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Abstract. In this paper we study the behavior of the free boundary ∂{u >
ψ}, arising in the following complementary problem

(Hu)(u− ψ) = 0, u ≥ ψ(x, t) in Q+,

Hu ≤ 0,

u(x, t) ≥ ψ(x, t) on ∂pQ+.

Here ∂p denotes the parabolic boundary, H is a parabolic operator with certain

properties, Q+ is the upper half of the unit cylinder in Rn+1, and the equation
is satisfied in the viscosity sense. The obstacle ψ is assumed to be continuous
(with a certain smoothness at {x1 = 0, t = 0}), and coincide with the boundary
data u(x, 0) = ψ(x, 0) at time zero. We also discuss applications in financial
markets.

1. Introduction and Main Results

1.1. Backgrounds. Recent years have seen a new trend of analyzing free bound-
aries close to fixed boundaries. These type of problems seem to have a variety of
applications, specially when certain experiments are done in small and confined
container, so that the interface between the reaction and non-reaction zone come
in touch with the ”wall” of the container. A similar type of question, within appli-
cation, is the behavior of the interface close to initial state, when an evolutionary
problem is considered.

In this paper we study properties of free boundaries that appear in nonlinear
parabolic problems of obstacle type, close to initial state. To the authors knowl-
edge the only known results are those for the 1-space dimensional case, and with
very specific obstacle/initial state. This, however, is very well studied, due to its
applications to mathematical finance.

To set the problem, denote by Q+ the upper half of the unit cylinder in Rn+1,
and let ψ(x, t) be a continuous function, with a fixed given modulus of continuity.

Let us for convenient set

(1.1) H(u) = F (D2u, Du, u, x, t)−Dtu,

and

(1.2) H0(u) = F (D2u, 0, 0, 0, 0)−Dtu

where F is a uniformly elliptic operator, which will be carefully defined below. Now
consider a solution to the parabolic obstacle problem: u is a continuous function
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satisfying

(1.3) (u− ψ)H(u) = 0, u ≥ ψ in Q+,

(1.4) H(u) ≤ 0,

with boundary datum

(1.5) u(x, t) ≥ ψ(x, t) ∂pQ
+.

Here u(x, 0) = ψ(x, 0), and the notation ∂p stands for parabolic boundary, see [W1].
In other words u is the smallest supersolution (to H(v) = 0) over ψ, with given
boundary values.

1.2. Main Results. To formulate our main theorems we need some definitions.
We set

E(u) = {(x, t) ∈ Q+
1 : u(x, t) = ψ(x, t)},

C(u) = {(x, t) ∈ Q+
1 : u(x, t) > ψ(x, t)},

where ψ will satisfy the following conditions. For the obstacle ψ = ψα we will
assume

(1.6) ψ(x, t) = (x+
1 )αψ1(x, t) + ψ2(x, t),

with ψ1, ψ2 in C0
x ∩ C0

t , and

ψ1(0, 0) = 1, |ψ2(x, t)| ≤ (|x|2 + t)α/2τ0(|x|2 + t),

where τ0(r) → 0 as r tends to zero. We also denote by τ the modulus of continuity
for ψ in Q+. This assumption makes it possible to get rid of ψ2 in a scaled version
of the equation, and in a global setting. For simplicity the reader may consider the
situation where ψ1 = 1, and ψ2 = 0. After all, in a blow-up (global) version this is
the case.

Actually, there are variety of possible obstacles that one may consider. We
hope to be able to treat such problems in a forthcoming paper. One example is
ψ = (E − min(x+

1 , x+
2 ))+, in 2-space dimension, say, that appears in finance. It

relates to the so-called max-option for two assets, with exercise price E.
It is also noteworthy that many of possible examples that one can give have

direct applications in mathematical finance (see [BD]).

Definition 1.1. We say a continuous function u belongs to the class G1(n,M,H, ψα)
if u satisfies equations (1.3)–(1.5), and ‖u‖∞,Q+

1
≤ M , (supremum norm).

We denote by G∞(n,M,H0, α) all “global solutions” in the entire parabolic upper
half-space Rn+1

+ , with α-growth , i.e., solutions in the entire space Rn+1
+ , w.r.t. the

operator H0, and with growth

(x+
1 )α ≤ u(x, t) ≤ M(|x|2 + t)α/2, u(x, 0) = (x+

1 )α,

and u solves (1.3)-(1.4) in Rn+1
+ .

Finally, we stress once again that the operator H, should have the properties
mentioned in Section 1.3 (entitled Conditions on H), below.

Our first result asserts that local solutions have growth of order α, at the origin.
This will be used in a scaling argument in our main theorems.
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Theorem 1.2. There is a universal constant C0 = C0(n,H,ψα) such that if u ∈
G1(n, M, H, ψα) then

sup
Q+

r

|u| ≤ C0Mrα for r < 1.

Another tool needed in the main theorem is a compactness argument. For this
wee need (at least) a uniform continuity for the class G.

Let us first introduce the notation X = (x, t) and |X| =
√

x2 + |t|. In the next
theorem we assume only that ψ is τ -continuous and it does not necessarily need to
have the form (1.6).

Theorem 1.3. There is a universal constant C, such that if u ∈ G1(n,M, H,ψ)
(with ψ τ -continuous) then

|u(X)− u(Y )| ≤ τ2(|X − Y |),
where τ2(r) := max(r1/4, τ(r1/4)), and τ is the modulus of continuity for ψ.

Next we formulate a qualitative result for the behavior of solutions close to initial
state. We consider the two cases α ≥ 1, and α < 1 separately.

Theorem 1.4. For α ≥ 1 there exists r0 > 0, and a modulus of continuity σ(r)
such that if u ∈ G1(n,M, H,ψα), then

(1.7) E(u) ∩Q+
r0
⊂ {(x, t) : t ≤ |x|2σ(|x|)} ∩Q+

r0
.

Here r0, and σ depend on the class G, only.

Corollary 1.5. In Theorem 1.4 assume

|ψ2(x, t)| = (|x− x0|2 + t)α/2τ0(|x− x0|+ t)

for all points x0 ∈ B1/2 on the x1-axis, and close to the origin. Suppose also
1/2 ≤ ψ1(x0, 0) ≤ 1 for all these points. Under these assumptions we obtain the
same result for all such points and hence

(1.8) E(u) ∩Q+
r0
⊂ {(x, t) : t ≤ x2

1σ(|x1|)} ∩Q+
r0

.

The case α > 1 offers a different geometric behavior for the coincident set. Here
is our result in this case.

Theorem 1.6. For α < 1, and δ > 0, there exist positive constants r0, cα, and a
modulus of continuity σ, such that if u ∈ G1(n,M,H, ψα), then

(1.9) E(u) ∩Q+
r0
⊂ Pσ ∪ Tσ

where
Pσ := {(x, t) : x1 > 0, t ≤ (cα + σ(|x|))x2

1)},
and

Tσ := {(x, t) : t ≤ σ(|x|)|x|2)}.
Before closing this section we give some explanation/definition of the viscosity

solutions. We also introduce the exact condition imposed on the nonlinear operator
F or H.
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1.3. Conditions on H. In this paper the following condition are imposed on the
operator H, i.e. on F , as H(D2u, Du, u, x, t) = F (D2u,Du, u, x, t) − Dtu. When
there is no ambiguity we use also the notation H(u), F (u).

(1) F (A, p, v, X) is defined on Sn−1 ×Rn ×R×Q+
1 .

(2) uniformly elliptic with ellipticity constants λ,Λ, i.e.,

λ‖N‖ ≤ F (A + N, ..)− F (A, ..) ≤ Λ‖N‖,
where A and N are arbitrary n× n symmetric matrices with N ≥ 0.

(3) F has the following homogeneity property,

F (sA, sp, sv, x, t) ≤ sF (A, p, v, x, t),

for all positive numbers s.
(4) F is C0 in all its variables, and bounded on compact sets.
(5) Hr(v) := F (D2v, rDv, r2v, rx, r2t) − Dtv has the maximum/comparison

principle for small enough r, in compact sets.
(6) The obstacle problem for the operator Hr(v) admits a solution in compacts

sets with appropriate boundary conditions.
(7) The Dirichlet problem for H(v) is stable under boundary-value perturba-

tions, on bounded domains.
It should be remarked that most of the standard operators do have all properties

above. However, the reason we have taken such a general formulation for H rather
than specifying it, is for future references, and to make it easier for the reader to
adapt the results of this paper to their situations.

Definition 1.7. Viscosity solutions to (1.3)-(1.5) are continuous functions u with
the property that if at (x0, t0, u(x0)) the graph of u can be touched, locally from
above and below, by polynomials

P (x, t) =
1
2
xT Ax + bt + cx + d

then P should satisfy equation (1.3)-(1.5), pointwise at (x0, t0).

For viscosity solutions in the elliptic case we refer to the excellent book of L.
Caffarelli and X. Cabre [CC] for further details. For the parabolic case we refer
to [W1–3]. It is known that viscosity solutions to operators defined above have
the usual maximum/minimum, and comparison principle as well as compactness
properties.

1.4. Applications to Finance. The obstacle problem defined above, at least
when H is the heat operator with lower order terms, appears naturally in valu-
ation of American type options in financial markets. Such options give its owner
the right (but not obligations) of selling the option at any time during its life time,
if the owner is better of doing so. We refer the reader to the paper by M. Broadie
and J. Detemple [BD] for backgrounds and more details.

Now to fix ideas we denote St = (S1
t , S2

t ) to be the price vector of underlying
assets at time t. The price Si

t follows the standard stochastic model

dSi
t = (r − δi)Si

tdt + σidW i
t , i = 1, 2

where r is the constant interest rate, δi is the dividend rate of the i-th stock, and σi

is the volatility of the price of the corresponding asset. The notation W i
t also stands
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for the standard Brownian motion, over a probability filtered space (Ω,F ,P), with
P as the risk-neutral measure.

Now the value V of the American option is given by

(1.10) V (S, t) = sup
τ

E
(
e−r(T−t)ψ(Sτ )

)

with the stopping time τ varying over all Ft-adapted random variables, and ψ(S)
the option payoff. Here (Ft)t≥0 denotes the P completion of the natural filtration
associated to (W i

t )t≥0. This completion comes from the so-called completeness of
markets, so that one has a unique solution to the problem.

Standard theory of stochastic control can now be used to show that the value
function V satisfies a variational inequality, here written in the complementary
form,

LV + ∂tV ≤ 0, (LV + ∂tV ) (ψ − V ) = 0, V ≥ ψ ,

a.e. on Rn × [0, T ) , and with condition

V (x, T ) = ψ(x, T ).

Here the elliptic operator L is given by

LV = (r − δ1)S1 ∂V

∂S1
+ (r − δ2)S2 ∂V

∂S2
+

+
1
2

(
(σ1S

1)2
∂2V

∂(S1)2
+ σ1σ2S

1S2 ∂2V

∂S1∂S2
+ (σ2S

2)2
∂2V

∂(S2)2

)
− rV .

The backward parabolic equation, can be turned into forward equation by a
change of variable, and hence we arrive at the case of the parabolic obstacle problem
in this paper.

In general, the obstacle ψ is non-smooth at some point x0, at time of maturity
t = T . Examples of such obstacles can be found in [BD].

A direct application of our results tells that the option value is Lipschitz in
space and half-Lipschitz in time up to maturity, e.g. in the case of maximum of
two options. The results also describe the behavior of the exercise region (for put
option) close to maturity.

2. Proof of Theorems 1.2-1.3

Define
Sj(u) = ‖u‖∞,Q+

2−j
.

To prove Theorem 1.2, it suffices, in view of an iteration argument, to show the
following lemma.

Lemma 2.1. For u ∈ G1(n,M,H, ψ, α), there exists a constant C1 such that

Sj+1(u) ≤ max
(

C1M2−jα,
Sj(u)
2α

,
Sj−1(u)

22α
, · · · ,

S0(u)
2(j+1)α

)
for j ∈ IN.

The constant C1 depends on the class G.

Proof. We use a contradictory argument. Suppose the conclusion fails. Then,
for j ∈ IN, there are {uj} ∈ G1, and positive integers {kj} such that

(2.1) Skj+1(uj) ≥ max
(

jM2−kjα,
Skj (uj)

2α
,
Skj−1(uj)

22α
, · · · ,

S0(uj)
2(kj+1)α

)
.



6 H. SHAHGHOLIAN

A crucial point is that the maximum value Skj (uj) cannot be taken at t = 0, due
to the assumptions on ψ. Hence it is realized at (xj , tj) with tj > 0,

(2.2) Skj+1(uj) = uj(xj , tj).

Since |uj | ≤ M , by (2.1), j2−2kj is bounded. Hence kj →∞. Now set

ũj(x, t) =
uj(2−kj x, 2−2kj t)

Skj+1(uj)
in Q+

2j .

Then, for (x̃j , t̃j) = (xj2kj , tj22kj ),

(2.3) ũj(x̃j , t̃j) = 1,

and for m < kj

(2.4) ‖ũj‖∞,Q+
2m

=
Skj−m

Skj+1
≤ 2(m+1)α.

Moreover ũj , solves the scaled version of the obstacle problem, i.e., when we
replace ψ, and H with

(2.5) ψj(x, t) = ψ(2−kj x, 2−2kj t)/Skj+1 → 0,

and
Hj(D2v,Dv, v, x, t) = H(D2v, 2−kj Dv, 2−2kj v, 2−kj x, 2−2kj t),

respectively. Since

cj := ‖ψj‖∞,K ≤ CK

Mj
→ 0 (K compact)

uniformly on compact sets, one expects that for a point (x, t), the solution-sequence
either tends to zero at (x, t) or stays away from the obstacle. The latter case implies,
in particular, that we have a solution at this point, rather than a super-solution,
and hence one expects uniform convergence at such points. We need to give this
argument some mathematical rigor.

Since ũj is locally bounded, we may extract a subsequence (with the same label)
converging locally, and weakly in Lq(Rn+1

+ ) (1 < q < +∞) to a limit function u0.
We need to show that the convergence is uniform, i.e.,

(2.6) ũj → u0 uniformly

on any compact set K ⊂ Rn+1
+ , and (provided j is large)

(2.7) ũj is a solution to Hj , on K,

rather than a (strict) super-solution.
Suppose, for the moment, that (2.6)-(2.7) hold. Then, as Hj → H0, and by

uniform convergence we have that ũj → u0 uniformly in any compact set K ⊂
Rn+1

+ . The limit function u0 is itself a solution to H0 and it satisfies the following

0 ≤ u0 ≤ C(|x|2 + t)α/2, by (2.4)− (2.5).

Moreover, by (2.5) the obstacle, and the initial value become as small as we wish
within any compact set. Hence by comparison principle ũj must be smaller than
a solution to the obstacle problem for Hj with the constant cj as the obstacle,
and as the initial data. However, due to ellipticity and boundedness of F , the
function vj = c(a|x − x0|2 + bt) + cj is a super-solution and definitely above cj

in Q+
1 (x0, 0) if the constants c, a, b are chosen appropriately. Observe that due to
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(2.4) (we have uniform boundedness on compact sets, and hence we may choose
c, a, b independent of j, but depending on x0. In particular vj is larger than any
solution to the obstacle problem (in Q+

1 (x0, 0), with an obstacle smaller than cj .
Hence vj ≥ ũj in Q+

1 (x0, 0), and in the limit u0 ≤ c(a|x − x0|2 + bt) in Q+
1 (x0, 0),

and in particular u0(x0, 0) = 0. As x0 is arbitrary we conclude

(2.8) u0(x, 0) = 0.

Next we claim that (after scaling) the point (xj , tj) (corresponding to the maximum
value in the cylinder Q+

2−kj−1(0, 0), see (2.2)) cannot come to close to the initial
boundary {t = 0}. Indeed, we already know from discussions preceding (2.2) that
tj > 0.

Since we are using uniform convergence in compact sets of Rn+1
+ we need to

show that this point does not come to close to {t = 0}. Actually this follows from
the barrier

vj = c(a|x− x̃j |2 + bt) + cj ≥ ũj

we constructed above. Here the constants a, b, c can be taken so that ca ≥ 4α, and
b > 0 large enough, so that vj is a super-solution. The conclusion here is that

(2.9) t̃j ≥ 1− cj

bc
,

and that (in the limit with (x̃0, t̃0) := lim(xj , tj), maybe for another subsequence)

(2.10) u0(x̃0, t̃0) = 1,
1
bc
≤ t̃0 ≤ 1.

We want to show that such a function u0 can not exist, and hence the contra-
diction. So let

v(x, t) = ε(|x2|+ Nt)β , β > α.

Then one easily computes that for large enough N , v is a super-solution to the
equation H0 and has non-negative initial values; observe that by (2.8) the function
u0 is zero at t = 0. For large enough (x, t) it also holds that v ≥ u0, and hence by
comparison principle v ≥ u0 in Q+

R provided R = Rε is large enough. Letting ε be
very small and R very large, we obtain u0 < 1/2 on Q+

1 , contradicting (2.10).
Final Step: To complete the proof we need to verify (2.6)-(2.7).

Let v be a solution to the obstacle problem in Qr(X0) (X0 = (x0, t0)) with
boundary values g, and an obstacle ψ′ with |ψ′| < ε. Let further v0, and vε be
solutions to the equation

(2.11) Hj(D2w, Dw, w, x, t) = 0 in Qr(X0)

with (parabolic) boundary values g, and gε := max(g, ε), respectively. Then

v0 ≤ v ≤ vε,

where in the first inequality we have used the comparison principle, and in the
second inequality we have used the fact that vε ≥ min gε ≥ ε > ψ′, that vε is a
solution to H, and that v is the smallest super-solution above the obstacle.

Moreover if v(X0) ≥ A > 0, then vε(X0) ≥ A. Now by compactness,

sup
Qr/2(X0)

|vε − v0| ≤ Cε,

with Cε tending to zero if ε does so. From here it follows that v0(X0) ≥ A/2 if ε is
small enough.
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Next by Cα regularity, for solutions to (2.11), v0 ≥ γA in Qr/2(X0), for some
γ > 0, and hence by the above comparison v ≥ γA on Qr/2(X0).

Now using this argument we may conclude that for any Z ∈ Q+
2j we may use

N = NZ chains of cubes (of appropriate sizes) to reach this point from the point
X̃j = (x̃j , t̃j) ∈ Q+

1/2, for which the maximum value (2.3) is realized for the function

ũj . Observe that by (2.9) X̃j ∈ {t > 1/2bc}, if j is large enough. Hence ũj(Z) ≥
γNA > 2cj for all large enough j. In particular ũj is a solution (and not a strict
super-solution) in any compact set K ∈ Rn+1

+ , provided j ≥ jK for jK large. In
other words the graph of ũj does not touch the graph of the obstacle ψj . So by the
uniform bound (2.4) we can conclude that ũj converges uniformly on any compact
set of Rn+1

+ to a limit function. Obviously we may choose the subsequence which
gave the weak-Lq limit function u0 above. ¤

The proof of uniform continuity, Theorem 1.3, is given in the same way as that
of the α-growth. Here however, one considers

Sj(u, Z) = ‖u(·)− u(Z)‖∞,Q2−j (Z)∩Rn+1
+

,

for any point Z ∈ ∂E , and j ≥ 0. Then as above (with slight simplification) one
tries to prove that for u ∈ G1(n,M, H,ψ, α), there exists a constant C1 such that

(2.12) Sj+1 ≤ max
(

C1Mτ(2−j),
Sj

2
,
Sj−1

22
, · · · ,

S0

2j+1

)

(Sj = Sj(u,Z)) for all j ∈ IN, and Z ∈ E . This defines a modulus of continuity

(2.13) τ1(r) = max(C
√

r, τ(
√

r))

for how the solution leaves the obstacle. The latter is a simple exercise and left to
the reader.

Now if this fails we should have (compare with the the proof of Theorem 1.2)
the sequences

Zj = (zj , sj) ∈ ∂E(uj) ∩Q+
1/2, uj , kj

for which a reverse inequality of (2.12) holds

Skj+1 ≥ max
(

jMτ(2−j),
Skj

2
,
Skj−1

22
, · · · ,

S0

2kj+1

)
.

Once again defining

ũj(x, t) =
uj(2−kj x + zj , 2−2kj t + sj)− uj(Zj)

Skj+1(uj , Zj)
in B2kj × (−sj , 22kj ),

we have the following sequences

ũj , X̃j ∈ B1/2 × (−sj ,−sj + 1/4), ψj , Hj

with ũj solving a new obstacle problem for Hj in the cylinder B2kj−1×(−sj , 22kj−2),
with

ũj(X̃j) = 1, ũj(0) = 0, |ψj | ≤ cj → 0.

Observe that, due to the τ -continuity of ψ, X̃j 6∈ Ej (the coincidence set for ũj .)
From here we can argue as in the proof of the previous theorem to reach a

contradiction. We leave the details out.
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Next, using this we can define

uX(Y ) =
u(x + dXy, t + (dX)2s)− u(X)

τ1(dX)
, X = (x, t), Y = (y, s)),

for any given X in Rn+1
+ , with dX the parabolic distance to the free bound-

ary. Hence uX is a solution to the re-scaled version of the parabolic equation
H(D2v, Dv, v, x, t) = 0 in Q1∩{t > −d2

X}, and by (2.12)-(2.13) uniformly bounded.
Standard parabolic estimates [W1] implies uX is uniformly continues in the cylin-
drical domain Q1/2 ∩ {t > −d2

X}, so that

|uX(Y )| = |uX(Y )− uX(0)| ≤ τ1(|Y |),
i.e. for any point Ỹ = X + (dXy, d2

Xs) ∈ QdX
(X), with Y = (y, s) ∈ Q1(0),

s > −d2
X , we have

|u(Ỹ )− u(X)| ≤ τ1(|Y |)τ1(dX) = τ1(dX)τ1

(
|Ỹ −X|

dX

)
≤ τ1

(√
|Ỹ − u(X)|

)
,

we have a modulus of continuity τ2(r) := τ1 (
√

r) = max(r1/4, τ(r1/4)).

3. Proof of main Theorems

3.1. Proof of Theorem 1.4. For the proof of Theorem 1.4, we will show that
given ε > 0 there exists rε > 0 such that for u ∈ G1 we have

(3.1) E(u) ∩Q+
rε
⊂ {(x, t) : t < ε|x|2} ∩Q+

rε
.

Once we have this we may define the reverse relation ε(r) as the modulus of conti-
nuity.

Suppose (3.1) fails. Then there exist a sequence uj ∈ G1, and Xj = (xj , tj) ∈
E(uj) with tj ≥ ε|xj |2, and rj = |Xj | ↘ 0. Scaling uj ,

ũj(x, t) =
uj(rjx, r2

j t)
rα
j

,

we’ll have a new sequence of solutions to the obstacle problem in Q+
1/rj

with obstacle
ψj(x, t) = ψ(rjx, r2

j t)/rα, initial data ψj(x, 0), and the operator Hj(v) = Fj(v) −
Dtv, where

Hj(D2v,Dv, v, rjx, r2
j t) = H(D2v, rjDv, r2

j v, rjx, r2
j t), rj = 2kj .

Since the ingredients are uniformly ω-continuous, there is a limit function u0 (after
passing to a subsequence) which solves the limiting obstacle problem, with ψ0 =
(x+

1 )α in Rn+1
+ , and H0 as the operator. Observe that ψ0 is a sub-solution to the

operator H0 when α ≥ 1.
On the other hand the point X̃j := (xj/rj , t

j/r2
j ) ∈ {|X| = 1} ∩ {t ≥ ε|x|2},

and uj(X̃j) = ψj(X̃j). Therefore the limit point X0 (again after passing to a
subsequence) will be in the set {|X| = 1} ∩ {t ≥ ε|x|2}, and uj(X̃0) = ψj(X̃0).

Now u0 being a super-solution can not touch ψ0 = (x+
1 )α, a (strict) sub-solution,

from above. Hence we have reached a contradiction and Theorem 1.4 is proved.
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3.2. Proof of Theorem 1.6. To prove Theorem 1.6 we use a similar argument as
above. We first need to classify global solutions.

Lemma 3.1. Let u be a global solution to the obstacle problem in Rn+1
+ , for the

operator H0 = F0−Dt, and with both the initial value and obstacle (x+
1 )α, 0 < α <

1. Then there is a constant 0 < cα < ∞ such that

E = {(x, t) : 0 < t ≤ cα(x+
1 )2}.

Proof. We first show that the set E is not empty. Indeed, if this was the case then
the solution u > (x+

1 )α for t > 0. In particular H0(u) = 0 in t > 0. Due to parabolic
regularity [W1]-[W2], one then concludes that

lim
t→0

ut(x, t) = lim
t→0

F0(D2u(x, t)), x ∈ Rn, x1 6= 0.

Since D2u(x, 0) = D2xα
1 for x1 > 0, then we must have F0(D2u(x, 0)) < 0 (x1 > 0).

In particular ut(x, 0) < 0 when x1 > 0 and hence the graph of u would go below
xα

1 for x1 > 0. A contradiction. Hence the set E is non-void.
By uniqueness of solutions we conclude conclude that u(rx, r2t)/rα is also a

solution (since the initial data is invariant under such a scaling). Hence if (x, t) ∈ E
then so is (rx, r2t) ∈ E .

Another geometric property that we can derive is from the fact that u(x, t) ≥
u(x, 0). Indeed, by shifting in t-direction and comparing the two solutions, and
using comparison principle we have that u is non-decreasing in t.

It is also apparent that no point in {x1 < 0, t > 0} can be a free boundary
point, due to strong maximum principle.

All the above implies that

E = {(x, t) : 0 < t ≤ cα(x+
1 )2},

for some constant 0 < cα ≤ ∞.
To complete the proof we need to make sure cα < ∞, or in other words that

the set {x1 > 0, t > 0} \ E is non-empty. This is however obvious since otherwise
{x1 = 0, t > 0} would be included in the free boundary and consequently u takes
its minimum value (zero here) at interior points. Hence it cannot be a super-
solution. ¤

Next we prove Theorem 1.6.
AS in the proof of 1.4, we claim that given ε there exists a rε > 0 such that

∂{u > ψ} ⊂ Pε ∪ {t < ε|x|2}.
where

Pε := {(x, t) : x1 > 0, t ≤ (cα + ε)x2
1)}.

If this fails then there are Xj = (xj , tj) (with |Xj | =: rj ↘ 0), uj ∈ G1 such that
uj(Xj) = ψ(Xj) and

(3.2) Xj 6∈ Pε ∪ {t < ε|x|2}.
Once again upon scaling ũj(x, t) = uj(rjx, r2

j t)/rα
j and repeating the above

argument we arrive at a global solution u0 with a free boundary point X0, such
that

(3.3) |X0| = 1, and X0 6∈ Pε ∪ {t < ε|x|2}.
This contradicts the classification of global solutions, Lemma 3.1.
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