classical
form. To adapt the example to suit our purposes, it needs to be iterated at
a sequence of boundary points which converge to zero. The following picture
shows how to construct the counter-example for the current situation, and the
details of the computation are essentially contained in [B].

€n

X, = P(x)
Boundary(Q)

\ The boundary rotates an infinite
number of times around the
center of each circle, and the
centers of the circles converge
to the origin.

In the Dini case we establish C! contact between the fixed and free bound-
aries with a very mild smoothness condition. We let §(z) denote the distance
from a free boundary point z to the fixed boundary, X B(u). (Note that in
general we expect 0(z) > z,.) We define one final class of functions before we
state our corollary. Let ﬁj (M, o, €) be the set of functions u € P;F(M, o) such
that all z € FB(u) N B, are (¢, d(x)e)-thick, and all x € IB(u) N B, s, are
(€,7/4)-Pthick.

1.11 Corollary (C! Contact in the Dini Case). Suppose u € ﬁ;r(M, 0,€),
and o is a Dini modulus of continuity. Then the boundary of Q is C* in a
neighborhood of the origin, where the C* norm of the local parametrization and
the size of the neighborhood will depend on M, o, and €.

1.12 Remark. The presence of the d(x) term in the thickness assumption
allows this condition to degenerate as we approach the fixed boundary. Al-
lowing R™ \ Q = Q¢ U D¢ instead of just Q¢ = B (0) \ © in Equation (1.4)
is necessary for the fixed boundary case because Corollary (1.9) guarantees
that otherwise this equation would never be satisfied by free boundary points
sufficiently close to the fixed boundary.



2 Compactness

Proof of Theorem (1.3). We first deal with the case when u € PY(M, o, ¢).
Fix ¢, M, and n, and define the following notation:

S;(u) :=sup [u| and S,(u):=sup|ul.

B, By

We claim that there exists a constant v such that

v2 4 Si(u So(u
Sj+1(u) Smax{ Ta %7 Tt 4(‘)72_1)

(2.1)

for all j and for all u € PY(M, o, ). In this case we have S, (u) < yr2, which
is all we need. So we will suppose that equation (2.1) does not hold. In this

case, there exists a sequence {u;} C P;(M, o, €), and a sequence of integers
{k;} such that

(2.2)

27 Sy (u) So(u;)
4 41 0 77T ki

Sk:j—i—l(uj) > max {

Note that since |u;| < M, we can conclude that we must have k; — oco. Now
define

u;(27 ki)
vi(z) (= =——=—=, 2.3
J( ) Skj—}—l(uj) ( )
and observe that in B,s; we have

|Avy| < % —0, (2.4)

and in Bym (for 0 < m < k;) we have

Sk-—m(uj)

vi(x)| < L0 <g(9m)? 2.5
)] < G <G (25)

Thus, for ||z|| > 1 we have |v;(z)| < C||z||%, but we also have the following
nondegeneracy: ||vj[r=(s,,,) = 1. After a rotation of coordinates we have
v; — vo with Avg = 0, v9(0) = [Vue(0)] = 0, and vo(%) = 1. v is a
harmonic polynomial of degree 2. On the other hand,

m.d.({vo = |Vug| =0} N By) > €, (2.6)

since limsup Q¢(v;) C {vop = |Vvy| = 0}. But now we have a contradiction,
since a quadratic harmonic polynomial cannot satisfy equation (2.6) unless it
is identically zero.



The case when u € P{) ’+(M , 0, €)is very similar. In order to conclude that
we have a quadratic harmonic polynomial in this case after the blow up, it is
useful to reflect it in an odd fashion across the plane { z,, = 0 }, and use the
fact that |Au| < ||f||e in By. The contradiction comes from Equation (1.5)
for Q°(wp).

Q.E.D.

As a consequence, we obtain “blow-up” limits, and a uniform rate of con-
vergence to these limits. First we define a rescaling:

ug(x) == s*u(x/s) (2.7)

and note that by Theorem (1.3) all of the “P” classes are closed under this
rescaling for s > 1.

2.1 Proposition (Convergence to Global Solutions). Suppose that u €
PYUM, o, €) or POT (M, o, €) with f and Q2 denoting the corresponding Lapla-
cian and nonzero set. Then there exists a function uy defined on either IR®
or the half-space RY according to our assumption about u (with a nonzero set
Qo) whose growth is no worse than quadratic, and which satisfies:

1. AU,() = f(O)Xgoa
2. ug = |Vug| = 0 in Q§, and
3. 0 € 89,

and there ezists a sequence {sp} — oo such that us, — ug uniformly in C+*
on any compact set.

The proof is standard so we omit it. By noting that either

.. >
hRni)lorgf 7 >e>0
o d.(Proj QcNB
.d. o ‘N
lim i "0 (PT05 200} (%5 1 Br)) > e>0
R—o0 R

and invoking either Theorem II of [CKS]| or Theorem B of [SU] according to
which case we are considering, the following proposition is immediate.

2.2 Corollary. With ug as in the previous proposition, after a rotation of
coordinates we have
f(0)

uo(z) = o (@)

Now Corollary (1.9) follows by a simple proof by contradiction.
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2.3 Proposition (Convergence of Nonzero Sets). There exists a mod-
ulus of continuity v which depends on M, o, and € such that for any u €
PYUM, o, €) (where uy(z) = s?u(x/s) and Q is the corresponding nonzero

set) we have the estimate:
QN Byl 1 QN Byl 1 1
—_— =|— =< -] . 2.8

|B1/s| 2
Proof. Suppose such a 1 does not exist. Then there exists a sequence of
ur, € PY(M, o, €), a sequence of real numbers s; — 0o, and a 0 > 0 such that
if vg(z) := stug(x/sk), and € is the corresponding nonzero set, then

Qe NB| 1

>0. .
B3> (2.9)

Now take a subsequence of the vy such that f(0) converges. Again for sim-
plicity, we assume that it converges to 1. Now by the same argument as in
the proof of Proposition (2.1) we can produce a global solution uy such that
vg — uo. We will have a constant M such that uy € P.(Mr?, o = 0) for
all » > 0 and furthermore since lim sup Qj C Qf, up will inherit the following
property from the vy : The zero set €2f will satisty

R—00 R

>e>0. (2.10)

Now by using equation (2.10) and applying Theorem II from [CKS] again, we
can conclude that in the right coordinate system ug(z) = 3(z;)?. Finally, we
can now get a contradiction with equation (2.9) above by using standard non-
degeneracy statements based on the weak maximum principle. (See equation
(4.1) of [CKS] for example.)

Q.E.D.

2.4 Remark. In fact, the argument above shows more: If we let Q" := { u >

0} and Q~ := { u < 0 }, then with the same hypotheses as above we will
have:
‘|Q+0B| 1 QN B, 1‘ d
a 7 a ’ an R
|Br| 2(” | 1Bl 2 | By |

all bounded by ¥(r

3 Nonnegativity

Proof of Theorem (1.6). The crucial observation in the proof of this
theorem, is that if u € Py (M, o, €)and 7 € 02N By, then

a(z) == 16u(% +§) € PY(4M, o, €) (3.1)



and so we can apply proposition (2.3) in a manner independent of u and
independent of §. We wish to argue by contradiction, and note that by the
translation just mentioned, it will suffice to assume that there exists a sequence
of functions {ux} C P1(M, o, €)and a sequence of points {xx} C Q (where
() is the nonzero set for uy) with

1. ug(zy) <0, and

2. x —)Oean.

Now we claim, that if we take k sufficiently large, then there exists a sequence
{yx} C 09 with the following properties:

1. dist(zg, 0€%) = dist(zk, yx) so yx is one of the points in 92 which is

“closest” to xy,

2. dist(yx, 0) < € which will be a very small constant independent of £,
and

3. if ry := dist(zg, yi), then
|Broj2(ye) D% 1

|B"'k/2| 2

IA
™

(3.2)

The first two properties are fairly straightforward if & is sufficiently large. The
fact that € is still independent of u; and k, and € is also still as small as we
like even after the assertion of the third property follows from equation (3.1)
and from the fact that ¢ is independent of u in proposition (2.3).

Now we make some rescalings and rename some things. We call @ the
function in P2(4M, o, €)obtained by rescaling x;, to e; and y; to 0, so @ (z)
is the rotation of the function

1
wg(z) = Wuk(yk — TT)

which gives (1) = rk_Quk(xk) < 0. Since y; € 0Q, we now have 0 € 9,
where ) is the nonzero set of 4. At this point we have the following picture:




The dotted horizontal lines are in a region which must lie in €, and the verti-
cal striped region is a subset of QZ and has measure within € of %|Bl /2|. After
taking a limit we converge to ug(x) = v(z;)? (for some constant +y), which
contradicts the fact that ug(e;) < 0.

Q.E.D.

To prove Corollary (1.8) we observe that near the boundary we now have a
solution of the obstacle problem. In particular, we can invoke the results from
[B] immediately. (For a recent treatment of the obstacle problem see [C3] and
B].)

Before we prove Corollary (1.11), we prove a preliminary lemma.

3.1 Lemma (Convergence of Normals at the Fixed Boundary). Letu €
P+ (M, 0,€) and let o be a Dini modulus. Then there ezists a py = po(M, 0, €) >
0 and a modulus of continuity w, which also depends only on M, o, and €, such
that if n(x) is the interior unit normal at x (the normal must exist by Corollary
(1.8)), then

[In(2) = enl| < wi(6(2)) (3:3)
(recall that §(z) is the distance from z to the fized boundary, 022N {z, = 0}),
and 02 (u) N B,, is a graph in the e, direction.

Proof. It suffices to prove Equation (3.3). To this end, we fix ¢ > 0 and show
that once §(z) is sufficiently small (where x is a point in a free boundary in
our class, P,F (M, o, €)) we have

[In(z) —enl| <¢ (3.4)

We take a sequence {u} € P (M, 0, €), and a sequence {z¥} € 89(uy) which
converges to zero, and we denote the corresponding sequence of normals by
{n}. Let y* be one of the points of X B := {x, = 0} N Q(u;) which is closest
to z*. Define

and define i i
kT —Y
X W (3.6)

Note that the normal to the free boundary at X* is still ny, note that | X*| =1,
and note that if we extend Uy to be 0 in {z, < 0}, then it is a solution of the
local problem in a ball of radius one around X*.

Our rescaling has eliminated the §(x) term which appears in our assump-
tions, and so we have a uniform thickness of our zero set in a neighborhood
of X*. Because of the uniform thickness we have, we can apply Theorem (1.6)
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to conclude that U, > 0 in a uniform neighborhood of X*, and at that point,
Theorem 7.2 of [B] shows that if z is a free boundary point in a small (but
uniform) neighborhood around X* and n is its normal vector, then

n—mll <€ o(d(m)2™) < 0/ o0@)t) 4 (3.7)

0 t

By Corollary (1.9) we know that X* < ¢(8(zy)), where 1) is the modulus of
continuity given in that corollary. On the other hand, we know that the free
boundary cannot touch x,, = 0 within B;(X*). This fact along with Equation
(3.7) leads to an estimate of the form ||ng — e,|| < ¢, if 6(xy) is sufficiently
small.

Q.E.D.

Proof of Theorem (1.11). Fix ¢ > 0. Choose d sufficiently small to
ensure that (with w; as given in the previous lemma) w(d) < €/2. If x and y
are two points on the free boundary, with é(x) and 6(y) less than d, and n(x)
and n(y) are the corresponding normal vectors, then by the previous lemma
we get

In(z) = n()[| <[In(z) —eall + llen —n@)l < e/2+€/2.  (3.8)

Now if §(z) and 0(y) are both greater than d/2, then by assumption we
have a uniform thickness estimate, and therefore we can apply Theorem 7.2 of
[B] to conclude that we have a uniform modulus of continuity of the normal
vectors which we will call wy. Let 7 be chosen small enough so that wy(n) < e.
If x and y are free boundary points, and

||z = yl| < min{d/2, n} (3.9)

then either §(z) and 6(y) will both be less than d and Equation (3.8) will
apply, or d(x) and d(y) will both be more than d/2 and we can use ws to get
the desired result.

QE.D.
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