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Abstract

The main result of this paper concerns existence of classical solutions to the multi-layer
Bernoulli free boundary problem with nonlinear joining conditions and the p-Laplacian as gov-
erning operator. The present treatment of the 2-layer case involves technical refinements of the
one-layer case, studied earlier by two of the authors. The existence treatment of the multi-layer
case is largely based on a reduction to the two-layer case, in which uniform separation of the
free boundaries plays a key role.

1 Introduction and statement of the problem

1.1 The mathematical setting

In this paper we continue the study of the free boundary problem arising in connection with
potential flow with power-law nonlinearity (see [HS1–4] for backgrounds). Mathematically, our
starting point is an annular region, bounded by two convex surfaces in RN (N ≥ 2):

K = Km+2 \K1 with K1,Km+2 convex and K1 ⊂⊂ Km+2.

The aim is to show that for given positive integer m and data

λi ∈ (−1, 1), Fi(x, p, q) : K × R+ × R+ → R, (i = 1, · · · ,m)

with λi > λi+1, one can find convex domains

K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Km+1 ⊂⊂ Km+2

∗The second author thanks Göran Gustafsson Foundation for several visiting appointments, to RIT in Stockholm.
†The third author thanks Swedish Royal Academy of Sciences for visiting appointment to RIT .
‡Supported in part by Swedish Research Council.
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such that the p-capacitary potential ui for each annular convex region Ki+1 \ Ki satisfies a
nonlinear joining Bernoulli condition (see the main theorems, Theorem 4.1, and Theorem 6.1)

Fi(x, |∇ui(x)|, |∇ui+1(x)|) = 0 on ∂Ki+1, (i = 1, · · · , m). (1)

The p-capacitary potential refers to the solution of the following Dirichlet problem




∆pu = 0 in Ki+1 \Ki

u = λi on ∂Ki

u = λi+1 on ∂Ki+1,

where ∆p, 1 < p < ∞ is the p-Laplace operator defined by

∆pu := div(|∇u|p−2∇u).

1.2 Applications

The above described problem appears in several physical situations and can be appropriately
interpreted in many industrial applications. A general way of interpreting the above problem is
to consider u as the potential function of several adjacent flows in convex rings with prescribed
pressure on the free streamlines.

A more interesting application, however, is related to the so-called Stefan problem, for large
time. In this connection, the two phase model describes crystallization (freezing) or melting of
some physical substance. Multi-phase Stefan problem refers to materials capable of assuming
any of three or more different states (solid, liquid, gaseous, in particular). We expand this in
more details for the two phase case.

Let us consider a cylindrical container with the horizontal cut as the domain K = K3 \K1

(this is the two dimensional case). The exterior wall ∂K3 is kept at temperature u = −1, and
the interior wall ∂K1 at temperature u = 1. The container is also filled with liquid, and the
temperature of the liquid is assumed to be known initially.

Suppose the material (liquid) solidifies at temperature −1 < λ < 1. For simplicity we take
λ = 0. By continuity of the temperature for positive times, we know that there must be a curve
Γ(x, t) (for each time t) on which u(x, t) = 0. Hence on the subregion {u > 0} the material is
in liquid form and on the subregion {u < 0} the material is in solid form. Let us also assume
that the temperature u (depending on the material) also satisfies the (nonlinear) heat equation

∆pu−Dtu = 0, in K \ {u = 0}. (2)

On the transition phase Γ(x, t) the Stefan condition (Bernoulli condition), which follows from
the energy conservation law, gives the dynamic equation of the moving curve

|∇u1| = g(x, |∇u2|, V ), (3)

where u1 and u2 represent the function u on {u > 0} and on {u < 0} respectively. Here V is
the normal velocity of the curve Γ(x, t), and the nonlinear joining condition (3) may depend
on the density of the heat source over the inter-phase boundary (due for instance to an extra
super-heating).

For large time, the heat flux tends to stabilize and becomes stationary. Hence ut, and V
both become approximately zero. Therefore the realistic model for the stationary problem is
the one given by

∆pu = 0, in K \ {u = 0}, |∇u1| = g(x, |∇u2|, 0) on {u = 0}. (4)

It is noteworthy that the p-Laplace operator constitutes a subclass of a larger class of oper-
ators, appearing in many modeling problems in industrial applications, due to non-Newtonian
behavior of fluids.

For further applications, and backgrounds in the case p = 2, we refer the reader to [A1,2],
and the references therein.
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1.3 Main result

We prove existence and C1 regularity of the free boundary in the two-phase case. More precisely,
the main result of this paper is the following:

Theorem 1.1 (two phases) Let K1,K3 be two convex domains, such that K1 ⊂⊂ K3 and
g : (K3\K1)×R+ → R+ a continuous positive function, non-decreasing with respect to its second
argument and satisfying some concavity property (see Definition 2.3 for a precise statement).
Then there exists a convex C1 domain ω, K1 ⊂⊂ ω ⊂⊂ K3, which is a classical solution of
the two-layer free boundary problem, the latter means that the p-capacitary potentials u1 and u2

of the sets ω \K1 and K3 \ ω respectively, i.e. solutions of




∆pu1 = 0 in K2 \K1

u1 = 1 on ∂K1

u1 = 0 on ∂ω
,





∆pu2 = 0 in K3 \ ω
u2 = −1 on ∂K3

u2 = 0 on ∂ω

with ∆p, 1 < p < +∞ the p-Laplace operator, satisfy

lim
z→x

z∈ω\K1

|∇u1(z)| = lim
y→x

y∈K3\ω
g(y, |∇u2(y)|) ∀ x ∈ ∂ω .

Section 2 is devoted to describe the possible nonlinear joining conditions we are able to handle.
In section 3, we give some useful auxiliary results. Section 4 is devoted to the proof of the main
theorem, section 5 is the separation result and section 6 describes extension to the multi-phase
case.

2 The nonlinear joining condition

In this section, we discuss what could be the nonlinear joining condition involving ∇ui and
∇ui+1 at the interface γi = ∂Ki+1 between the two phases. We recall that this condition is
written in the general form

Fi(x, |∇ui(x)|, |∇ui+1(x)|) = 0, (i = 1, · · · ,m) (5)

with Fi : K × R+ × R+ → R.
We will always assume that Fi(x, p, q) is a continuous function on K × R+ × R+, and that

Fi(x, p, q) is strictly increasing regarding as a function of variable p for all x, q.
This assumption and the implicit function theorem allows us to write the joining condition

(5) in the following equivalent form

|∇ui(x)| = gi(x, |∇ui+1(x)|), (6)

where gi : K × R+ → R+ are given functions.
An important tool, used in the proof of our main theorem and due to [LS] and [A4], is the

following property: if γi contains a line segment I then x 7→ 1/|∇ui(x)| is a convex function
while x 7→ 1/|∇ui+1(x)| is a concave function on I (see Lemma 3.12). This in conjunction
with concavity assumption on the function x 7→ 1/gi(x, |∇ui+1(x)|) underlies one of the main
techniques in the proof of our main result. Therefore, the property that gi must satisfy is the
following:

x 7→ 1/gi(x, q(x)) is a concave function as soon as 1/q(x) is a concave function. (7)

For general functions g we cannot expect to have convexity of the level sets of the solution.
In fact the first author (see [A3]) obtained an example of the convex two-layer problem in the
plane for which no convex solution exists corresponding to the joining condition in the form:
|∇u2(x)|2 − |∇u1(x)|2 = λ2 (compare with eq. (8)). Laurence and Stredulinsky ([LS]) gave an
example of the convex two-layer problem with the same joining condition such that the natural
variational minimizer is not convex.
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It is also an open question whether there exist classical solutions at all, for general (regular)
functions g. In two space dimensions this was settled by H.W. Alt and L.A. Caffarelli [AC]. So
the question to be raised is what are the “necessary and sufficient” conditions to have existence
of convex classical solutions. Our condition (7) may seem somewhat artificial, but it is the only
working condition at this moment. Let us remark that a similar ”convexity condition” was
assumed in [A2] and [A5].

Example : The classical nonlinear joining condition, see e.g. [A1], [LS], is given by

|∇ui(x)|α − |∇ui+1(x)|α = ai(x)α, (8)

where α ≥ 1 and ai(x) > 0. This joining condition satisfies the ”convexity condition” (7)
provided that the function 1/ai is concave, as will follow from Lemma 2.1 below. (Regarding
applicability of other convexity conditions, we refer to [A2], Example 2.9 and [A5], Example
4.7.)

Lemma 2.1 Let a and q be positive functions defined on RN and such that 1/a and 1/q are

concave. Then, for α ≥ 1, the function x 7→ 1

(a(x)α + q(x)α)1/α
is concave.

Proof : It is sufficient to do the proof for C1 functions a and q, since the result will follow for
less regular functions by a simple density argument just using pointwise convergence.

Let us set
f(x) :=

1

(a(x)α + q(x)α)1/α
,

which is a C1 function. We want to prove the following inequality:

∀x, y ∈ RN (∇f(x), y − x) ≥ f(y)− f(x). (9)

Now

(∇f(x), y − x) = − 1

(a(x)α + q(x)α)1+1/α

[
a(x)α−1(∇a(x), y − x) + q(x)α−1(∇q(x), y − x)

]
.

(10)
By concavity of 1/a we have

(∇
(

1
a

)
(x), y − x) = − 1

a2(x)
(∇a(x), y − x) ≥ 1

a(y)
− 1

a(x)

A similar inequality holds for 1/q. Putting these in (10) yields

(∇f(x), y − x) ≥ 1

(a(x)α + q(x)α)1+1/α

[
a(x)α+1

(
1

a(y)
− 1

a(x)

)
+ q(x)α+1

(
1

q(y)
− 1

q(x)

)]

that is

(∇f(x), y − x) ≥ 1

(a(x)α + q(x)α)1+1/α

(
a(x)α+1

a(y)
+

q(x)α+1

q(y)

)
− f(x) .

So, to prove (9), it remains to prove the following inequality

1

(a(x)α + q(x)α)1+1/α

(
a(x)α+1

a(y)
+

q(x)α+1

q(y)

)
≥ 1

(a(y)α + q(y)α)1/α
. (11)

Let us set x1 = a(x)
a(y) , x2 = q(x)

q(y) , t1 = a(x)α, t2 = q(x)α. Inequality (11) can be rewritten

xα
1 xα

2

1
t1

+ 1
t2

xα
1

t1
+ xα

2
t2

≤
(

t1x1 + t2x2

t1 + t2

)α
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or
t1 + t2

t1xα
2 + t2xα

1

≤
(

t1
x2

+ t2
x1

t1 + t2

)α

. (12)

Now, the mean-value inequality between harmonic and arithmetic means yields
(

t1 + t2
t1
x2

+ t2
x1

)α

≤
(

t1x2 + t2x1

t1 + t2

)α

and the inequality (12) follows immediately using the convexity property of the function x 7→
xα. ut

We present now another class of functions gi which satisfy the above-mentioned property.

Lemma 2.2 Assume that the function g : R2
+ → R+ satisfies the following set of hypothesis:

(H1): g is concave,

(H2): g satisfies the following inequality

∀(ξ1, ξ2, η1, η2) ∈ R4
+ g(ξ1, η1)g(ξ2, η2) ≥ g2(

√
ξ1ξ2,

√
η1η2). (13)

Now if a : RN → R+, q : RN → R+ are two given functions such that 1/a and 1/q are concave,

then x 7→ 1
g(a(x), q(x))

is concave.

Proof : It suffices to prove this for C1-functions g, a and q, since the result will follow for less
regular functions by a simple density argument just using pointwise convergence.

Let us set
f(x) :=

1
g(a(x), q(x))

,

which is a C1 function. We prove the following inequality (cf. (9))

∀x, y ∈ RN (∇f(x), y − x) ≥ f(y)− f(x) . (14)

Now

(∇f(x), y−x) =
−1

g2(a(x), q(x))

[
∂g

∂ξ
(a(x), q(x)) (∇a(x), y − x) +

∂g

∂η
(a(x), q(x)) (∇q(x), y − x)

]
.

(15)
and by concavity assumption on 1/a and 1/q (see the proof of Lemma 2.1) we’ll have

(∇f(x), y − x) ≥ 1
g2(a(x),q(x))

[
∂g
∂ξ (a(x), q(x)) a2(x)

(
1

a(y) − 1
a(x)

)
+

+ ∂g
∂η (a(x), q(x)) q2(x)

(
1

q(y) − 1
q(x)

)]

Next, using concavity of g we arrive at

∂g

∂ξ
(ξ1, η1)(ξ2 − ξ1) +

∂g

∂η
(ξ1, η1)(η2 − η1) ≥ g(ξ2, η2)− g(ξ1, η1),

where (ξ1, η1) = (a(x), q(x)) and (ξ2, η2) = (a2(x)
a(y) , q2(x)

q(y) ). Inequality (14) now follows immedi-
ately from this and inequality (13). ut
Examples
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1. The function g(ξ, η) := (ξα + ηα)1/α which corresponds to the classical nonlinear joining
condition already mentioned does not fall into the above framework when α ≥ 1 (because
g is convex and not concave), but for 0 ≤ α < 1!. Indeed, in this case assumption (H1) is
easily verified by proving that the Hessian of g is negative on R2

+. As for (H2), it follows
immediately from the inequality

(ξ1η2)α + (ξ2η1)α ≥ 2(ξ1ξ2η1η2)α/2

which gives

[(ξ1ξ2)α + (η1η2)α + (ξ1η2)α + (ξ2η1)α]1/α ≥
[
(ξ1ξ2)α + (η1η2)α + 2(ξ1ξ2η1η2)α/2

]1/α

which is inequality (13).

2. The function g(ξ, η) := ξαηβ with α ≥ 0, β ≥ 0 and α + β ≤ 1 can also be considered.
Conditions (H1), (H2) are readily verified in this case.

3. More generally, we can consider a function like g(ξ, η) :=
∑

i∈I aiξ
αiηβi (finite or infinite

sum) with ai ≥ 0, αi ≥ 0, βi ≥ 0 and αi + βi ≤ 1. Assumption (H1) is elementary (g
is a combination of concave functions with positive coefficients) while inequality (13) is
obtained from the expansion of

∑

i1∈I

∑

i2∈I

ai1ai2

(
ξ

αi1/2
1 ξ

αi2/2
2 η

βi1/2
1 η

βi2/2
2 − ξ

αi2/2
1 ξ

αi1/2
2 η

βi2/2
1 η

βi1/2
2

)2

≥ 0.

Definition 2.3 Define G to be the family of all functions g : K × R+ → R+, satisfying the
following conditions

(A1): g is continuous and ∃ c0 > 0 such that g(x, 0) ≥ c0 for all x ∈ K,

(A2): g is non-decreasing with respect to second argument,

(A3): g satisfies the following concavity property: x 7→ 1
g(x, q(x))

is concave whenever q is a

given function such that 1/q is concave, and

(A4): for any given value y0 > 0, there exist constants 0 < C1 < C2 such that C1 ≤
(g(x, y)/y) ≤ C2, uniformly for all x ∈ K and all y ≥ y0.

Hence forward we will always consider the following nonlinear joining condition

|∇ui(x)| = gi(x, |∇ui+1(x)|), (16)

with gi ∈ G.

3 Preliminary results

In this section we will sum up some of the auxiliary results used in this paper. We remark that
the usual comparison and maximum principle for elliptic partial differential equations, is one of
the basic tools here; see [T].

Lemma 3.1 (Exterior Barrier) Let D be a convex domain in RN and suppose u is a continuous
non-negative function on B(x0, r), p-harmonic in B(x0, r) ∩D, with x0 ∈ ∂D. Let also u = 0
on ∂D∩B(x0, r). If ∂D is not C1 at x0, i.e. D has (at least) two supporting planes at x0, then

lim
x→x0

|∇u(x)| = 0, x ∈ D.
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Lemma 3.2 (Interior Barrier) Let D be a convex domain in RN and suppose u is a continuous
non-negative function on B(x0, r), p-harmonic in B(x0, r) \D, with x0 ∈ ∂D. Let also u = 0
on ∂D ∩B(x0, r). If

|∇u| ≤ C0 in B(x0, r) \D,

then ∂D∩B(x0, r/2) is C1 with a uniform C1 norm, i.e. there exists a constant C1 = C1(C0, N)
such that

|∇ψ(x)−∇ψ(y)| ≤ C1,

where ψ is a map that represents ∂D near x0 ∈ ∂D.

The proofs of these lemmas follow from standard theory using barriers at conical boundary
points. The existence of such barriers are proven in [Do], see also [K].

Remark 3.3 By Lemmas 3.1, and 3.2, if C−1
0 ≤ |∇u| ≤ C0 in D, ∂D must be C1 with C1-norm

depending on C0.

Definition 3.4 (Blow-up) For the functions uj : B(xj , 1) → R and for a sequence of non-
negative numbers {rj} (rj → 0) we define the scaled functions on B(0, 1/rj) by

ũj(x) =
uj(rjx + xj)− uj(xj)

rj
.

Obviously, if all functions uj are Lipschitz-continuous in B(xj , 1) with the same constant,
then ũj are uniformly Lipschitz in B(0, R) (R < 1/rj). Thus, there exists a subsequence nk,
such that ũnk converges locally in Cα(RN ) to a function u0. Moreover, if uj are p-harmonic,
then so is u0 in {u0 > 0} and u0(0) = 0.

Lemma 3.5 Let S(C0) be the set of all C1 domains D ⊂ R+ ×RN−1, such that B(0, 1)∩D is
convex, 0 ∈ ∂D and ||∂D||C1(B(0,1/2)) ≤ C0.

Then any blow-up of a sequence Dj ∈ S(C0) converge to a half space, i.e., if rj ↓ 0 and
Dj ∈ S(C0), then for D̃j := 1

rj
Dj = {x : rjx ∈ Dj} we have

lim sup D̃j = T,

where T = {x1 > 0}, and lim sup means the set of all limit points of sequences {xj} with
xj ∈ D̃j.

Lemma 3.6 Let uj be the p-capacitary potential of an annular domain Dj = D2
j \ D1

j with
convex uniform C1 boundaries. Suppose moreover the gradient of uj satisfy

|∇uj(x)| ≤ Λ0 < ∞,

uniformly both in j and x ∈ Dj. Then any convergence blow-up ũrj at any boundary point
gives a linear function u0 = αx+

1 , after suitable rotation and translation. In particular, for any
boundary point xj ∈ ∂Dj

uj(y + xj) = uj(xj) + αy+
1 + o(rj)

in B(0, rj), in some rotated system.

The proof of this lemma is just the same as the proof of Lemma 2.4 in [HS2]. The uniformity
in norms are crucial.

Using these lemmas, we can prove the following (cf. Theorem 1.3 [HS4]).

Lemma 3.7 Let D1 and D2 be two nested open convex domains (D1 ⊂ D2), and u denote the
p-capacitary potential of D = D2 \D1. Then for x ∈ ∂D

lim
y→x

|∇u(y)| exists

non-tangentially (with values in [0,∞]). In particular |∇u| can be defined (with values in [0,∞])
up to the boundary ∂D as non-tangential limit. Moreover, |∇u| is upper semi-continuous up to
∂D2 and lower semi-continuous up to ∂D1.
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Proof: Since the problem is local, depending on whether we are close to ∂D1 or ∂D2, we may
start with point x0 ∈ ∂D1. In case |∇u| is bounded in a neighborhood of x0 the proof was given
in Theorem 1.3 in [HS4]. So suppose there exists a sequence xj ∈ D with

lim
j

xj = x0, |∇u(xj)| → ∞ c0|xj − x0| ≤ dist(xj , D1),

for some c0 > 0, where the last condition means non-tangential approach of xj to x0. Obviously
it suffices to show that for any such sequence {xj} we have

|∇u(yj)| → ∞ ∀ yj ∈ B(xj , dj),

where 8dj = dist(xj , D1). To show this, we scale the function u by

uj(x) :=
u(djx + xj)

u(xj)
in B8(0).

Since
∆puj = 0, uj > 0 in B8(0),

we have, by Harnack’s inequality,

sup
B4

uj ≤ C inf
B4

uj ≤ Cuj(0) = C.

In particular, uj is a bounded sequence in B4. Hence by standard elliptic theory, a subsequence
of uj converges to a solution u0 in B4, satisfying

∆pu0 = 0, u0(0) = 1, u0 > 0 in B4.

Moreover, the level sets of u0 are convex, since they are convex for all uj .
Now suppose |∇u(xj)| > j. Then by uniform C1,α estimates

C0 ≥ |∇uj(0)| = dj |∇u(xj)|
u(xj)

≥ jdj

u(xj)
.

Hence
u(xj) ≥ jdj

C0
. (17)

Now if for some
yj = dj ỹ

j + xj ∈ B(xj , dj),
(
ỹj ∈ B1

)
,

we have |∇u(yj)| ≤ C1 for some C1 > 0, then

|∇uj(ỹj)| = dj |∇u(dj ỹ
j + xj)|

u(xj)
=

dj |∇u(yj)|
u(xj)

≤ djC1

u(xj)
≤ C1C0

j
,

where in the last inequality we have used (17). Hence it follows that |∇u0(ỹ)| = 0, where
ỹ = lim ỹj ∈ B1, for an appropriate subsequence.

To summarize, we have a positive p-harmonic function u0 in B4, with convex level sets, and
with the further property that for some ỹ ∈ B1 there holds ∇u0(ỹ) = 0. This contradicts the
Hopf’s boundary point lemma (see [T]). And the proof is completed in this case.

The second case x0 ∈ ∂D2 is treated similarly, with reversed argument. We sketch some
details. So we may start as we did in the previous case, and assuming now

|∇u(xj)| < 1/j, and |∇u(yj)| ≥ C0 > 0,

with yj as before
yj = dj ỹ

j + xj ∈ B(xj , dj),
(
ỹj ∈ B1

)
.
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Again all the above arguments are in order and we have the limit function u0 and the limit
point ỹ in B1. Let us see what more information we can deduce. Indeed, on the one side, by
elliptic estimates,

C1 ≥ |∇uj(ỹj)| = dj |∇u(yj)|
u(xj)

≥ djC0

u(xj)
,

and on the other side

|∇uj(0)| = dj |∇u(xj)|
u(xj)

≤ dj

ju(xj)
.

Upon combining these estimates, we arrive at

|∇uj(0)| ≤ C0C1

j
.

As j tends to infinity we’ll have |∇u0(0)| = 0. And again the Hopf’s principle is violated.
The lower and upper semi-continuity properties follow in the same way as in the proof of

Theorem 1.3 in [HS4]. ut
Lemma 3.8 Let u be a solution to ∆pu = 0 in a domain Ω, and introduce the linear elliptic
operator Lu defined everywhere, except at critical points of u, by

Lu := |∇u|p−2∆ + (p− 2)|∇u|p−4
N∑

k,l=1

∂u

∂xk

∂u

∂xl

∂2

∂xk∂xl
.

Then Lu(|∇u|p) ≥ 0 in Ω.

This lemma is essentially proved, though stated differently, in the papers of Payne and Philip-
pin, [PP1] and [PP2], see also the discussion in [HS2].

For two nested convex sets D1 ⊂ D2, and for x ∈ ∂D1 we denote by Tx,a the supporting
hyperplane at x with the normal a pointing away from D1. Obviously, Tx,a is not necessarily
unique, depending on the geometry of ∂D1. Now for each x ∈ ∂D1 there corresponds a point yx

(not necessarily unique) on ∂D2∩{z : a ·(z−x) > 0} and such that a ·(yx−x) = max a ·(z−x),
where the maximum has been taken over all z ∈ ∂D2 ∩ {z : a · (z − x) > 0}.
Lemma 3.9 Let D1 and D2 be two nested convex domains (D1 ⊂ D2) and denote by u the
p-capacitary potential of D2 \D1, i.e. the solution of





∆pu = 0 in D2\D1

u = c1 on ∂D1

u = c2 on ∂D2

(18)

where c1 and c2 are two given constants c1 > c2 ≥ 0. Then

lim sup
z→x

z∈D2\D1

| ∇u(z) | ≥ lim sup
z→yx

z∈D2\D1

| ∇u(z) | ∀ x ∈ ∂D1, (19)

where yx is the point indicated in the discussion preceding this lemma.

For a proof of this lemma see [HS2], [HS3].

Definition 3.10 (Extremal points) For a domain D ∈ RN we say a point x ∈ ∂D is an
extremal point if there exists a supporting plane to D touching ∂D at x only. We denote the
set of all extremal points of D by ED.

Lemma 3.11 Retain the hypothesis in Lemma 3.9 and suppose also that ∂D1 and ∂D2 are
C1.Then

|∇u(x)| ≥ inf
y∈ED2

|∇u(y)|, for all x ∈ D2 \D1.
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This lemma is a consequence of Lemma 3.9 and geometric considerations.

The next lemma was an important tool in the variational existence treatment of the multi-
layer problem by P. Laurence and E Stredulinsky [LS]:

Lemma 3.12 (See [LS], Lemma 4.1 and [A4], Thm. 1.) Retain the hypothesis in Lemma 3.9.
Suppose moreover ∂Di (i = 1, 2) contains a line segment li, and that |∇u| ≥ c0 > 0. Then
|∇u|−1 is convex on l2 and it is concave on l1.

4 The two-layer problem

4.1 Main result

Let us consider two bounded convex domains K1 and K3 in RN , such that K3 strictly contains
K1 (i.e. K1 ⊂⊂ K3). We look for a convex domain K2, such that

K1 ⊂⊂ K2 ⊂⊂ K3

and the p-capacitary potentials u1 and u2 of the sets K2 \ K1 and K3 \ K2 respectively, i.e.
solutions of





∆pu1 = 0 in K2 \K1

u1 = 1 on ∂K1

u1 = 0 on ∂K2

,





∆pu2 = 0 in K3 \K2

u2 = −1 on ∂K3

u2 = 0 on ∂K2

(20)

satisfy a nonlinear joining condition like

|∇u1(x)| = g(x, |∇u2(x)|) on ∂K2. (21)

We have the following result.

Theorem 4.1 (two phases) Let K1,K3 be two convex domains, such that K3 strictly contains
K1, and g ∈ G. Then there exists a convex C1 domain ω, K1 ⊂⊂ ω ⊂⊂ K3, which is a
classical solution of the two-layer free boundary problem. The latter means that the p-capacitary
potentials u1 and u2 of the sets ω \ K1 and K3 \ ω respectively (i.e. solutions of (20) with
K2 = ω) satisfy

lim
z→x

z∈ω\K1

|∇u1(z)| = lim
y→x

y∈K3\ω
g(y, |∇u2(y)|) ∀ x ∈ ∂ω . (22)

4.2 Notations, definitions

4.2.1 p-capacitary potentials

For every subdomain ω such that K1 ⊂⊂ ω ⊂⊂ K3, we set ω1 = ω \K1 and ω2 = K3 \ ω. We
introduce the p-capacitary potentials uω

1 (respectively uω
2 ) or more simply u1 (respectively u2)

when there is no possible confusion, the solutions of the boundary value problems




∆pu1 = 0 in ω1

u1 = 1 on ∂K1

u1 = 0 on ∂ω





∆pu2 = 0 in ω2

u2 = −1 on ∂K3

u2 = 0 on ∂ω
(23)

In the sequel, we will refer to u1 as the inner potential and to u2 as the outer potential of the
set ω. We want to find a domain Ω satisfying a joining condition written

|∇u1(x)| = g(x, |∇u2(x)|)

as explained in the previous subsection. For that purpose, we introduce the following classes of
domains:
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4.2.2 Subsolutions, supersolutions

An open set ω (such that K1 ⊂⊂ ω ⊂⊂ K3) is called a subsolution (of the problem) if its
p-capacitary potentials u1 and u2 satisfy:

lim inf
z→x
z∈ω1

|∇u1(z)| ≥ lim sup
y→x
y∈ω2

g(y, |∇u2(y)|) ∀ x ∈ ∂ω . (24)

An open set ω (such that K1 ⊂⊂ ω ⊂⊂ K3) is called a supersolution (of the problem) if its
p-capacitary potentials u1 and u2 satisfy:

lim sup
z→x
z∈ω1

|∇u1(z)| ≤ lim inf
y→x
y∈ω2

g(y, |∇u2(y)|) ∀ x ∈ ∂ω . (25)

4.2.3 The classes A,B, C
We are going to work only with convex domains, so let us denote by

C = {ω convex bounded open subset of RN , K1 ⊂⊂ ω ⊂⊂ K3}.

Then, we will denote by A the class of convex subsolutions and B the class of convex superso-
lutions:

A = {ω ∈ C : lim inf
z→x
z∈ω1

|∇u1(z)| ≥ lim sup
y→x
y∈ω2

g(y, |∇u2(y)|) ∀ x ∈ ∂ω }.

B = {ω ∈ C : lim sup
z→x
z∈ω1

|∇u1(z)| ≤ lim inf
y→x
y∈ω2

g(y, |∇u2(y)|) ∀ x ∈ ∂ω }.

A classical solution of the two-phase free-boundary problem is obviously a domain Ω ∈ A∩B.

4.3 Stability results for the class B
First we show that the class B is closed under intersection.

Lemma 4.2 Let ω1, ω2 be in B. Then ω1 ∩ ω2 ∈ B.

Proof: As the intersection of two convex domains is convex, we need to prove the condition
on the gradients for u1 := uω1∩ω2

1 and u2 := uω1∩ω2

2 at the boundary of ω1∩ω2. By comparison
principle, 0 ≤ u1 ≤ min(uω1

1 , uω2

1 ), which implies that for x ∈ ∂(ω1 ∩ ω2) ⊂ ∂ω1 ∪ ∂ω2 we have
(for example, we choose the case where x ∈ ∂ω1):

u1(x) = uω1

1 (x) = 0 and lim sup
y→x

y∈(ω1∩ω2)1

| ∇u1(y) |≤ lim sup
y→x
y∈ω1

1

| ∇uω1

1 (y) |

while, since u2 ≤ min(uω1

2 , uω2

2 ) ≤ 0, we have

u2(x) = uω1

2 (x) = 0 and lim inf
y→x

y∈(ω1∩ω2)2

| ∇u2(y) |≥ lim inf
y→x
y∈ω1

2

| ∇uω1

2 (y) | .

Now, by monotonicity of g with respect to its second argument, and the fact that ω1 belongs to
B:

lim sup
y→x

y∈(ω1∩ω2)1

| ∇u1(y) |≤ lim sup
y→x
y∈ω1

1

| ∇uω1

1 (y) |≤

≤ lim inf
y→x
y∈ω1

2

g(y, |∇u2(y)|) ≤ lim inf
y→x

y∈(ω1∩ω2)2

g(y, |∇u2(y)|)

ut
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Now, the technical and more difficult point is to prove that B is stable, in some sense, for
decreasing sequences of convex domains. Indeed, our aim is to construct a solution to the free
boundary problem, by taking a minimal element (for inclusion) in the class B. So, we need some
stability of B by the constructing process that we are going to use.

Theorem 4.3 Let ω1 ⊃ ω2 ⊃ · · · , be a decreasing sequence of convex domains in B, and

suppose ω =
◦

∩ωn (the interior of the closure) belongs to C. Then ω ∈ B.

Proof: Since the domains involved are convex and they all contain K1, they are uniformly
Lipschitz. In particular, by standard up to boundary regularity (see [K]), the p-capacitary
potentials un

1 , un
2 are Cα (α depending on the uniform cone property of ωn) in the entire space

RN (after appropriate extension). Since also un
1 , un

2 are decreasing sequences we have a limit
functions u1, u2 which are the p-capacitary potentials of ω1 = ω \ K1, and ω2 = K3 \ ω,
respectively. Moreover, by local C1,α regularity (see [Le]), convergence takes place also for the
gradients on every compact subset of ω1 and ω2 respectively.

We need to show ω ∈ B. Let ε > 0 be small enough and fix x0 ∈ K1. Now for each y ∈ ∂ω let
us denote by R(x0, y) the ray emanating from x0 and traveling through y. Then, by the choice of
x0, and the convexity of the sets ω, ωn we can choose unique points x = x(y, n) ∈ ∂ωn∩R(x0, y)
and xε ∈ {un

2 = −δε} ∩R(x0, y), where δε > 0 is to be chosen later. It follows that

lim
n→∞

x(y, n) = y, lim
ε→0

xε = x(y, n) non-tangentially.

Next denote by vn the solution of the following boundary-value problem:




Lun
1
(vn) = 0 in {0 < un

1 < 1
2}

vn(x) = |∇un
1 (x)|p on {un

1 = 1
2}

vn(x) = Gn,ε(x) on ∂ωn
,

where

Gn,ε(x) = min (2Mp, gp(x, |∇un
2 (xε)|+ ε)) , with M = sup

{0<un
1 < 1

2}
|∇un

1 |,

and Lun
1

is defined in Lemma 3.8. Observe that the boundedness of M follows by simple (linear)
barrier argument.

Fix a point y ∈ ∂ω. Then two possibilities may arise (see Lemma 3.7)
Case 1) |∇u2(y)| = ∞ non-tangentially,
Case 2) |∇u2(y)| = M1 non-tangentially.
In both cases we’ll have

|∇un
2 (xε)| ≈ |∇un

2 (x)|.
In Case 1 we obtain

gp(x, |∇un
2 (xε)|+ ε) > 2Mp ≥ |∇un

1 (x)|p,

i.e., Gn,ε(x) ≥ |∇un
1 (x)|p.

In Case 2 we have (by non-tangential continuity of |∇un
2 |)

|∇un
2 (x)| ≤ |∇un

2 (xε)|+ ε,

provided δε is small enough. And by non-decreasing property of g we have

gp(x, |∇un
2 (xε)|+ ε) ≥ gp(x, |∇un

2 (x)|) ≥ |∇un
1 (x)|p,

Hence
Gn,ε(x) ≥ |∇un

1 (x)|p.

12



Therefore upon applying the comparison principle (for the operator Lun
1
; see Lemma 3.8) we

can obtain
vn(x) ≥ |∇un

1 (x)|p in {0 < un
1 < 1/2}.

Now as n →∞,
v(x) := lim

n
vn(x) ≥ |∇u1(x)|p in {0 < u1 < 1/2}.

Since xε is compactly inside ω2 and ∇un
2 (xε) → ∇u2(xε) in Cα-norm (see [Le]) we have a

uniform convergence for

vn|∂ωn
1

= Gn,ε(x) = min (2Mp, gp(x, |∇un
2 (xε)|+ ε)|) ,

to
Gε(x) = min (2Mp, gp(x, |∇u2(xε)|+ ε)|) .

Therefore for z ∈ B(x, rε) ∩ ω1 and x ∈ ∂ω

|∇u1|p(z) ≤ v(z) ≤ Gε(x) + ε ≤ gp(x, |∇u2(xε)|+ ε)|+ ε,

provided rε is small enough. By Lemma 3.7, and continuity of g (as ε → 0) we get

lim sup
z→x
z∈ω1

|∇u1(z)| ≤ lim inf
y→x
y∈ω2

g(y, |∇u2(y)|).

Hence ω ∈ B. ut

4.4 Proof of Theorem 4.1

1st step Existence of subsolutions and supersolutions.
Let us consider the solution u of the boundary value problem (p-capacitary potential)





∆pu = 0 in K3 \K1

u = 1 on K1

u = −1 on RN \K3

(26)

For any −1 < α < 1, let ωα = {u(x) > α}. Also define u1,α(x) = ((u(x) − α)/(1 − α)) in
the closure of ω1,α = {α < u(x) < 1} and u2,α(x) = ((u(x) − α)/(1 + α)) in the closure of
ω2,α = {−1 < u(x) < α}. Then ωα is a supersolution (resp. subsolution) if

|∇u(x)|
1− α

= |∇u1,α(x)| < (>)g(x, |∇u2,α(x)|) = g(x,
|∇u(x)|
1 + α

)

for all x ∈ ∂ωα. But a comparison argument involving the p-capacitary potential in any slab
between parallel boundary planes tangent to ∂ωα and ∂K3 shows that |∇u(x)| ≥ ((α+1)/M) ≥
((1 + α)/R) for all x ∈ ∂ωα, where M = sup{dist(x, ωα) : x ∈ ∂K3}. Therefore, ωα is a
supersolution (resp. subsolution) provided that

1 + α

1− α
< (>)

g(x, y)
y

for all x ∈ ∂ωα and all y ≥ y0 = (1/R). Applying Assumption (A4), we see that ωα is a
supersolution if ((1 + α)/(1 − α)) ≤ C1 (true for α sufficiently close to −1), and that ωα is a
subsolution if ((1 + α)/(1− α)) ≥ C2 (true for α sufficiently close to 1).

We remark that K1 and K3 are regular, so that |∇u(x)| is both uniformly bounded and
uniformly positive in K3 \K1, then the above argument obtains supersolutions and subsolutions
without involking Assumption (A4) (one can replace it by the much weaker assumption that
g(x, y) →∞ as y →∞ uniformly over x ∈ K).

In the sequel Ω0 will denote a given subsolution and Ω1 a given supersolution.
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2nd step Construction of a minimal element in the class B.
We introduce the class S := {ω ∈ B, with Ω0 ⊂ ω ⊂ Ω1}. Let I be the intersection of all

domains in the class S and set Ω =
◦
I (the interior of the closure, which is still convex). To

prove Ω ∈ B, we select a sequence of domains {ωn}∞n=1 in S such that ∩
n≥1

ωn = I and we

consider the sequence of domains {Ωn}∞n=1 defined by Ω1 = ω1 and Ωn+1 = Ωn ∩ ωn+1 (n ≥ 1).
By Lemma 4.2 each Ωn is convex and belongs to B. Hence, since Ωi+1 ⊂ Ωi, Theorem 4.3
gives the desired result.

3rd step On EΩ, extremal points of Ω, we have lim sup |∇u1(z)| = lim inf g(y, |∇u2(y)|).

This property can be proved in the same way as in [HS2], but since it is slightly more
complicated and for sake of completeness, we give here the complete proof. Suppose the property
fails. Then, there exists X0 ∈ EΩ such that

lim sup
z→X0
z∈Ω1

|∇u1(z)| = lim inf
y→X0
y∈Ω2

g(y, |∇u2(y)|)(1− 4α), with α > 0. (27)

We denote by
l1 = lim sup

z→X0
z∈Ω1

|∇u1(z)|

and
l2 = lim inf

y→X0
y∈Ω2

|∇u2(y)|.

Note that since g is continuous and non decreasing, lim inf
y→X0

g(y, |∇u2(y)|) = g(X0, l2). Therefore

assumption (27) can be written as

l1 = g(X0, l2)(1− 4α). (28)

We assume first l2 < +∞. Hence for some small neighborhood V of X0 there holds

|∇u1(z)| ≤ l1(1 + α) ∀z ∈ V ∩ Ω1 (29)

and
|∇u2(y)| ≥ l2(1− α) ∀y ∈ V ∩ Ω2. (30)

Let us fix a hyperplane Td, parallel to a supporting plane at X0, with dist(X0, Td) = d and such
that Td ∩ Ω ⊂ V. This is possible due to the extremal property of X0.

By rotation and translation, we assume X0 is the origin and Td = {x1 = d}. Let now
Tδ = {x1 = δ} and set Ωδ = Ω \ {x1 ≤ δ}. Then by comparison principle the (inner) p-
capacitary potential uδ

1 of Ωδ
1 satisfies

0 ≤ uδ
1 ≤ u1 in Ωδ

1, (31)

while the (outer) potential satisfies

uδ
2 ≤ u2 ≤ 0 in Ω2, (32)

which implies that on points x belonging to ∂Ω ∩ ∂Ωδ:

lim sup
y→x

y∈Ωδ
1

|∇uδ
1(y)| ≤ lim sup

y→x
y∈Ω1

|∇u1(y)| ≤ lim inf
y→x
y∈Ω2

g(y, |∇u2(y)|) ≤ lim inf
y→x

y∈Ωδ
2

g(y, |∇uδ
2(y)|).

Now by (29) and (31)

max
Td

uδ
1 ≤ max

Td

u1 ≤ d sup
{0≤ x1≤d}

|∇u1| ≤ l1(1 + α)d. (33)
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Define

v := uδ
1 +

l1(1 + α)d
d− δ

(d− x1).

Since the second derivatives of v and uδ
1 coincide, we have

Luδ
1
v = Luδ

1
uδ

1 = 0 in Ωδ
1 ∩ {x1 < d}.

Therefore in Ωδ
1 ∩ { x1 < d}, v takes its maximum on the boundary. By inspection and (33), it

is easy to see that on ∂(Ωδ ∩ { x1 < d}) ⊂ Td ∪ Tδ ∪ (∂Ω ∩ {δ < x1 < d}),
v ≤ l1(1 + α)d,

with equality on Tδ. Hence
∂v

∂x1
≤ 0 on Tδ, i.e.,

|∇uδ
1| ≤

l1(1 + α)d
d− δ

on Tδ. (34)

Now, it remains to estimate |∇uδ
2| on Tδ. For that purpose, let us introduce a part of a level set

of uδ
2 contained in the neighborhood V ∩ Ω2 and consider, on that level set, one point, say xδ

where the supporting hyperplane is parallel to Tδ. By lemma 3.9, we have

∀y ∈ Tδ |∇uδ
2(y)| ≥ |∇uδ

2(xδ)|. (35)

Now, by continuity of g, we can choose ε and δ small enough such that

∀y ∈ Tδ g(X0, l2) ≤ g(y, l2(1− ε))(1 + α) . (36)

Now, by uniform convergence of |∇uδ
2| to |∇u2| when δ → 0 on the level set, we can choose δ

small enough such that
|∇uδ

2(y)| ≥ |∇uδ
2(xδ)| ≥ l2(1− ε).

Replacing in (36) and using(28), (34) and the monotonicity of g yields

∀y ∈ Tδ |∇uδ
1(y)| ≤ g(y, |∇uδ

2(y)|)(1 + α)2(1− 4α)d
d− δ

.

Now, it suffices to choose δ even smaller so that
(1 + α)2(1− 4α)d

d− δ
≤ 1, which in turn implies

Ωδ ∈ B. Since Ωδ ⊂ Ω we have reached a contradiction.
Now, if l2 = +∞, we can choose the neighborhood V in such a way that

|∇u2(y)| ≥ 2M ∀y ∈ V ∩ Ω2

where M = supx∈Ω1
|∇u1(x)|. Then, we reach a contradiction exactly in the same way, by

choosing δ small enough such that Ωδ will be in the class B.

4th step The boundary of Ω is C1.
It suffices to show that at each boundary point there exists a unique tangent plane. Suppose the
latter fails. Let x0 ∈ ∂Ω, with two supporting planes Π1, Π2 at x0. Then by barrier arguments
(Lemma 3.1–3.2)

lim
Ω13y→∂Ω∩Π1∩Π2.

|∇u1(y)| = 0 and lim
Ω23z→∂Ω∩Π1∩Π2.

|∇u2(z)| = +∞.

Let Π3 be a third plane supporting ∂Ω at x0 and such that Π3 ∩ ∂Ω ⊂ Π1 ∩ Π2, i.e., Π3 does
not touch any other boundary points of Ω than those on the intersection of the planes Π1 and
Π2. Now, move Π3 towards the interior of Ω such that it cuts off Ω a small cap; it may well
be a tub-like region. Then a similar argument as in the previous step will prove that this new
domain is still in the class B. This contradicts the minimal property of Ω.
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5th step The nonlinear joining condition holds on EΩ.
Let x ∈ EΩ be fixed. On one hand, we have the following chain of (in)-equalities (here n.t.

means non-tangentially, see Lemma 3.7 for details):

|∇u1(x)| := lim z→x n.t.
z∈Ω1

|∇u1(z)| ≤ lim sup z→x
z∈Ω1

|∇u1(z)| ≤
lim inf y→x

y∈Ω2
g(y, |∇u2(y)|) ≤ lim y→x n.t.

y∈Ω2
g(y, |∇u2(y)|) := g(x, |∇u2(x)|) (37)

where the first and last equalities are due to Lemma 3.7, the second and fourth inequalities
come from the definition of a liminf and limsup (we also use the continuity of g) and the third
inequality comes from the fact that Ω belongs to the class B. On the other hand, we have the
following chain of (in)-equalities:

|∇u1(x)| ≥ lim sup
z→x
z∈Ω1

|∇u1(z)| = lim inf
y→x
y∈Ω2

g(y, |∇u2(y)|) ≥ g(x, |∇u2(x)|) (38)

where the first inequality is the upper semi-continuity of u1 at x, the equality is step 3 and the
second inequality is the lower semi-continuity of u2 at x. Now, (37) and (38) together give the
desired result.

6th step The nonlinear joining condition holds at every boundary point.
According to step 5, it remains to prove the equality |∇u1(x)| = g(x, |∇u2(x)|) on maximal line
segments in I = [a, b] ⊂ ∂Ω. For any such line segment one readily verifies that a, b ∈ EΩ. Also
at the points a, b we have equation (38) verified. In view of assumption (A3) for the function
g in conjunction with Lemma 3.12 we claim that the function

x 7→ 1
|∇u1(x)| −

1
g(x, |∇u2(x)|)

is convex, non-negative. The latter depends on the fact that Ω belongs to the class B and
it vanishes at the extremities of any segment (by step 5 and n.t.-continuity). Therefore, this
function vanishes identically. This completes the proof.

5 Uniform separation estimate

Theorem 5.1 (compare to [A2], Lemma 4.4) Let H denote the set of all configurations (K1, ω,K3)
such that K1, ω,K3 are convex,

Bρ(0) ⊂ K1 ⊂⊂ ω ⊂⊂ K3 ⊂ BR(0),

and ω is a supersolution relative to K1 and K3. Then there exists a value η > 0 such that

dist(∂K1, ∂ω) ≥ ηdist(∂K1, ∂K3) (39)

uniformly for all (K1, ω, K3) ∈ H.

This result follows directly from lemmas 5.2 and 5.3, which follow.

Lemma 5.2 For any (K1, ω, K3) ∈ H, let

α = max{u(x) : x ∈ ∂ω} ∈ (−1, 1),

where u solves the Dirichlet problem (26). Then there exists a value α0 ∈ (−1, 1) such that
α ≤ α0 uniformly over all (K1, ω, K3) ∈ H.

Proof: It suffices to consider only configurations in H such that α ∈ (0, 1). Given such a
configuration (and the corresponding value α),let u1, u2, ω1, ω2 be as defined in (23). Define
the p-harmonic functions u1,α(x) = ((u(x) − α)/(1 − α)) and u2,α(x) = ((u(x) − α)/(1 + α)),
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both in the closure of the set Ω := K3 \K1. Then u1 = u1,α = 1 on ∂K1 and u1,α ≤ 0 = u1

on ∂ω. It follows by the comparison principle for p-harmonic functions that u1,α ≤ u1 in ω1.
Similarly, we have u2 = u2,α = −1 on ∂K3 and u2,α ≤ 0 = u2 on ∂ω, from which it follows by
the comparison principle that u2,α ≤ u2 in ω2. We choose a point x0 ∈ ∂ω such that u(x0) = α.
Clearly the function u is regular near x0 ∈ Ω (and therefore so are u1,α and u2,α). For small
δ > 0, let xδ = x0 + δν0 ∈ ω1, where ν0 denotes the unit vector with direction opposite ∇u(x0).
Also let γδ ⊂ ω1 denote the directed line-segment of length δ joining x0 to xδ. Clearly

(∂u1(x)/∂ν0) ≤ |∇u1(x)| ≤ sup
x∈γδ

|∇u1(x)|

and
|(∂u1,α(x)/∂ν0)− |∇u1,α(x0)|| ≤ z(δ),

both on γδ, where z(δ) → 0 as δ → 0. Therefore

0 ≤ u1(xδ)− u1,α(xδ) =
∫

γδ

(∂/∂ν0)(u1(x)− u1,α(x))ds

≤ ( sup
x∈γδ

|∇u1(x)| − |u1,α(x0)|+ z(δ))δ,

from which it follows that

lim sup
ω13x→x0

|∇u1(x)| ≥ |∇u1,α(x0)| = |∇u(x0)|
1− α

(40)

For small δ > 0, Let γδ denote a directed arc of steepest ascent of u2 of length δ, joining a point
xδ ∈ ω2 to the point x0. Since ∂u2(x)/∂ν = |∇u2(x)| on γδ, where ν denotes the forward unit
tangent vector to the arc, we have

0 ≥ u2,α(xδ)− u2(xδ) =
∫

γδ

(∂/∂ν)(u2(x)− u2,α(x))ds

≥
∫

γδ

(|∇u2(x)| − |∇u2,α(x)|)ds,

from which it follows that

inf
x∈γδ

|∇u2(x)| ≤ |∇u2,α(x0)|+ z(δ),

and therefore that

lim inf
ω23x→x0

|∇u2(x)| ≤ |∇u2,α(x0)| = |∇u(x0)|
1 + α

. (41)

In view of the definition of an outer solution (see ), it follows from (40) and (41) that

(|∇u(x0)|/(1− α)) ≤ g(x0, (|∇u(x0)|/(1 + α))). (42)

A simple comparison argument involving the p-capacitary potential in a slab bounded by parallel
planes, one tangent to the surface {u(x) = α} at x0, the other tangent to ∂K3, shows that
|∇u(x0)| ≥ ((α + 1)/M) ≥ ((α + 1)/R), where M = supx∈∂K3

dist(x, {u(x) = α}). It follows
from (42) and Assumption (A4) that

(1/(1− α)) ≤ ((1 + α)/(1− α)) ≤ (g(x0, y)/y) ≤ C2, (43)

where we set y = (|∇u(x0)|/(1+α)) ≥ y0 = (1/R), and where C2 depends only on R, y0, and the
function g. The assertion follows, since (43) cannot be satisfied unless α ≤ α0 = (1− (1/C2)).

Lemma 5.3 In the context of Lemma 5.2, there is a constant η > 0 such that

dist(∂K1, {u(x) = α0}) ≥ ηdist(∂K1, ∂K3)

for any convex sets K1 , K3 such that Bρ(0) ⊂ K1 ⊂⊂ K3 ⊂ BR(0).
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Proof: For any r ∈ (0, 1] and unit vector ν, let E(r, ν) = {x ∈ RN : dist(x,D(r, ν)) <
r}, where λ = (ρ2/R) and D(r, ν) denotes the closure of the convex hull of the set {0} ∪
Bλr(−rρν). Let ur,ν(x) denote the p-harmonic function in the annular domain Ω(r, ν) = E(r, ν)\
D(r, ν) whose continuous extension to the closure satisfies ur,ν(∂D(r, ν)) = 1, ur,ν(∂E(r, ν)) =
−1. Then dist(0, {ur,ν(x) = α0}) = rη, where η = dist(0, {u1,ν(x) = α0}) > 0, since
ur,ν(x) = u1,ν(x/r). For r = min{1, dist(∂K1, ∂K3)} and any point x0 ∈ ∂K1, we have
x0 + D(r, (x0/|x0|)) ⊂ K1 and x0 + E(r, (x0/|x0|)) ⊂ K3. By the comparison principle, we
have u(x) ≥ ur,ν(x − x0) in Ω ∩ (x0 + Ωr,ν), where ν = (x0/|x0|). It follows that Brη(x0) ⊂
K1 ∪ {u(x) < α0} for all x0 ∈ K1, from which the assertion follows.

6 The multi-layer case

Let us recall the problem. We are given two strictly nested convex domains K1 ⊂ Km+2,
real numbers −1 ≤ λi ≤ 1, (i = 1, 2, · · · ,m + 1) with λi > λi+1, and continuous functions
gi : (Km+2 \K1)×R+ → R+ (i = 2, · · · ,m+1). We are looking for a sequence of nested convex
domains

K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Km+1 ⊂⊂ Km+2

such that the p-capacitary potentials ui(x) of the sets Ki+1 \Ki, i.e. solutions of




∆pui = 0 in Ki+1 \Ki

ui = λi on ∂Ki

ui = λi+1 on ∂Ki+1,
(44)

satisfy the following joining conditions:

|∇ui(x)| = gi(x, |∇ui+1(x)|) on ∂Ki+1 (i = 1, · · · ,m).

For simplicity we set λ1 = 1 and λm+1 = −1. The following is our main result in this paper.

Theorem 6.1 (multi-layer) Let K1,Km+2 be two bounded convex domains, such that Km+2

strictly contains K1, λi ∈ (−1, 1), i = 2, · · · ,m+1 are arbitrary real numbers with λi > λi+1, and
gi ∈ G, i = 1, · · · ,m. Then there exists a sequence of convex C1 domains {Ki : 1 < i < m + 2},
such that

K1 ⊂⊂ K2 ⊂⊂ · · · ⊂⊂ Km+1 ⊂⊂ Km+2,

and which is a classical solution of the multilayer free boundary problem. The latter means that
the p-capacitary potentials ui of the sets Ki+1 \Ki, i = 1, · · · ,m, i.e. solutions of (44) satisfy

lim
z→x

z∈Ki+1\Ki

|∇ui(z)| = lim
y→x

y∈Ki+2\Ki+1

g(y, |∇ui+1(y)|) ∀ x ∈ ∂Ki+1 i = 1, · · · ,m. (45)

Definitions: We let B denote the family of all ordered m − 1-tuples ω := (ω2, ω3, · · · , ωm+1),
such that

K1 ⊂⊂ ω2 ⊂⊂ · · · ⊂⊂ ωm+1 ⊂⊂ Km+2,

every ωi is a convex domain and each domain ωi is a supersolution of the two-layer problem
relative to ωi−1 and ωi+1. The latter means that for every i = 1, · · · , m, we have

limsup
z→x

z∈ωi+1\ωi

|∇ui(z)| ≤ liminf
y→x

y∈ωi+2\ωi+1

gi(y, |∇ui+1(y)|) ∀ x ∈ ∂ωi+1, (46)

where we take ω1 := K1, ωm+2 := Km+2 and define ui to be the solution or (44) with Ki

replaced by ωi for each i = 2, · · · ,m + 1.

1st step: modified 2-layer existence result
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In view of Theorem 5.1, the proof of Theorem 4.1 actually proves the following result for
the 2-layer problem: (a)There exists a unique absolute minimizer among all outer solutions. (b)
This absolute minimizer solves the 2-layer problem (in the same sense as in Theorem 4.1).

2nd step: B is not empty.
Under our assumptions, an outer (m − 1)-surface outer solution can be easily obtained in

the form: ωi = {u(x) > αi}, i = 2, · · · , m + 1, where u denotes the solution of (26) with
K3 replaced by Km+2, and where the values αi are appropriately chosen so that each ωi is a
supersolution relative to its neighbors ωi−1 and ωi+1 (same argument as in the first step in the
proof of Theorem 4.1).

3rd step Uniform separation in B
Let ω := (ω2, · · · , ωm+1) ∈ B. Then for each i = 2, · · · ,m + 1, ωi is a supersolution of the

2-layer problem relative to ωi−1, ωi+1, and the function gi. Thus, by Theorem 5.1, we have

dist(∂ωi−1, ∂ωi) ≥ ηdist(∂ωi−1, ∂ωi+1) ≥ ηdist(∂ωi, ∂ωi+1)

for all i = 2, · · · ,m + 1. It follows that

dist(∂ωi−1, ∂ωi) ≥ ηm+2−i dist(∂ωm+1, ∂Km+2) ≥ ηmdist(∂ωm+1, ∂Km+2)

for all i = 2, · · · , m + 1. Thus, if ωn, n = 1, 2, · · ·, is a weakly decreasing sequence of elements
of B (so that the corresponding sequence of (m − 1)-st components is also weakly decreasing
and thus uniformly bounded away from ∂Km+2), then there exists a value δ > 0 such that for
all n = 1, 2, · · ·, the surface components of ωn are separated from each other (and from ∂K1

and ∂Km+2 by a distance of at least δ. Therefore the componentwise intersection has the same
property.

4th step pairwise intersection; minimal sequence in B.
B is closed under the operation of componentwise intersection. In fact, given ω1, ω2 ∈ B, let

ω = ω1∩ω2 be the componentwise intersection. Then ∂ω ⊂ ∂ω1∪∂ω2, and it is easy to see (us-
ing the standard comparison principle) that uω ≤ uωj

, j = 1, 2, componentwise in the common
domains of the component p-capacitary potentials. By repeated application of componentwise
intersections, one defines a (componentwise) weakly decreasing minimal sequence of supersolu-
tions ωn = (ωn

2 , · · · , ωn
m+1), n = 1, 2, · · ·, where the latter means that for any i = 2, · · · ,m − 1

and any x ∈ RN such that x 6∈ ωi for some supersolution ω ∈ B, we have x 6∈ ωn
i for all

sufficiently large n.

5th step minimal element in B
For each fixed i = 2, · · · ,m + 1, the sequence of domains ωn

i , n = 1, 2, 3, · · ·, is weakly
decreasing under set inclusion and therefore convergent to a domain Ωi ⊃ K1 (Ωi := the
interior of the infinite intersection of the domains ωn

i , n = 1, 2, 3, · · ·). Clearly the domains Ωi

are strictly ordered by inclusion, and in fact by step 3, we have dist(∂Ωi, ∂Ωi+1) ≥ δ for all
i = 1, · · · ,m+1 (where we set Ω1 := K1 and Ωm+2 := Km+2). Since Ωi ⊂ ωn

i for all i, each ωn
i ,

i = 2, · · · ,m + 1, is actually a supersolution of the 2-layer problem relative to Ωi−1, Ωi+1, and
gi. Therefore, Ωi (the interior of the infinite intersection of the ωn

i ) is also a supersolution of
the same 2-layer problem, due to Theorem 4.3. Therefore Ω ∈ B. In fact Ω is, by construction,
the minimal supersolution in B.

6th step Ω solves the multi-layer problem
Since Ω is a minimal element in B, each component Ωi of Ω must be the minimal supersolution

of the 2-layer problem relative Ωi−1, Ωi+1, and gi. Therefore, by step 1, Ωi is a solution of this
2-layer problem in the sense of Theorem 4.1. Thus Theorem 6.1 is proved.
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