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LIPSCHITZ PROPERTY OF THE FREE BOUNDARY
IN THE PARABOLIC OBSTACLE PROBLEM

D. E. APUSHKINSKAYA, H. SHAKHGOLYAN, N. N. URAL/TSEVA

ABSTRACT. A parabolic obstacle problem with zero constraint is considered. With-
out any additional assumptions on a free boundary, it is proved that near the fixed
boundary, where the homogeneous Dirichlet condition is fulfilled, the boundary of
the noncoincidence set is the graph of a Lipschitz function.

In this paper, the regularity properties of a free boundary in a neighborhood of the
fixed boundary of a domain are studied for a parabolic obstacle problem with zero con-
straint.

For parabolic equations, the simplest obstacle problem can be formulated as follows.
Let D be a domain in R", let Q@ = Dx]0, 77, and let

K={we H(Q):w>0ae inQ,w= ¢ on dQ},

where ¢ is a nonnegative function defined on the parabolic boundary &'Q of the cylinder
Q. Tt 1s required to find a function u € K such that

/D@tu(w — u)dz —|—/HDDUD(w —u)dz + /D(w —u)dz >0

for a.e. ¢t €]0, 7] and for all w € K.
It is known that if u is a solution of the above problem, then, in the sense of distribu-
tions, u satisfies the equation

(0.1) Au—Jiu=xq inQ,

where Q = {(z,t) € Q : u(z,t) > 0}, and xgq is the characteristic function of the set Q.
The set @ = Q(u) is called the noncoincident set, while the set A(u) = {(z,t) : u(z,t) =
|Du(z,t)| = 0} is the coincident set for the solution u; T'(u) = dQ(u) N A(u) is the free
boundary. The possibility must not be ruled out that the free boundary T'(u) and the
fixed boundary &’'Q) meet at points where ¢ = 0. Therefore, the points of contact may
exist.

The regularity of the free boundary (far from 9'Q) was investigated only in the special
case of the Stefan problem, where the boundary and initial conditions guarantee the
additional property d;u > 0; see [C1]. The nonnegativity of the time-derivative of the
solution was used in [C1] for the proof of the fact that d;u is continuous at the points of
the free boundary.

This fact (i.e., the continuity of d:u) is quite important for investigation of the reg-
ularity properties of the free boundary. For instance, I. Athanasopoulos and S. Salsa
proved the following result.
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Theorem ([AtSa]). Let u(z,t) > 0 in Cg := Br(2®)x]t° — R%,t° + R?[, where (2°,1°) €
d{u > 0}. Suppose that u is a solution of equation (0.1) in Cgr, and that D2u € L>(Cg)
and the derivative O;u is continuous in Cg.

Suppose also that in some spatial direction, say ey, the function u is monotone (i.e.,
D.,u > 0) and that 0{u > 0} is the z1-graph of a Lipschitz function f. Then f is a
C'*>_function for some 0 < a < 1.

It should be noted that the above theorem ensures the C'*regularity of the free
boundary d{u > 0} only at the interior points of Cr. Unfortunately, C1*-regularity
may fail to occur at the points of contact between the free boundary and the fixed
boundary. The following counterexample shows that in the ¢-direction the free boundary
0{u > 0} may intersect the fixed boundary transversally.

Counterexample. Let n = 1, and let C, = {(z,1) : 0 < z < r, —r? < t < r?}.
Suppose that a function u on C; is a solution of the one-phase Stefan problem, i.e., u is
a nonnegative solution of equation (0.1) with Q = {(z,t) € C; : u(2,t) > 0} and ux >0
a.e. in ;. Assume that u(0,#) =0 for —1 < ¢ < 1 and

esssup{| Doau| + [Brul} < M.
C1

Assume also that (0, 0) is a free boundary point, i.e., Dyu(0,0) = 0. From Theorems 2.9
and 3.3 of the present paper it follows that for some r > 0 the derivative 0;u is continuous
in the closure C, of the rectangle C, and that the set 9Q N C, is a graph = = f(t) of
some Lipschitz continuous function f. Under our assumptions it is evident that f is a
monotone nonincreasing function, f(t) = 0 for ¢t > 0, and

u(z,t) =0 if 0<z<f(t), (=,t) €Cr,
u(z,t) >0 if z> f(t), (z,t) €Cr.
We exclude the case where f = 0 for —r? < t < r? from our consideration; there is no
loss of generality in assuming that 0 < f(¢) < r/2 for —r? <t < 0.
Now we set v = Jyu and y = = — f(¢). Then, in the rectangle C = {(y,t) : 0 <
y < r/2, —r? < t < r?}, the function v is a nonnegative solution of the equation

Dyyv — 0rv + f'(t)Dyv = 0. Moreover, v is strictly positive inside the set C. Together
with the boundary condition v|y=g = 0, this guarantees the estimate

v(y,t) > By in {(y.t):0<y<p, —p? <t<p}
with some positive constants 3 and p. Returning to the z-variable, we see that
Su>pf(x—f(t) inC,NQ.

Since Dyu = 0 for z = f(¢) and ¢ < 0, on the set C; = C, N {t < 0} we have the
estimate |Dyu| < M (z — f(t)). Therefore, if e; and eq are the standard basis vectors in
R, and R;, respectively, and if e = ageq + aje; with a% + ag =1, a0 >0, a; <0, then
for such a direction e in C; N Q we have

Deu = agbiu+ a1 Dyu > (agB + a1 M) (z — f(2)).

It follows that in QNC, the function u is monotone increasing in the directions e satisfying
agf > —ar M. Since u(0,0) = 0, we obtain

u(z,t)=0 inC;nN {(m,t) << —%t}.
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Thus, we have shown that the free boundary z = f(¢) intersects the ¢-axis at the point
(0,0) transversally.

The main result of the present paper says that the boundary of the noncoincident set
Q is Lipschitz continuous near the part of the lateral surface of ) where the solution is
equal to zero. In particular, this implies that, locally, inside @ and near that part the
free boundary is the graph of a C't%-function.

Our arguments are based on the blow-up technique, in combination with various mono-
tonicity formulas, and on the results of the paper [ASU2] concerning the global solutions
of the parabolic obstacle problem with zero constraint (i.e., the solutions in the entire
half-space {(z,t) € R"*!: z; > 0}). It should be emphasized that our arguments do not
require any additional assumptions on the free boundary.

Together with the monotonicity formula due to L. Caffarelli (see [C2,CK] and Lemma 2.1]]
in [ASU2]), we use also the functional introduced by G. Weiss for the study of some free
boundary problems in the entire space R"*!. Changing Weiss’s notation somewhat, we
shall write this functional as follows:

W(r, 2™, 1", u)

1t . u? -
::r_4/t*_4r2/n<|DU| +2u+t—t*)G(I_I ’t _t)dajdt

Here r is a positive parameter, u is a solution of (0.1) defined for ¢ < 0 and all z € R”

and having at most polynomial rate of growth at the infinity, (z*,¢*) is a point of the
free boundary, and

exp (—|z|?/4t)

Gt = = (g2

fort >0 and G(z,t)=0fort <O0.

In [W] it was showed that the functional W is monotone nondecreasing with respect to
r and that the identity % = 0 for all » > 0 is equivalent to the degree 2 parabolic
homogeneity of the function u.

For our purposes it was essential to introduce an appropriate local version of the Weiss
functional. In particular, this permits us to make a conclusion about the homogeneity
of the blow-ups limits. For the “interior counterpart” of our problem, a local version of
the Weiss functional W was introduced for the first time in [CPS]. Note that in [CPS]
a more general free boundary problem was treated, without the assumption about the
nonnegativity of the solution. In the present paper we introduce a modified local version
of the Weiss functional W, in order to take a homogeneous Dirichlet condition on the
fixed boundary into account. We observe also that we do not use the assumption u > 0
in the proofs of all statements concerning the functional W.

This paper is organized as follows. §1 is devoted to a local version of the Weiss
monotonicity formula. In §2 we prove that J;u is continuous at the points of the free
boundary that lie in a neighborhood of the fixed boundary. Finally, in §3 we analyze the
properties of the free boundary near the fixed boundary.

Notation and definitions. Throughout the paper we use the following notation:

e z = (z,1) are points in R"*!; here z = (21,2) = (z1,29,...,2,) € R", n > 2, and
teR;

o R = {(z,1) € R"* 2y > b}, where b € R;

. R’_}L_H =Rot

o Il, = {(z,t) e R**+1 2y = b};



oIl = Ho;

e ¢eq,..., e, 18 the standard basis in the z-space R”;

e ¢g is the standard basis vector in the t-space R*;

e xq denotes the characteristic function of the set Q C R?+!;

e vy —max{v,0};

e B, (2%) denotes the open ball with center 2° and radius r in the z-space R"; B (2%) =
B, (z°) NR}*TY B, = B, (0);

¢ S (2" ={zeR": |z -2 =7}, S, = 5, (0);

e Q- (2%) = Q,(2°,1% = B,(2°) x]t® — r?,¢°] is a cylinder in R"*1;

o QF (") = QF (a°,1%) = Qu(a%, ) NRIH, Q. = @,(0,0), QF = @F(0,0).

We note that, unlike our previous publications, in this paper the top of the cylinder
Q- (2°%) is included in the set Q,(2%). If Q = ]RZ'H NQ,(2°,1%), then §Q is the parabolic
boundary of Q, i.e., 8Q = Q\Q.

D; denotes the differention operator with respect to z;; 8; = %; Du = (Dyu, D'u) =
(D1u, Dau, ..., Dyu) is the spatial gradient of u; D*u = D(Du) denotes the Hessian; D,
stands for the operator of differentiation along the direction v € R™*! i.e., |v| =1 and

Dou = ZViDiU + vodiu;

i=1

H = A — 9 is the heat operator.

The index 7 will always run from 2 to n. Also, we adopt the usual convention regarding
summation with respect to repeated indices.

We use letters M, N, C' (with or without indices) to denote various constants. To
indicate that, say, N depends on some parameters, we list them in the parentheses:

N(...).

Let M be a constant, M > 1.

We denote by P.(M,b) the class of all local nonnegative solutions of the parabolic
obstacle problem, i.e., a function u belongs to P,(M,b) if u is continuous in Q, N {(z,?) €
R+ 2 > b} and

(a) H[u] = xq in Q, NRP*! where Q = Q(u) := {(z,1) € Q, "R} u(z,1) > 0};
(b) u>0in Q, ORZH, u=0onIl,NQ,;
(c) esssup {|D%u| + |dpul} < M
Q,nR;H
(the first equation in (a) is understood in the sense of distributions).

We also consider the global nonnegative solutions of the parabolic obstacle problem
in the entire half-space R}t N {t < 0} that have at most quadratic growth in  and at
most linear growth in ¢, i.e., the solutions for which

(0.2) esssup {|D%u| + |Osu|} < M.
RrHn{t<0}

More precisely, we say that a continuous function u belongs to the class Poo (M, b) if
(a') H[u] = xq in RPT' N {t < 0}, where Q@ = Q(u) == {(=,¢) € R}t n {t < 0} :
u(x,t) > 0};
(b)) w>0in RPN {t <0}, u=0onTln{t <0}
(¢) inequality (0.2) is satisfied
(equation in (a') is understood in the sense of distributions).
In both cases we shall use the following notation:
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o A(u) = {(z,t) : u(z,t) = |Du(z,t)| = 0};
o I'(u) = 9Q(u) N A(u) is the free boundary;
o ['(u) NI, is the set of contact points.

Tt is assumed that T'(u) # @.

We also define the class Po (M, —0c0) that corresponds formally to & = —co. In this
case the half-space R"+' N {t < 0} is considered instead of R} N {t < 0}, T, = @, and
we omit the condition u|m, = 0.

For the global solutions u € P (M, b) we have

(0.3) —1 < 0u<0.

For b = —oo inequalities (0.3) were proved in [CPS]. For b > —oo from the results of
[ASU2] it follows that any global solution u € P (M, b) does not depend on ¢ and has
the form u = (z — a)} /2 with a > b.

Let @ > 0 be some constant, let u € Pag(M,0), and let 2% = (2°,¢%) € T'(u). Forr > 0
we consider the functions

u(re + 2%, r’ +1°)

r2

(0.4) ur(z,t) = .
By the standard compactness arguments, we may pass to the limit along a subsequence
7y — 0; as a result we obtain a global solution ug € PE (M, —o00). More precisely, this
will be true if 0 > 0. If 2§ = 0, then the function ug is defined only for z; > 0,
and, in accordance with [ASU2], ug = 27/2. In this case we extend ug by zero to the
set {z; < 0, < 0}, again obtaining a global solution ug = (21)3/2 € Peo(M,—00).
Usually, such a process is referred to as the blow-up limit passage. Any global solution
ug obtained in this way is called a blow-up limit of the function u at the point 2°. Tt
should be noted that we can get different blow-up limits at the same point if we choose
different subsequences rg.

§1. A MONOTONICITY FORMULA

Let z* = (z*,t*) be an arbitrary point in R"*1 let a and r be positive constants, and
let v be a continuous function defined on Q, »(2*) := B, (z*)x]t* —4r? ¢*[ and satisfying
|Dv| € La(Qar(27))-

We define the local Weiss functional (cf. [W]) as follows:

Wy (r, z*, %, v)

1 t*—r? 2
= [ (e ) Gt e,
r t*—4r2 JBq(z*) t—1

where ,
—|z|*/4¢
G(z,t) = % fort >0 and G(z,t)=0fort <O0.
Lemma 1.1. Let v and z* be as above.
Then
(1.1) Wa(Ar, 2%, " v) = Wayr (X, 0,0, v,)

for any X €]0, 1], where v,(z,t) = r=2 - v(re + 2*, %t + t*).
We omit the trivial proof.
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Lemma 1.2. Let a > 0 and b > 0 be given constants, let u € Paq(M, —b), and let

22 = (2°1%) eT(u) N Q..

Suppose that the function u is extended by zero across the plane TI_p to the set Q,(2°)N
{z1 < —b}; we preserve the notation u for this extension.
Then for 0 < r < a we have

dW,(r, 2°,4°, u)

1.2
(1.2) o
1 -1 / , 2
= —/ / MG(:L‘,—t)dafclt—i—Ja(r;u)
rJ_4 —1
Bayr
0 b -1
+ ml—; / / |Dyu, |*G(z, —t)dz'dt,
r —4

—z0—p

Bayrn{zi= —3

where u, Is as in (0.4),
(1.3) u,(z,t) =2 Dur (z,t) + 2t0pu, (z,t) — 2u, (2, 1),

3’u,~ .
Ja(ryu) =2 (¥ - Du, )G (2, —t)dS,,dt

a/r

/ /(IDurl2+2ur (ur ))G(x,—t)dsa/rdt’

a/r

and ¥ is the unit vector of the outward normal to S, .

Proof. Using (1.1) and the relation

d du,
— (D;u,) = D; ,
dr( ) (dr)

we obtain
(1.4) dW( 01% u) vy (1,0,0,u,) = I + I
. T Wl T, 1, U) = —Wg/r(1,U,U,Ur) = )
dr dr / ! 2
where
-1
du, du, u, du,
L =2 Du, - D — , —t)dzdt,
! /_4 / [u <dr)+dr+tdr]G(m Jdz
Ba/rﬂ{171>il]:;b}
-1 9
I2 = _% / (lDU,«|2 + 2ur + (U;) ) G(lf, _t)de/rdt
—4

_20_
Sujpen{z> 22170y

201+ -1 2
- a _: / / <|Dur|2 + 2u, + (u;) ) Gz, —t)dz'dt.
-4

r2

_20_
B, n{ri=—21""}
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Then, integrating the term 2Du, - D (%ur) G(z,—t) in I; by parts and using the

identity
DiG(z, —t) = 26z, —t),

2t
we get
(1.5)
I 2/_1 / d“’"[ Aty — DDy + 1+ 2] G, —t)dedt
= — AUy — S Uy - T, — T
! 4 dr 2 1
Ba/rnizi> _I?_b}
-t du,
+ 2/ / (¥ - Du, ) G(x, —t)dSqpdt
—4 d?“
Sayrn{z1> _Ii_b}
-1
du,
_2/ / 4 Diu,G(z, —t)dz'dt.
—4 dr

—z0—p
Ba/r{z1=—1—1}

The assumption u(—b, 2’,¢) = 0 implies that for (z,t) € £ := { Bay, N{z1 = #}} x
] —4,—1[ we have

(1.6) up = |D'up| = Opur = 0,
whence
2
(1.7) <|Dur|2+2u,+ %) = |Dyu, |
£

Moreover, since

du,  0'u,

dr r o’

(1.8)

from (1.6) and (1.3) it follows that

(1.9) <— ‘Z:‘ Dlur)

S+
= il :— |D1U,~|2.
£ r

Substituting (1.7) and (1.9) in (1.5), and using (1.8), (1.3), and (1.4), we obtain the

following representation:

(1.10)
iVV (r z° 40 u)
dr a ) ) )
-1
d'u, 0'u,
=2 1 - Hlu,|— x,—t)dzdt
[ [ e -G ee e
Ba/rﬂ{f1>':£;:£}
204p 1
+Ja(r;u)+ml_2+_ / / |D1ur|2G(33,—t)dmdt.
r —4

_20_
B,y 0{z1= 172}



Strictly speaking, the formal calculations given above are correct if the function u has
all derivatives up to the second order. Therefore, in the case of an arbitrary function
u € Payq(M,—b), we must regularize the function with respect to the ¢-variable. For
instance, this can be done by using the Steklov average. For the smoothed function u,
the representation (1.10) is proved as above. Now, letting the radius of the average tend
to zero, we easily show that (1.10) is true for the initial u.

From the assumption u € Py, (M, —b) it follows that T'(u,) has zero Lebesgue measure,
and

(1.11) Hlu,) = X{u,>03y 0 @:={By, N{zy > (—a] —b)/r}}x]—4,—1[.

Therefore, for (z,t) € Q@ we have

/ / / 2
(1.12) Pur [y _ gy = Lue] = 10w
r 2t 2rt
Combining (1.10) and (1.12), we complete the proof. d

Remark. Under the contitions of Lemma 1.2, the functional W, (r, z°,¢° u) is uniformly
bounded for 0 < r < a. Moreover, there exists a universal constant Cy = Cy(n, M) such
that

(1.13) 1 Ja(rs w)] < Co <1+ %) (%)n+4exp(—a2/16r2)

for all functions of class Py, (M, —b), for all values of the parameters r and a as above,
and for an arbitrary b > 0. In particular,

(1.14) lim |Jq(r;u)] =0, a>0.

r—0+
Corollary 1.3. Let a > 0 and b > 0 be given constants, and let v € Py(M,—b). Then
for any point 2% = (2°,4°) € T'(u)NQ, the function W, (r, z°,¢°, u) has a limit as r — 07.

For a = 1 and b = 0, the corresponding limit

(1.15) w(2®,1% u) = lim Wi (r,2°° u)

r—0+

will be called the transition energy of the function u at the point (2°,¢°) of the free
boundary. From (1.1) it follows that

(1.16) (2°,° u / /n <|Duo|2+2u + (1o )2) G(zx,—t)dzdt,

where ug is an arbitrary blow-up limit of the solution u at the point (z°,¢%).

§2. REGULARITY PROPERTIES OF SOLUTIONS

Lemma 2.1. Let u € Py(M,0), let z° = (2°,4°) € T'(u) N Q1, and let ug be a blow-up
limit of u at z°. Then ug is a homogeneous function of degree 2 on the set R" TN {t < 0},
1e.,

ug(sex, %) = sup(x,t), >0, (z,t) eR" Nt <0}

Remark. Observe that the statement of Lemma 2.1 concerns only the blow-up limits of
u at some fixed point z° € T'(u).
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Proof. Tt suffices to consider the case where z{ > 0. We consider a subsequence 7y that
tends to 07 as k — oo and is such that the functions

u(rgz + 20, vt +1°)
2
k

up(z,t) =

tend to wg, i.e., uo(z,t) = limg_o ug(z,t). Obviously, ux € Pl/rk(M,—x?/rk) and
(0,0) € I'(ug). From (1.15) and (1.1) it follows that for arbitrary numbers A > p > 0 we
have

(2.1) 0 «— Wi(Arg, 2%, % u) — Wi (urg, 2°,1°, u)

k— o0
= Wl/Tk ()" Oa Oa uk) - Wl/rk ('u’ 0’ 0’ Uk)

_ /)‘ dWl/rk (9, 0,0, Uk)
I

dé.
de

On the other hand, by (1.2), we have

dWl/rk (6, 0, 0, uk)

(2.2)

do
1 -1 / 2
> 5/ / L (Ukt)9| G(x, —t)dzdt + Jy/p, (05 ug)
_4 -
B+

1/ry8

1 -5 ' |2
= —/ / ﬂ(}(m, —t)dxdt + Jyp, (0 ur).
05 _ 402 _t
BT
1/rg

Now, combining (2.1) and (2.2), recalling estimate (1.13), and letting & — oo, we get
the identity

&ug =z - Dug+ 2t8ug —2ug =0, te€ [—)\2, —,uz].

Therefore, ug is a homogeneous function of degree 2 for all ¢ in the interval [—A2Z, —pu?].
Since A and p are arbitrary positive constants with A > u, this completes the proof. O

Lemma 2.2. Let ug € Poo (M, —00), let (0,0) € T'(ug), and let

T 2
Weo (7,0,0,ug) := r_4/ / (|Duo|2 + 2ug + @) G(z,—t)dzdt, r>0.
_4p2 n

Then the relation
dWeo (7, 0,0, ug)

dr

implies that the function ug is homogeneous of degree 2, i.e.,

=0 forallr >0

ug(sex, %) = s up(x,t), >0, (z,t) eR" Nt <0}

Proof. This was proved in [W]. O
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Lemma 2.3. Let u € P;(M,0). For any ¢ > 0 there exists p* = p*(¢,n, M) > 0 such
that if z° = (2°,t°) € T(u) N Q1 and 0 < 2§ < p*, then for p € [29, p*] we have
— 20,2

(2.3) sup |u(z,t)— M < ep®,

QF (29
(2.4) sup |D1u(m,t) — (21 — :E(1))+| < ep,

Q7 (=)
(2.5) sup |Dru(:t:,t)| <ep, T=2,...,n.

QF (=%

Proof. We begin with the proof of the first inequality. Aguing by contradiction, suppose
that (2.3) fails. Then there exists a number g > 0 and sequences w/ € Py(M,0), p; 0,

and z7 = (27,t7) € T'(w/) N Q1 such that p; > :E{ >0 and

(w1 = 21)4)”

(2.6) sup |uj(z,t) — 5

> Eop‘?.
Q;Tj (27)

We define v; by the formula

uj(pjz + 29 ?t—}—tj)

2

vi(z, 1) = p
J

for (z,1) € Qu/; ORT_L‘gJ_l, where b; = Q?{/pj, b; € [0,1]. Observe that (0,0) € I'(v;)

and vj|z,=—p; = 0. Moreover, in an appropriate function space the functions v; converge

(along a subsequence) to a global solution vy € P} (M, —b), where b = limb;, b € [0, 1].
j—oo

Since (0,0) € I'(vg) and vg|p,=—p = 0, from [ASU2] we deduce that vy = ((z1)4)” /2.
Therefore, for all sufficiently large j we have the inequality

(2.7) sup w < %

Qin{z1>-b;}

vi(z,t) —

On the other hand, (2.6) implies that

((21)4)"
2

sup
Qin{z1>—b;}

vi(z, 1) —

P} 2
2

= sup

uilpiz + 2l pit+4)  ((21)4)” ‘
Qin{z1>-b;}

wlys) (0 =#Ds)
P’ 203

= sup
Qj—j (Zj)

‘>60.

This contradiction with (2.7) completes the proof of (2.3).
Tt only remains to observe that estimates (2.4) and (2.5) are proved in the same way

as (2.3). O
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Lemma 2.4. Let u € Py(M,0), let ¢ E]O,m[, and let Ny > 0 and N; (with

7 =2,...,n) be some constants. Suppose that, for an arbitrary point 2° = (2°,1%) € Q}
and some p < 1, in Q¥ (") we have the inequality

p<ZNiju) —u> —ep?.
j=1

Then .
p<ZNiju> —u>0 1in Q:/Q(ZO).
j=1

Proof. Suppose the conclusion of the lemma fails. Then there is a function u € P»(M, 0)
and a point 2% € Q7 such that for some p < 1 the conditions of the lemma are satisfied,
but there is a point z* = (z*,t*) € Q: ,(2%) with

(2.8) p(éNiju(m*,t*)) — u(a*,1*) < 0.

Let

wlet) = p( N Djue,t)) = ule,) + 5 (a7 = (0 1)).

j=1 n+1

Then w is caloric in Q,/2(z*) N Q(u), and, by (2.8), w(z*,t*) < 0. Observe also that
the condition u > 0 implies the inequality Diu > 0 on TI, so that w > 0 on the set

0Q(u) N Q,2(2*). By the maximum principle, the negative infimum of w is attained on

9'Q,/2(2*) N Q(u). Thus, we obtain

2

p : ‘ 2
—_— > inf N;Dsu ) —up > —ep”,
42n 4+ 1) = 9'Q,,2(2*)nQ(u) {p<; 7 ) }— r

a contradiction. This proves the lemma. a
Lemma 2.5. Let u € Py(M,0). There exists po = po(n, M) > 0 such that if z° =
(2°,¢%) € T(u) N Q1 and Y < pqg, then for any p € [29, po] we have

p-Diu—u>0 in Q:/z(zo).

Proof. We fix ¢ = m. Successive application of Lemmas 2.3 and 2.4 finishes the
proof. a

Lemma 2.6. Let uy € Po(M,—0c0) be a homogeneous function of degree 2 in R"+1 N
{t < 0}. Also, suppose that

(0,0) € T(w),
Diug >0 inR" N {t<0}.

Then, either

(2.9) uo(z,t) = %
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for some direction e € R"™ such that e - ey > 0 or, in some rotated coordinate system in
the z-space, we have

(2.10) uo(z,t) = Z %:pf —ct,
i=1

where Y ¢ a;=1—c,a; >0,¢>0.

Proof. First we consider the case where the interior of A(ug) is empty. Then the function

vg defined by the formula
2

x

vo(z,t) = ug(z,t) — 71

is caloric in R"*1 N {t < 0} and has quadratic growth with respect to z and at most

linear growth with respect to ¢. By the Liouville theorem (see Lemma 2.1 in [ASU1]),

the function vy, and, consequently, the function ug, is a polynomial of degree 2, i.e., there
exist constants a; > 0 and ¢ > 0 such that the exact representation (2.10) is valid.

The case where the interior of A(ug) is not empty requires a more detailed analysis.
Since ug is homogeneous, from the existence of at least one interior point of the set A(ug)
it follows that for every ¢; < 0 the set A(ug) N {# =¢;} has nonempty interior in R™.

Next, arguing in the same way as at Step 2 of the proof of Theorem II in [ASU2], we
can show that the function wug is one-dimensional in the variables z, i.e., ug = ug(y, 1),
where y = (z-¢) for some e € R", y € R, and ¢t < 0. This result follows by the dimensional
reduction based on a version of the monotonicity formula due to L. Caffarelli [C2,CK].

Since ug is nonnegative, homogeneous, and one-dimensional in the space variables, for
all t < 0 we have

(2.11) ug(0,t) = —mt, m>0.

If m = 0, then Theorem T in [ASU2] immediately gives the desired inequality (2.9).
We show that m = 0 is the only possibility.

Suppose m > 0. The assumption that Dyug > 0 in RN {¢ < 0} guarantees that D.ug
does not change its sign. For definiteness, we assume that D.ug > 0 (otherwise we
replace e by —e). Now, combining (2.11) with the inequality D.ug > 0, we see that
uo(y,t) > 0 on the set D := {(y,t) : y € Ry, t < 0}. Therefore, H[ug] = 1 and
H[B:uo] =0 on D.

Now we introduce the function

atUO(y7t)+m lfy207t§07
—Qpug(—y,t) —m ify<0,t<0.

-

Obviously, v is bounded and caloric in R?N {t < 0}, and it vanishes for y = 0. By
Liouville’s theorem, v = 0 in R? N {t < 0}, and elementary integration yields the exact
representation for ug on the set D:

1-m ,
2 7

(2.12) uo(y,t) = —mt +
Relation (2.12) implies immediately that

(2.13) Doug =0 ify=0,t<0.
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On the other hand, from inequalities (0.3) it follows that
(2.14) Decug >0 in R2N{t < 0}.

Combining (2.13), (2.14), and the assumption that D, ug is nonnegative yields the identity
D.ug = 0 on the set {y < 0,7 <0}. The latter means that on the set {y < 0, < 0} we
have the exact representation

(2.15) uo(y,t) = —mt.

The representation (2.15) and the equation H[ug] = 1 show that m = 1. However,
this is impossible because for ug = —t the set of interior points of A(ug) is empty. a

Corollary 2.7. Let u € Py(M,0), let 2° = (z°,¢°) € ['(u) N Q1, and let 2§ < py, where
po 1s the constant occurring in Lemma 2.5. Suppose that ug is a blow-up limit of the
solution u at the point 2°.

Then, for x € R™ and t < 0, either

(z - e)i 15

(2.16) uo(z,t) = 5 and w(2®,1° u) = Weo(1,0,0,up) = T

for some direction e € R™ such that e - e; > 0, or in some rotated coordinate system in
z-space R™ we have

(3

" a; 15
(2.17) ug(z,t) = ; 533? —ct and w(z’ 1% u)=W(1,0,0,u0) = CR

Here a; and c are the constants occurring in Lemma 2.6, and w(xo, 19, u) is the transition
energy at the point 2% (see (1.15)).

Proof. If 2§ = 0, from the results of [ASU2] it follows that ug = (21)3} /2. Let z? >
0. Then Lemma 2.5 guarantees the nonnegativity of Dju in Qp0/2(z0); consequently,
Dyug > 0in R™ x {t < 0}. Therefore, Lemmas 2.1 and 2.6 imply the first identities in
(2.16) and (2.17).

Next, by (1.16), for the case where ug(z,t) = (z - €)% /2 = (y1)%/2 we have

(2°,1° u / dt/ / (Zy1 + Zi) G(y, —t)dy:.
Re—1 0

Similarly, by (1.16), if ug(z,t) = Y i, Zx? — ct, then

i=1 2

w(z®,1° u)

-1 n n
:/ dt/ ( a?:p? + E ai:z:? — 2ct
—4 n N =1

i=1 i=
+ %t — CZ a;x} 4+ (4t)71 Z a; ajm2:c2) Gz, —t)dx.
i=1 ij=1

Now the second identities in (2.16) and (2.17) follow immediately from the direct
calculations of the integrals written above. d
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Lemma 2.8. There exists 6 = d(n, M) > 0 such that if u € P,(M,0) and
22 = (2% t°) eT(u) N Q1 N {z1 < 4§},

then

(2.18) w(2®, 1% u) = %

Here w(x°,1°, u) is the transition energy at the point z° (see (1.15)).
Proof. We set r := 2% and consider the function

(re + 2%, %t +19)

r2

up(z,t) = 4
If 7 1s sufficiently small, then, by Lemma 2.3, the function u, is close to a global solution

ug(x) = (21)% /2. More precisely, for any € > 0 there exists R = R(g) > 0 such that for
r < p < R we have the inequality

|ty — ug| + | Duy — Dug|? < Ei—z in Q,/, N{z1>—1}.
In particular,
luy (2,) — uo(x)| + | Duy(2,t) — Dug(z)]* < ¢ <|.CL‘|2 +[t|+1) in Qg N{x1 > -1}
Using (1.1), we deduce the inequality

Wi (r,2°t% u) = Wi,,(1,0,0, u,)

SCE/_jdt/ (1+ |z|*) G(z, —t)dz

Bryr
-1 u2
—1—/ di / <|Duo|2 + 2ug + 70> G(z, —t)dx
- Bryr
-1 u
+/ dt / <|Dur|2 + 2u, + TT) Gz, —t)dx.
- R/r<|z|<1/r

Now, choosing ¢ and, after that, r small, and invoking (0.2) and the second identity in
(2.16), we obtain

-1
Wi(r, 2% 1% u) < 14—5 +Ce+ C/ dt / (1+ |z|G(z, —t)dx < 4.
—4

R
|z >

Finally, taking into account (1.2) and (1.13), for sufficiently small § and 7 < r < ¢ we
conclude that
o

Now (2.18) follows from (2.19) and Corollary 2.7. d

N M 1
(2.19) Wi (F, 20,80, 0) < Wi (r,2%, 80, ) + M) o <_16 2
r

rn+5
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Remark. Let uw € P2(M,0) and let z = (z,t) € T(u) N Q1 N {z1 < d}, where ¢ is the
constant occurring in Lemma 2.8. Then the convergence of Wi(p,z,t,u) to 15/4 as
p ¢ 0 is uniform with respect to z = (z,t). This can be proved easily by an argument
similar to the proof of the Dini theorem, because for p > 0 the functions Wi (p, z,, u) are
continuous with respect to (z,t), the limit function is a constant, and the convergence
in question is monotone up to exponentially small terms.

In particular, if px \, 0 as k — oo, z¥ = (2 #¥) € T(u) N @1 N {z; < 4}, and
F = (2% %) — 20 = (29,4%), then
. : E 4k 0 40 15
(2.20) klgiloWl(pk,x AT u) = w(zt, 0 u) = T
Theorem 2.9. Let u € Py(M,0). Then 0;u is continuous on the set Q1,,N{0 < z1 < d},
where § is the same constant as in Lemma 2.8.

Proof. We consider a point 2% = (2°,4°) € T(u) N Q172 N {0 < z1 < &} and prove that

2.21 I =0.
( ) ﬂ(u)lar?—wuﬁtU(Z) 0

It suffices to show that the lower limit

2.22 := liminf
( ) Q(u)gnz_mo iminf dyu(z)

is nonnegative, whereas the corresponding upper limit is nonpositive.
First, we assume that t° < 0. Let m be defined by (2.22), and let 2* = (2%, t*) € Q(u)
be a sequence such that z¥ — 20 = (2°¢°) as k — oo and

lim Oyu(zF) = m.
k—o0

Denoting by K,(z) = K,(z,t), r > 0, the cylinder K,(z) = B,(z)x]t — r?,t + r?[, for
each point z* we define the corresponding distance to the free boundary as follows:

r = sup{r > 0: K,(z*)NT(u) = 2}.

Clearly, 7, — 0 as k — oc.
Consider the functions

u(rpe + 28 vt + vl + 1)

3 )
Tk

up(z,t) =

We observe that K;(0, —1)N{z1 > —2%/ri} C Q(uk), and that dyux (0, —1) = dyu(z®,t¥)
tends to m as k — co.

Therefore, the uy converge (along a subsequence) to a global solution ug € Peo (M, —b)
with the following properties:

(2.23) Oruo(0,—1)=m, and Hlugl=1in K1(0,—1)N {z; > —b},

where b = klim — 2% /r. Tf b < 0o, from the results of [ASU2] it follows that ug does not
—00

depend on ¢, so that in (2.23) we have m = 0.
If b = 0o, we need a more detailed analysis. Observe that in this case the limit function
ug is a global solution defined in the entire space R?*!, and

Ovug(z,t) > m, (z,t) € K1(0,-1).
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The latter inequality follows from the fact that in K;(0, —1) the functions 0;us converge
pointwise to Jzug, and from assumption (2.22).

Thus, the function Jug is caloric in K1(0, —1) and has a local minimum at the point
(0, —1). Consequently, by the maximum principle,

(2.24) Orug(z,t) =m in Q1(0,-1).

In accordance with our definition of i, for each k there exists a point (y*,s*) € T'(ug) N
OK1(0,—1) and a corresponding point (riy* + 2%, rZs® +r2 +1*) € T'(u) NOK,, (z*) such
that

(2.25) (riy +2F rksh el 7)o (2°,4%) as k — oo

Let (y°, s%) denote the limit of a subsequence of points (y*, s*) as k — co. Obviously,
(y°,5%) € T'(ug) N9K1(0,—1). Next, using (1.1), (2.25), and (2.20), we see that

(2.26) Weo (p, yo,so,uo) = klim Wi (p, yk,sk,uk)
— 00 Tk
= klim Wl(prk,rkyk +2F rlsh 4l 4tk u) = w(z? 1%, u)
—00
15
=

for any p > 0.
From Lemma 2.2 it follows that ug is a homogeneous function of degree 2 for ¢ < s°.
More precisely, for any z € R™, ¢ < 0, and A > 0 we have

uo(y” + Az, "+ A%t) = Nug(y” + , 5" + 1).
Moreover, Lemma 2.5 shows that for any * € R™ and ¢ < s we have
Diug >0 in R™n{t < s,

Now, using Lemma 2.6, Corollary 2.7, and relation (2.26), for ¢+ < s° we obtain the
representation

z—y")-e)’
(2.27) wo(z, 1) = %
where e is a direction in the z-space R”.

If s > —2, then for m # 0 the representation (2.27) contradicts formula (2.24) in the
cylinder By x] — 2,s%[. If s = —2, then, by (2.24), we have

2
(6P e |

=) e, 5 )s +m(t+2) in Qi(0,—1),

whence Hlugl =1—m in Q1(0,—1). Assuming that m # 0, we arrive at a contradiction
with (2.23).

Thus, we have shown that for t° < 0 the lower limit of J;u vanishes at the point
2% = (2°,1°) € T(u). The above arguments (with small changes) remain valid for t° = 0.
In this case we consider the sets K1(0,—1) N {t < bo} in place of K;(0,—1), where

bo = — lim t*/r} — 1.
o=

ug(z,t) =

The proof of the claim that the upper limits of d;u(z) as z — z° € T'(u) near the fixed
boundary ;1 = 0 are nonpositive is even simpler. Assuming that this is not the case and
arguing in the same way as above we get a global solution ug for which (2.24) is true
with m > 0. But this is impossible by (0.3). The proof is complete. d
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§3 REGULARITY PROPERTIES OF THE FREE BOUNDARY
Lemma 3.1. Let u € Py(M,0), let § be the constant as in Lemma 2.8, and let 0 <
£1 < m, N1 > 0, Ng, and N, (with 7 = 2,...,n) be some constants. Then for an
arbitrary point z° = (z°,1%) € Q1o N {0 < z§ < §/2} and p < §/2 the inequality

(3.1) p<ZNiDiu) + p*Nobyu —u > —e1p* in Q:ﬂ(zo),

i=1
implies that

p(ZNiDiu) + p*NoOyu —u >0 in Q:M(zo).
i=1

Proof. Suppose the conclusion of the lemma fails.
Then there is a function u € P»(M,0) and some points z° € Q172 N {0 < z§ < §/2}
and 2* = (2*,1*) € Q:/4(zo) such that inequality (3.1) is fulfilled and

(3.2) p(ZNiDiu(m*,t*)) + p? NoOpu(a*,t*) — u(z*,t*) < 0.
i=1

Consider the function

n

w(z,t) = p<ZNiDiu(x,t)) + pzNO&gu(:L‘,t)
i=1
1
2n+1

—u(z,t) + (Jz —z*|* = (t = 19)).

This function is caloric in @,/4(2*) N Q(u), and w(z*,t*) < 0 by (3.2).
Also, we observe that Theorem 2.9 and the condition u > 0 imply the inequalities

w>0onll, w>0onT(u)NQ,a(z").

By the maximum principle, the negative infimum of w is attained on 9'Q,/4(z*) N Q(u).
Thus,

2 n
p ) 2 2
- > inf N;D;u | + N@u—u}>—6 ,
16(2n 4 1) = 8'Q,/4(z*)nQ () {p<; ) proc Z —e1p

a contradiction. This proves the lemma. d
Lemma 3.2. Let u € P,(M,0). There exists p = p(n, M) > 0 and a cone of directions

€

K= {eER”‘H: €1 >(1+p2)_1/2}

le]

such that for any point z° = (2°,1°) € Q172 N A(u) N {z1 < p} and any direction e € K
we have
D.u>0 in Q:/S(zo).

Proof. We fix the constant €1 occurring in Lemma 3.1, take € = &1 /n, and set

(33) 1 :min{p*7p016/2}a p:6p1/M’
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where p* = p*(e1,n, M), po and ¢ are the constants defined in Lemmas 2.3, 2.5, and 2.8,
respectively.
First, suppose first that z° € I'(u). Applying Lemmas 2.5 and 2.3, we obtain

(3.4) prDiu—u>0 in le/z(zo),
(3.5) sup |D7u| <epr, T=2,...,n.
QF (%)

Combining (3.3), (3.4), and (3.5), we get the estimate
o1 (Dlu + ZNTDTU) + p%Noatu —u> —Elp% n Q:l/Q(ZO)’
=2

where N, and Ny are some constants satisfying |N,| < 1, |[Ng| < e/M.

Since u > 0, we can apply Lemma 3.1 to obtain the inequality D.u > 0 in Q:/4(zo)
for any e € K.

Now we assume that z° € A(u) \ ['(u). If the cylinder Q:/S(zo) is not contained in

A(u), we take z* = (z*,t*) € T(u) N Qp/g(zo) with the maximal possible value of t*.
From the above arguments it follows that D.u > 0 in Q:/4(z*) for any e € K. It only
remains to observe that Q,/s(z") N {t < t*} C Q,/a(z*), and for t° > ¢* the function u
vanishes in Q;'/S(zo) N {t > t*}. The proof is complete. O

Theorem 3.3. Let u € Py(M,0), let p be the same constant as in Lemma 3.2, and let
Q = Q174N {0 <z < p/64}. There exists a Lipschitz continuous nonnegative function
[ defined on 1T N Q)4 and such that

Qu)NQ ={(z,t) €Q :z1 > f(za, ..., zn, 1)}

Proof. We define f as follows:
(3.6) f(2' t) = sup{z1 € [0, p/64] : u(z1,2’',t) = 0}.

We must prove that f is a Lipschitz function.
For an arbitrary point z° € Q we introduce the cones

K_-()=@Qn{: =K}, Ki(z")=@Qn{:°+K}

and the sets
U (2%) = {(z,1) € K_(2°) : t = s},

where K is the cone described in Lemma 3.2. Observe that the tangent of the opening
angle of the cone K is equal to p, so that ¥;(2%) is nonempty only if s €]t® — pz9, (¢° +
pzl)_[, where (t° 4+ p2¥)_ = min{0;¢° + pzl}.

First, we prove that

(3.7 K_(z") Cc A(uw), 2°€A(u)nQ.
The inclusion (3.7) is equivalent to the following statement: for z° € A(u)N@Q we have

(3.8) 2, (2%) C A(u)
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for all ¢ €]t® — p2?, (¢° + p2¥)_[. Lemma 3.2 shows that (3.8) is true at least for ¢ €
8% — pal,°]. 1f t° = 0 then (3.7) is proved.

Consider a point z° € A(u) N Q with t° < 0 and suppose that for this point (3.7) fails.
Then there exists s €]t%, (t° + pz¥)_[ such that

(3.9) K_(z°)yn{t <s} C A(u)

and (3.8) fails for ¢ > s that are close to s. Using Lemma 3.2 once again, we see that this
can happen only if K_(z0) N {t > s} C Q(u). By (3.9), we conclude that ¥;(2°) C T'(u),
while the set ¥ (2)NII consists of contact points. However, from Theorem I1I in [ASU2]
it follows that such a behavior of the free boundary near the contact points is impossible.
This contradiction proves (3.7).

By using (3.7), it can easily be shown that

(3.10) Ki(z) CQu), z€Q(u)nQ.
From (3.7) and (3.10) it follows that the function f defined by (3.6) satisfies the
Lipschitz condition with the constant p=!. d

Corollary 3.4. Let f be the same function as in Theorem 3.3. Then in a neighborhood
of every point (z',t) satisfying 0 < f(2',t) < p/64, the function f belongs to the class
C't* with some (0 < a < 1.

Proof. This statement is an obvious consequence of Theorem 3.3, Lemma 3.2, and the
result of Athanasopoulos and Salsa proved in [AtSa]. d
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