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Abstract. In this note we will make an attempt to link the theory of the
so-called quadrature domains (QD) to stochastic analysis. We show that a
QD, with the underlying measure µ, can be represented as the set of points x,
for which the expectation value (average reward)

Ex

(
−θ +

∫ θ

0
µ(Xt)

)
,

is positive for some (bounded) stopping time θ. Here Xt denotes the Brownian
motion starting at the point x, and Ex denotes the expectation with respect
to the underlying probability measure P x.

1. setting and backgrounds

Our objective in this note is to find a stochastic interpretation of the so-called
quadrature domains. To fix the idea, let D be a bounded domain in Rn (n ≥ 2),
and

(1.1) µ = MχD, (M > 1)

where χD is the characteristic function. One can consider a more general class of
functions, or measures µ. However, for simplicity and clarity we stick to the case
of multiples of characteristic functions.

A quadrature domain (QD) with respect to the function µ, and a class of func-
tions H, is a bounded domain Ω with properties:

(1.2) D ⊂ Ω,

∫

Ω

hdx ≥
∫

hdµ ∀ h ∈ H.

Actually the more restrictive condition D ⊂ Ω is prefered, but this in general is
much harder to achieve.

We adopt the notation
Ω ∈ QD(µ,H)

to denote that Ω is a QD w.r.t. µ and the class H. Throughout this paper we
mainly consider the class of integrable subharmonic functions over Ω, denoted by
SL1(Ω).
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A PDE point of view of QD is the consideration of the function (also called the
modified Schwarz potential (MSP))

(1.3) u(x) := cn

∫

Ω

|y − x|2−n (dy − dµy) x ∈ Ω.

Here we have assumed n ≥ 3, and for n = 2, we replace |y−x|2−n with − log |y−x|.
Also, the constant cn is a normalization factor.

Elementary PDE then tells us that u, the MSP, satisfies

(1.4) ∆u = χΩ − µ, u ≥ 0, in Rn, u = 0 in Rn \ Ω,

where the Laplacian is taken in the sense of distributions.
Conversely if (1.4) holds for a triple (u, µ, Ω) then we can show, using Green’s

identity, that Ω ∈ QD(µ, SL1).
So we have

(1.5) Ω ∈ QD(µ, SL1) ⇐⇒ (u, Ω, µ) solves (1.4).

We refer the reader to the papers [Sak83], [Gus90], and [GS], for background
and further results.

2. Brownian Motion and stopping times

In this section we will recall some definitions and facts about Brownian motion.
Let Wt = (W 1

t , · · · ,Wn
t ) be a standard Brownian motion in Rn, i.e. for each

j = 1, · · · , n, W j
t is a real-valued, continuous stochastic process with independent

and stationary increments. Being standard means

W0 = 0, E(W j
t ) = 0, E((W j

t )2) = t, j = 1, · · · , n.

Let us now fix a point in Rn, and consider a Brownian motion Xt starting at x,
i.e., Xt = Wt + x.

Let P x denote the underlying probability measure, and Ex, the mathematical
expectation w.r.t. P x. Let also Ft denote the natural filtration of increasing family
of σ-algebras generated by Wt.

A stopping time τ is a random variable with values in R+ ∪∞, and such that

{τ ≤ t} ∈ Ft.

The first exit time of a bounded domain D,

τD := inf{t > 0, Xt /∈ D},
is a stopping time.

Now for a given bounded function µ and a (finite valued) stopping time θ, we
consider the expected reward of stopping the process Xt at θ

(2.1) Uθ(x) = Uθ,µ(x) := Ex

(
−θ +

∫ θ

0

µ(Xt) dt

)
.

Observe that if θ ≡ 0, then Uθ(x) = 0.

Remark 2.1. For a game theoretic interpretation see the last section.
Our prime goal will be to show that if we take the supremum value of Uθ over

all finite stopping times θ,

(2.2) sup
θ

Uθ(x)
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then the resulting function is (a multiple of) the MSP and the (interior of the)
support of this function is a QD for the measure µ.

However, before moving on into the next section, and finding out about relations
between Brownian motion and QD, we need to recall a couple of facts in Stochastic
PDE.

We start with the infinitesimal generator of the Brownian motion, and recall
from [Dyn] (see also [Oks]) that the operator

1
2
∆

is the infinitesimal generator of the n-dimensional Brownian motion Bt. In other
words,

1
2
∆f(x) = lim

t→0

Ex(f(Xt))− f(x)
t

x ∈ Rn,

which (by integration and using that X0 = x) implies the Ito/Dynkin formula

(2.3) Ex

(
1
2

∫ τ

0

∆f(Xs)ds

)
= Ex(f(Xτ ))− f(x),

for all functions f , with bounded Laplacian, and all bounded stopping times τ , with
Ex(τ) < ∞. A good source of reference to this formula is [Dyn], Chapter 5.

3. Connection between MSP and the expected reward

Before we start to show connections between QDs and expected reward, we
should mention that there is a vast literature on the topic of variational inequali-
ties and stochastic differential equation. A quite fresh reference is the book of B.
Øksendal [Oks], and also nice (but unpublished) lecture notes by L.C. Evans [Ev].
We also bring the reader’s attention to the (by now classical) book of A. Bensoussan
and J.L. Lions [BL].

The variational formulation (in complementary form) of a QD, as we deduced
above (1.4), is very well studied. The author of this note does NOT claim solving
such problems for the first time. However, we believe that the (only) novelty of
this paper is indeed the simple observation of the connection between QD and the
Brownian motion, from a variational point of view.

Let us start posing a couple of questions, before formulating any results. After
answering these questions, we will formulate a main theorem just for the sake of
future references.

Problem 1. For each bounded stopping time θ set

Ωθ := {x ∈ Rn : Uθ(x) > 0}, Ω :=
⋃

θ

Ωθ,

where Uθ is as in (2.1). Show that Ω is bounded.
Heuristically this seems obvious. First, one observes that for Uθ(x) to be positive,

we need that the Brownian path enters the support of µ. Now if a point x is far
from the support of µ, in this case D, then the Brownian path will need much
longer time to reach the set D. In other words, when x is far away from D, then
the probability to reach D decreases. Moreover we need θ to be large to reach the
set D. Since

Uθ(x) = −Ex(θ) + MEx

(∫ θ

0

χD(Xt)dt

)
,
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intuitively, the negative part should dominate, for θ large. And one expects this to
be negative if θ is large. See below for the rigorous proof.

Problem 2. Prove that D ⊂ Ω.
Let µ be as in (1.1). Then for x ∈ D, and θ = τD (first exit time from D) we

have

(3.1) UτD (x) ≥ (M − 1)Ex (τD) > 0.

Hence D ⊂ Ω.
Actually, if D is somewhat smooth then one can show that D ⊂ Ω. Also if M

is large enough then one may get the same result. These statements follow from
the work of M. Sakai [Sak83]. The probabilistic way of seeing this is that if D is
smooth, then the Brownian path, starting at x ∈ ∂D, has good chances of entering
into D, for short time intervals. Hence the contribution of the term M

∫ θ

0
χD can

be significant in relation to the the negative term −θ.

Problem 3. Define

u(x) :=
1
2

sup
θ

Uθ(x),

where supremum is taken over all bounded stopping times θ. Show that u is a
solution to (1.4). This, in view of (1.5), will show that Ω ∈ QD(µ, SL1).

Observe also that u(x) ≥ 0, since we can always choose θ ≡ 0.

Problem 4. Conversely, show that if Ω ∈ QD(µ, SL1) then u, the MSP of Ω as
defined in (1.3), has the representation

u(x) =
1
2

sup
θ

Uθ(x).

Problem 5. Is there any stopping time θ, for which the supremum value, sup Uθ,
is attained?

All the above problems are answered by the following theorem.

Theorem 3.1. Let µ = MχD, with M > 1, and D a bounded set in Rn. Then the
maximal expected reward

1
2

sup
θ

Uθ,µ

is the unique solution to the complementary problem (1.4). Moreover, the domain
Ω := {x : supθ Uθ,µ > 0} is a (bounded) QD w.r.t. µ, and the supremum above is
attained for the first exit time from Ω.

Proof. Let us start with small restriction of the class of stopping times. We first
consider a fixed ball BR = B(0, R) with R large enough, and such that D ⊂ BR.
Then we consider all stopping times of the form

θR = min(θ, τR),

where τR is the first exit time from the ball BR. Now we set

uR(x) :=
1
2

sup
θR

UθR
(x), ΩR = {uR > 0}.
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It is apparent from the definition of uR, that if we define

2vR := sup
θR

Ex

(
−θR + M

∫ θR

0

χBr (Xt)dt

)
,

with D ⊂ Br ⊂ BR, then uR ≤ vR. Hence to show that ΩR is uniformly bounded
(independent of R) it suffices to do so for {vR > 0}.

Define now ṽR according to

ṽR =
1
2n
|x|2 − M

2n
|x|2 +

r2

2(n− 2)

(
M −M2/n

)
for |x| ≤ r

ṽR =
1
2n
|x|2 +

Mr2

n(n− 2)
|x|2−n − r2

2(n− 2)
M2/n for r < |x| ≤ ρ := rM1/n,

ṽR = 0 in BR \Bρ,

where we have assumed R > ρ. Observe that also ṽR > 0 in Bρ, and ṽR is
independent of R. Moreover, we have

(3.2) ∆ṽR = χBρ
−MχBr

.

According to standard theory of stochastic PDE one can show

(3.3) vR = ṽR.

From here it follows that uR (≤ vR) has compact support, independent of R.
To prove (3.3), we see that by Ito’s formula (2.3), and (3.2) we have (observe

that θR = τρ, the exit time from Bρ)

Ex

(
−τρ + M

∫ τρ

0

χBr (Xt)dt

)
= Ex

(∫ τρ

0

−∆ṽR(Xs)ds

)
= 2Ex(−ṽR(Xτρ))+2ṽR(x).

Since Xτρ ∈ ∂Bρ, and ṽR = 0 on ∂Bρ we are left with

(3.4) Ex

(
−τρ + M

∫ τρ

0

χBr (Xt)dt

)
= 2ṽR(x).

Hence vR ≥ ṽR. Next by Ito’s formula, (3.2), and ṽR ≥ 0, we have

2ṽR(x) = Ex

(∫ θR

0

−∆ṽR(Xs)ds

)
+ 2Ex(ṽR(XθR))

≥ Ex

(∫ θR

0

(
χBρ −MχBr

)
(Xt)dt

)
,

for all θR. This gives the desired result.
From now on one can consider the problem in Bρ, and we may replace θR by θρ.
Next, we see that by (3.1) we have D ⊂ Ω.
Finally, in order to prove that u solves the complementary problem (1.4), we

need to show that there exists a unique solution ũ to the complementary problem
and that it can be represented by

u(x) =
1
2
Ex

(
−τG +

∫ τG

0

µ(Xt) dt

)
=

1
2

sup
θρ

Uθρ(x),

with τG being the first exit time from G := {ũ > 0}.
The existence and uniqueness of a solution to (1.4) has been shown earlier by

[Sak83]. Cf. also [Gus90], [GS]. In general one can consider either a penalized
version or a variational form of the problem at hand.
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Now, having a unique solution to (1.4), we can make a similar analysis as above
to obtain uρ = ũ. ¤

Remark 3.2. We give a direct heuristic prove of the statement that u solves (1.4).
Let δ > 0 and suppose that the system runs at least until time δ. Then the new
state at time δ is Xδ, and the optimal cost after this time is u(Xδ). Hence

2u(x) = sup
θR

Ex

(
−θR + M

∫ θR

0

χD(Xs)ds

)
≥ Ex

(
−δ + M

∫ δ

0

χD(Xs)ds

)
+2u(Xδ).

Now using Ito’s formula for u(x), we obtain

Ex

(∫ δ

0

−∆u(Xs)ds

)
+2Ex(u(Xδ)) = 2u(x) ≥ Ex

(
−δ + M

∫ δ

0

χD(Xs)ds + 2u(Xδ)

)
,

i.e.,

Ex

(∫ δ

0

−∆u(Xs)ds

)
≥ Ex

(
−δ + M

∫ δ

0

χD(Xs)ds

)
.

Dividing by δ and letting δ tend to zero we end up with

Ex (−∆u(X0)) ≥ Ex (−1 + MχD(X0)) ,

i.e.,
−∆u(x) ≥ −1 + MχD(x).

Observe that the pointwise Laplacian ∆u(x) may not exist, and the above argument
needs to be carried out in the weak sense.

Remark 3.3. It is also noteworthy that if ∂D satisfies an interior sphere condition,
then the explicit form of vR can be used to show that D ⊂ Ω. To see this, let
B(y, s) ⊂ D be any ball touching ∂D at some point(s). Then uR ≥ wR, where

2wR := sup
θR

Ex

(
−θR +

∫ θR

0

χB(y,s)(Xt)dt

)
.

Moreover, wR is given (as above) by

wR =
s2

r2
ṽR(

r(x− y)
s

).

Hence B(y, M1/ns) ⊂ Ω.

4. Game theoretic interpretation

In this section we try to make a game theoretic interpretation of (2.2). However,
at this time, we have no particular game in mind, played and run, by the rules Uθ.
But the possibility always exists.

Suppose there is a game offered (nowadays on the internet) and the rules for
playing it are governed by (2.2). Suppose further that the state of affairs offered by
the game are Xt ∈ Rn. This can mean almost anything, depending on the game.

Now a gambler enters into the game (at time t = 0) with state of affairs X0 = x
(the player bets on this state). Now if the gambler chooses not to start the process,
and pulls out, there will be neither loss nor win; U0(x) = 0. If the gambler lets
the game start and continues for a certain time length t = δ, then the amount the
gambler gains or looses (depending on the sign of Uδ) is |Uδ(x)|.
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Several questions arise:
Q1) Can the gambler ever win?
Q2) What is the best time, for the gambler, to quit the game?
Q3) What state of affairs x should the gambler choose, for the best outcome?
Q4) Is it possible that the gambler never wins?

These questions are important to both the gambler and those who offer the game.
E.g., if the gambler chooses a state x ∈ D = Interior( suppµ) then obviously he
wins for short time intervals t = δ, provided

Xt ∈ D ∀ 0 < t < δ.

Indeed, Uδ(x) = (−1+M)δ. Hence he can always choose to stop the process before
the exit time from D, τD.

On the other hand, if the gambler starts at points far from D then Uδ(x) = −δ,
as long as Xt has not entered into D, for t ≤ δ.

A third situation is that if the gambler starts at ∂D, then the outcome is not so
clear anymore.

Naturally the company offering the game has to make sure that no arbitrage, i.e.
risk-free profit, takes place. So the state of affairs x ∈ D should be out of question.
The same should go for affairs x ∈ D

c
, since there is an immediate loss for the

gambler, and no guarantee of future gains.
There can be given many variants of combinations of state of affairs such that

the loss/gain of short time intervals is not obvious to see. E.g. if the state x ∈ ∂D
as suggested above then it is not apparent what will happen after the game starts.
One can also consider a strict rule from the company that for any chosen affair
x ∈ D one should chose a second affair y a certain distance dx, away from D.

Let us now see what kind of strategy should the gambler choose, once he has
started at a point X0 = x. According to what we know from last section, if x 6∈ Ω,
then the gambler will never win. So the best is that he does not enter the game
at such states. If on the other hand x ∈ Ω (observe that the location of Ω is not
known in advance) then the best he can do is to continue until t = τΩ, a value
unknown to the gambler. At this time the reward is the highest possible.

The set Ω (here called a QD) is called the continuation region and the com-
plement of it the stopping region. Also at time t the gambler has access to all
information on the past and present state but not on the future state. Mathemati-
cally, this is defined in terms of the σ-algebra Ft. Also the decision/control variable
θ is then a stopping time.

The problem of finding the value τΩ is naturally of great importance to both
parties in the game.
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