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Abstract. In this paper we study the behavior of the singular set

{u = |∇u| = 0},
for solutions u to the free boundary problem

∆u = fχ{u≥0} − gχ{u<0},

with f(x) + g(x) < 0, f, g ∈ W 1,p ∩C0. Such problems arises in an eigenvalue
optimization for composite membranes. Here we show that if for a singular
point z ∈ {u = ∇u = 0}, the density is positive

|{u ≥ 0} ∩Br(z)| ≥ c0rn, for some c0 > 0,

then z is isolated. The density assumption can be motivated by the following
example

u = x2
1, f = 2, g < −2, and {u < 0} = ∅.

1. Introduction and Background

In this paper we analyze properties of singular sets of solutions of a certain eigen-
value optimization problem. This problem has been very much in focus lately (see
[CGK], [CGIKO]). The problem, stated in physical terms, amounts to building a
body of a prescribed shape out of given materials of varying densities, in such a
way that the body has a prescribed mass and with the property that the fundamen-
tal frequency of the resulting membrane (with fixed boundary) is lowest possible.
The reformulated and slightly more general mathematical problem is as follows. A
bounded Lipschitz domain Ω ⊂ Rn is given. Also given are two numbers α > 0,
and A ∈ [0, |Ω|], (|A| denotes the Lebesgue measure of Ω). Let λ be the lowest
eigenvalue of the problem,

(1.1) −∆v + αχDv = λv in Ω v = 0 on ∂Ω.

and set
ΛΩ(α, A) = inf

D⊂Ω,|D|=A
λΩ(α, D)

Then one is interested in the optimal pair (v,D), solving the above problem. The
existence of such an optimal pair is shown using minimization of the corresponding
functional. Moreover it is known that any optimal pair has the property that
D = {v ≤ t}, for some t.

Now, after rewriting the equation u := t− v, and taking into consideration that
D = {v ≤ t}, one arrives at

(1.2) ∆u = (αχ{u≥0} − λ)(u− t).
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One of the main questions that has puzzled several mathematicians is whether the
singular set Su := {u = |∇u| = 0} is isolated, or small enough.

In this paper we consider a more general problem of the type

(1.3) ∆u = fχ{u≥0} − gχ{u<0},

where f, g are W 1,p ∩ C0-functions.
Throughout this paper we assume

(1.4) f + g < 0 on the singular set Su

The case f +g ≥ 0, can be handled easier, due to strong tools such as Alt-Caffarelli-
Friedman monotonicity formula [ACF], see [SUW1]-[SUW2] for a general treatment
of this case.

Our main result is the following.

Theorem 1.1. Let u solve problem (1.3) in a bounded domain D (with given
boundary condition) and suppose condition (1.4) is satisfied at z ∈ Su

(1.5) f(z) + g(z) < 0.

Suppose further that for z ∈ Su := {u = |∇u| = 0}, we have positive constants
c0, r0 such that

(1.6) |{u ≥ 0} ∩Br(z)| ≥ c0r
n,

for all 0 < r < r0. Then z is an isolated point of Su.

The proof uses a simple blow-up argument in combination with monotonicity of
certain energy functionals, due to G.S. Weiss.

Define

ur(x) :=
u(rx + z)

r2
, fr(x) = f(rx + z).

Then the following function (due to Weiss [W])

W (r) = W (r, u, z) :=
∫

B1(0)

(|∇ur|2 + 2fru
+
r + 2gru

−
r

)− 2
∫

∂B1(0)

u2
r,

has the property that

(1.7) W (r) + C0r
1/2 is monotone increasing in r.

Here C0 depends on the W 1,p norms of f, g. If f, g are constants then we may take
C0 = 0 and also claim that the function

(1.8) W (r) is strictly monotone unless u is homogeneous of degree two,

(see [W]).
First we state the following lemma.

Lemma 1.2. If u is a degree two homogeneous solution to our problem (1.3), with
f = f0, g = g0 constants, and f0 + g0 < 0, then either Su = {0} or (after rotation)
Su = {x1 = 0}.

The reader may found a proof of this in [B], where the author tacitly assumes
{u < 0} 6= ∅. The case {u < 0} = ∅ was unfortunately forgotten to be considered
in [B].

The proof of this, however, follows by straight-forward computations, or simply
by the fact that due to homogeneity, if z ∈ Su and z 6= 0, then the ray Lz := {tz, t >
0} ∈ Su. We may rotate and assume Lz is the positive x1-axis. Now, if the set {u <
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0} is empty then f0x
2
1/2 is a solution. Otherwise, to obtain a contradiction, apply

the Hopf’s boundary lemma to u in one of the half-balls {|x− (1, 0)| < r0, x1 > 0},
or the lower one {|x− (1, 0)| < r0, x1 < 0}, for some small r0.

Lemma 1.3. Let u be a solutions to our problem (1.3), with f, g ∈ W 1,p (p > 1),
and suppose that for some sequence rj ↘ 0,

u(rjx)
r2
j

converges to a function u0. Then u0 is a degree two homogeneous function, solving
our problem.

The proof of this follows from Weiss monotonicity function. Indeed,

W (srj , u) = W (s, uj)

converges to W (0+, u) = C(u) as rj tend to zero, and we obtain W (s, u0) = C(u).
In particular u0 solves our problem with f, g constants, and the Weiss function
is constant. Hence the monotonicity theorem tells us that u0 is homogeneous of
degree two.

2. Proof Theorem 1.1.

Let us assume z is the origin, and that is is not an isolated point of Su, i.e. there
exists xj ∈ Su, with rj := |xj | → 0. We have two possibilities.
(A) There exists a constant M such that

Mj ≤ Mr2
j , for j = 1, 2, · · ·

(B) There exists a sequence αj , tending to infinity, such that

(2.1) Mj ≥ αjr
2
j , for j = 1, 2, · · ·

Now if (A) above is true then

uj(x) :=
u(rjx)

r2
j

is bounded. In particular for a subsequence uj converges to a limit function u0,
solving our problem with constant f, g

∆u0 = f(0)χ{u0≥0} − g(0)χ{u0<0}.

Using the monotonicity function of Weiss

W (0+, u) = lim
j

W (srj , u) = lim
j

W (s, uj) = W (s, u0)

for any constant s < 1. By Weiss monotonicity argument (1.7)-(1.8), u0 is degree
two homogeneous global solution to our problem.

Now at the same time x̃j = xj/rj ∈ Suj converges (for yet another subsequence)
to a point x0 ∈ Su0 and with |x0| = 1. Since condition (1.6) is stable under scaling

|{uj ≥ 0} ∩Br(0)| ≥ c0r
n,

we conclude by Lemma 1.2 that Su0 = {0}. A contradiction.
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In Case (B) we use a homogeneous scaling at rj = |xj |, uj(x) = u(rjx)/Mj . Te
idea is to use the argument in [W] (Proof of Proposition 4.1). Obviously uj are
bounded in L2

∂B1
. Let now

fj :=
r2
j

Mj
f(rjx), gj :=

r2
j

Mj
g(rjx).

Then by the monotonicity function

W (1, uj , fj , gj) =

(
r2
j

Mj

)2

W (rj , u, f, g) ≤
(

r2
j

Mj

)2

(W (1, u, f, g) + C) → 0

as j tends to infinity. In particular
(2.2)
∫

B1

|∇uj |2 ≤ 2
∫

∂B1

u2
j+

(
r2
j

Mj

)2

(W (1, u, f, g) + C)+

(
r2
j

Mj

)
(‖f‖+‖g‖)

(∫

B1

|uj |
)

.

Since ∆|uj | ≥ −C (for some constant C), it is not hard to see (using monotonicity
of the integral

∫
∂Bt

h for subharmonic functions h) that

∫

B1

|uj | ≤
∫

∂B1

|uj |+ C.

Putting this into estimate (2.2), and using Hölder’s inequality, we conclude uj ∈
W 1,2(B1). Hence there is a subsequence of uj converging weakly in W 1,2 to a limit
function u0. Now the compact embedding on the boundary (i.e. the trace theorem)
implies that ‖u0‖L2(∂B1) = 1. Moreover

(2.3) |u0(0)| = |∇u0(0)| = 0,

and due to the assumption in (B)

Mkj ≥ αk4−kj ,

which leads to

(2.4) |∆uj | ≤ 4−kj

Mkj

≤ 1
αj

, → 0,

i.e., u0 is harmonic. It also follows from inequality (2.2) that

(2.5)
∫

B1

|∇u0|2 ≤ 2
∫

∂B1

u2
0.

Using (2.3)-(2.4)-(2.5) in conjunction with Lemma 4.1 in [W] we conclude that u0

is a degree two homogeneous harmonic function.
Now on the other hand we have that the sequence x̃j = xj/rj ∈ Suj (where

|x̃0| = 1) and hence there is limit point x0 ∈ Su0 , with |x0| = 1. This of course is
a contradiction, as for any degree two homogeneous harmonic function h we must
have Sh = {0}.
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