Parabolic obstacle problems applied to finance
A free-boundary-reqularity approach
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ABSTRACT. The parabolic obstacle problem within financial mathematics is
the main object of discussion in this paper. We overview various aspects of
the problem, ranging from the fully nonlinear case to the specific equations
in applications. The focus will be on the free boundary and its behavior
close to initial state, and the fixed boundary. In financial terms these can be
translated as the behavior of the exercise boundary for American option, close
to maturity and close to the barrier. From free-boundary-regularity point of
view, such problems have not been considered earlier.

1. Introduction

1.1. Background. The parabolic obstacle problem refers to finding the small-
est supersolution (for a given parabolic operator, and given domain and boundary
data) over a given function (obstacle).

This problem appears in applications, such as phase transitions (melting and
crystallization), mathematical biology (tumor growth), and American type con-
tracts in finance. Of obvious reasons, the latter application has gained grounds in
the recent past.

Although many financial problems involve linear equations, there are many
related problems with nonlinear governing equations, that require more delicate
analysis. It is our aim here to give an account of some new ideas and techniques,
for nonlinear parabolic obstacle problem from free boundary regularity point of
view. In doing so, we will present some general results describing the optimal
regularity of the solutions as well as describing the behavior of the free boundary
at initial state and also close to a fixed boundary. These, general results are then
exemplified in terms of applications in finance.

A highlight of this paper is the specific application of our results for the valu-
ation of the American put option of minimum of two underliers, see last section.
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1.2. Mathematical formulation. Let @) be a parabolic cylinder in R™ x R,
and let 1 (z,t) be parabolically C%“ in Q (see Section 3 for parabolic notations and
terminology).

Set

(1.1) H(u) = F(D*u, Du,u, z,t) — Dyu,

where F' is a fully nonlinear uniformly elliptic operator with certain homogene-
ity properties for which the regularity theory of viscosity solutions [Wan92a,
Wan92b, Wan92c| applies. For more precise assumptions on F', see Section 1.3
in [Sha06]. Let u solve the parabolic obstacle problem

(1.2) (w—$)H(w) =0, u>v inQ,
(13) H(u) <0,

with boundary datum

(1.4) u(z,t) = g(z,t) > P(x,t) Q.
Let us set

S(u) = {(CL‘,t) €Q: u(z,t) = ¢($=t)}a

Clu) ={(z,t) € Q : u(x,t) > P(z,t)}.
The obstacle 1 in general has singularities, usually representing a change in the
nature of the contract in applications in finance. It should be remarked that in
the applications in this paper we exclusively consider the American put option.
Examples of obstacles that appear in finance are given below (here E is a constant
and it denotes the exercise price).

Obstacle ¥ Applications
(B —x1)" 1-d contract, American put
min{(E — z1)", (E — x2)"} min option, American put.

Another type of contract that also is of interest in the market is that of barrier
type options, referring to termination/start of a contract, before the time of matu-
rity. Here we will also discuss this issue from the obstacle problem point of view.
However, we will only consider the case of down-and-out barriers (termination of a
contract with a rebate) for American put option.

1.3. Smooth obstacles. For the smooth obstacle case, there is a vast liter-
ature treating various aspects such as existence and regularity of the solutions, as
well as certain geometric inheritance. In the linear case one can even make a further
simplification of the problem by considering the function U = u—1), and after some
standard analysis one comes to the conclusion that

(1.5) HU) = fxvso, U =0,

where f = —H(¢), and the free boundary is now 9{U > 0}.
The study of the obstacle problem, in one dimension and in the case of Ste-
fan problem 9;U > 0 (which is a result of specific data, e.g. if the obstacle is

time-independent) has been successfully carried out by several people; see [Fri75],
[vMT74a, vM74Db].
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In higher dimensions, besides existence theory and some partial results on ge-
ometry, there are hardly any other results. Concerning the regularity of the free
boundary, the only known general result is [CPS04]. For the case of Stefan prob-
lem see also [Caf77]. Although both these papers treat the Laplacian case, one
can easily generalize part of the results to more general, but still linear, operators.
Cf. also a recent paper by Blanchet et al. [BDMO5].

1.4. Non-smooth obstacles. When the obstacle is non-smooth, even in the
simple Laplacian case, one can not reformulate the problem into (1.5) and hence
there are not many know techniques to be used in the study of the obstacle problem.
Of course, even if the obstacle is smooth, but the operator is non-linear, then we
still are in situation that earlier techniques are not applicable. A complete study
of the problem is yet to come.

In this note we will present some results for the non-smooth case, with focus
on applications to American type options in finance.

2. Applications to Finance and Optimal Stopping

The above obstacle problem, appears naturally in the valuation of American
type claims, in financial market. The obstacle is the so-called payoff function and
the optimal configuration u is the value of the option. For a good background study
we refer the reader to the paper by M. Broadie and J. Detemple [BD97].

Let us denote S; = (S}, S?) to be the price vector of underlying assets at time
t. The price S¢ follows the standard Brownian motion

dSi = (r — 6;)Sidt + o;dWY, i=1,2

where r is the constant interest rate, d; is the dividend rate of the i-th stock, and o;
is the volatility of the price of the corresponding asset. The notation W} also stands
for the standard Brownian motion, over a probability filtered space (2, F, P), with
P as the risk-neutral measure. We also assume that W} have a constant correlation
p satisfying |p| < 1.

The value function V of the American option is given by

(2.1) V(S.) = sup £ (e*“T*%(sT))

with the stopping time 7 varying over all F;-adapted random variables, and 1(S)
the option payoff. Here (F;):>0 denotes the P completion of the natural filtration
associated to (W} );>0. This completion comes from the so-called completeness of
markets, so that one has a unique solution to the problem.

Stochastic analysis can now be used to show that V satisfies a variational
inequality, here written in the complementary form,

LV +08,V <0, LV +oV)(p—V)=0, V=>4,
a.e. on R" x [0,T) , and with condition

Vi, T) = ¢(x,T).
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Here the elliptic operator £ is given by

oV °1%
LV = =1V +(r— 61)51—331 +(r— 52)52—8S2+
1 0V o’V o*v
#5105 g + 2088 5 + 025 s )

The backward parabolic equation, can be turned into forward equation with con-
stant coefficients by a change of variables S* = e%, i = 1,2, and 7 = T — t and
hence we arrive at the case of the parabolic obstacle problem in this paper.

In general, the obstacle 1) is non-smooth at some point 20, at time of maturity
t =T. Examples of such obstacles can be found in [BD97].

3. Parabolic notation

For a point X = (z,t) € R xR and r > 0, we consider three kinds of parabolic
cylinders:

Qr(X) = B(z) x (t —r*,t +1?),
Q; (X)) = B(z) x (t — %], (lower cylinder)
Q. (X) = B,(z) x [t,t+17%). (upper cylinder)
When X = (0,0) we don’t indicate the center. For a cylinder Q = B x I, where I
is an interval with endpoints a < b, then we define
0;Q = 0B x I, (lateral boundary)
HhQ = B x {a}, (bottom)
0pQ = 9;Q U 8,Q (parabolic boundary)
For X = (z,t) we denote |X| = /22 +[t|. Then |X — Y| is the parabolic
distance between X and Y.

For an open set Q in R® x R and 0 < a < 1, the parabolic Holder space
C%(Q) is defined as the subspace of C(Q2) consisting of functions f such that the

norms
f(X) = F(Y)

fllcoay = IS + sup —

I fllcoey = Ifllcw) S X ST
are finite. Next, the parabolic spaces C*(Q) for integers k are defined as the space
of continuous functions f for which the derivatives D D] f with |i| + 25 < k are
also continuous, with appropriately defined norm. (Here ¢ is a multi-index and j is
an integer.) For integer k, 0 < a < 1, and f € C() let

. 1
[flk.a(X) =infsup —  sup |u— Pyl
Per>0 T o (x)ne

where Py (X) = 37, 2<) @:,j2't) are polynomials of parabolic order < k. Then

the higher parabolic Holder spaces C*%(Q) are defined as the subspaces of C*(9)
consisting of functions f such that the norms

[fller.a@) = 1fller@) + sup [flr.a(X)
XeQ

are finite.
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4. Regularity of the solution

A compactness-based technique developed in [Sha06] allows to prove the fol-
lowing result, which essentially says that the solution of the obstacle problem (1.2)—
(1.4) is as regular as the obstacle, up to C*!, similarly to the classical obstacle
problem.

THEOREM 4.1 (Optimal interior regularity). Let u be a solution to the obstacle
problem in Q7 with obstacle 1 € C** (Qf) for k=0,1and 0 < a < 1. Then

u € Ck’a(Qf) and for any K CC Q7

loc
||u||Ck’°‘(K) <C (Ka F, k? Q, M, ||u||LOO(Q;)a ||1/}||Cka(Q;)) ’
The next two results deal with the boundary regularity of the solutions.

THEOREM 4.2 (Lateral boundary regularity). Let u be as in Theorem 4.1 with
k=0,1,0 < a <1, and boundary values g € C**(Q7 U 8,Q7) for some ¢ > 0.
Then u € C{ZCO‘ (Q1 U0.Q7) and for any K CC Q7 U8,Q7

||u||ckvo‘(K) S C (K7 F7 ka @, n, €, ||g||CQYE(Q;UazQ1)7 ||w||ckw0¢(Q;)) .

THEOREM 4.3 (Initial regularity). Let u be as in Theorem 4.1 and assume also
that it takes boundary values g € C**(Q7 U8yQ1). Then there exists 3 = [B(k, a),
0 < B <1 such that u € C’{Z’f(@f U Qi) and for any K CC Q7 UdpQ7

||u||ck,B(K) <C (K, F, k, a,n, ||g||ck,a(Q;); ||7/1||Cka(Ql—)) .

In applications to finance, where u represents the value function for a certain
derivative, usually one can represent the u as the supremum of the expected value
over a class of stopping times. From such representations one can derive the optimal
regularity of the solution by computations; cf. [CCO03].

Sketch of the proof. The proof of Theorem 4.1 is an consequence from the
following growth estimate.

LEMMA 4.4. Let u be as in Theorem 4.1 and assume that ||“||L°°(Q;)
Hd)”Cka(Q ) < 1. Then there exists C = C(k,a,n) such that

1

<1,

sup  |u(X)—u(Z2)|<Cr*, if k=0
XeQr (2)
and
sup |u(X) = u(Z) — Dap(Z)(x — 2)| < OrFe, i k=1,
XeQr (2)

for any Z = (z,5) € 0E(u) N Q7 5 and 0 <7 < 1/2.
The proof of this lemma is based on a compactness argument developed in

[Sha06].
In the case k = 0 define

S;=8;(u,2) = sup  |u(X)—u(Z)], j=1,2...,
X€Q,-;(2)
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for any point Z € 9E(u) N Q7 /5. The statement of the lemma will follow once we
prove that
S; <027, j=1,2...

for a universal constant C'. The proof is by establishing the recursive relation

Sj ijl Sl }

Sjt+1 Smax{m72_a’%""723_‘a

Assuming that this inequality fails for any value of C, we will have a sequence of
solutions u; in )7, @ = 1,2,..., with obstacles v; as above, integer k; and a point
Z; = (%, 8;) € 0&(u;) such that

7 Sk, Ski—1 Sh
Ski+1 = maX{Qkia’ 2007 920 7777 oksia

Then we consider the rescalings

’U,i(Zi + 2iki$, S; + 272kit) - ul(Zl)
Skst1(ui, Z;) ’

It is easy to see that u; is a solution of the obstacle problem with appropriately

modified obstacle ;. Next, without loss of generality we may assume that Z;

ﬂi(:v, t) =

(,1) € Qp, (=Zi).

converges to Zp € Q;/Q. Then u; are uniformly bounded in @7 and ¥; — 0 locally

uniformly in @7 . By using a comparison principle, one can show that this implies
%; — 0 uniformly on Q1_/2'

However, this contradicts to the fact that

sup |u;(X)| = 1.
Q@12
The proof in the case k = 1 follows a similar scheme, except we need to redefine
Sj = Sj(u, Z) = sup [u(X) —u(Z) — Dp(Z)(x — 2))
X€Q,—;(Z2)NQT
and
ul(zl + 2_ki$, S; + 2_2kit) - ul(Zz) - 2_lem’t/J(Zl)£L'
Ski+1(us, Zi)

ai(:v, t) =

and establish that
S; <027 UHi =19 .

The proofs of Theorems 4.2 and 4.3 are little more involved as they require
boundary analysis, but also follow a similar lime of reasoning (see Theorem 1.3 in
[Sha06]).

5. Regularity of the free boundary

In this section we discuss results concerning the regularity of the free boundary.
The results are stated in the framework of fully nonlinear operators, however, some
of the results are currently known only for the heat equation, while some others are
known for a fairly general class of operators.
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5.1. Interior regularity for smooth obstacles.

THEOREM 5.1 (Interior spatial regularity backward in time). Let u be a so-
lutions of the obstacle problem, with ¢ € C*(Q1). Suppose for some point Z €
0E(u) N Q1 2, with H()(Z) = —co < 0, we have that the set

(5.1) & (u; Z) = E(u) N Q. (Z)
is thick enough for some r = ry in the sense that
60 (u; Z) = L’TEU; 2)l > o(r)
Q- (2)]

for a certain modulus of continuity o. Then the free boundary OE is locally in
Qr(Z) a C'-graph in some of the space directions, and for some ro. Moreover, the
modulus of continuity o as well as roy can be chosen uniformly for v in appropriately
defined classes.

This result is currently known only for the heat operator, see [CPS04]. A
related result for a fully nonlinear elliptic obstacle-type problem can be found in
[LSO01].

REMARK 5.2. We note here that the possibility of having “flat in time” free
boundaries as in the example

||? 1 * x?

for the operator F' = A prevents from having the analogue of this theorem for for-
ward in time spatial regularity of the free boundary. However, under the assumption
Dyu > Dy in @1, which mathematically corresponds to the Stefan problem case,
we can replace the thickness of £ (u; Z) by that of

E(u; Z)=Ew)NQ(Z)

or even with the thickness of any of its t-cuts in @,(Z) and obtain the spatial
regularity of € in Q.,(Z).

To illustrate the idea of the proof, we state here one of the intermediate steps
in the case F' = A in [CPS04].

LEMMA 5.3 (Convexity of global solutions). Let w be a nonnegative solution of
Aw — Dyw = coX{w>0} in R™ x R™ such that
lw(X)| <M1 +|X*), XeR"xR~

for some constant M. Then Deew > 0 for any spatial direction e and Dyw < 0. In
particular, the t-slices

Et) ={z:w(x,t) =0}

are convex and shrink as t decreases.

The proof of this lemma is based on the following argument. Assuming that
D..w is negative at some points, we take a minimizing sequence X,, such that

Deew(X,) > m= inf D..w <0.
{w>0}
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Note that m is finite by the optimal regularity theorem (see Theorem 4.1 above).
Then consider the rescalings

1
wn(X) = d—zw(:ﬂn +dpx, t, + d2t),

n
were d,, is the parabolic distance of the point X,, to the coincidence set {w = 0}.
Over a subsequence, w,, will converge to a solution wo of Awg — Diwo = CoX {we>0}
in R™ x R™, which will have the following properties:

Awy — Dywo =1 in QF, D.cwo(0,0) = min Decwo.
1

The function v = D..w itself will satisfy the heat equation in ()7 and therefore by
the minimum principle D..w = m = const in ()7 . Moreover, this equality continues

to hold in the parabolic connected component of the set {w > 0}. Assuming that
e = ey, this implies the representation

wo(z1,0,...,0) = %x%—i—bxl—i-c

for some constants b and ¢, which will hold at least for 0 < x7 < 1 and will continue
to hold as long as wy > 0. However, since m < 0 there will be the first 1 = 7,
where wgy will become 0. This will imply the representation

wo(z1,0,...,0) = %(xl —at)?, 0<m <al,

since both wy and Djwg should vanish at z; = z]. However, this contradict to
nonnegativity of w, as m < 0.
A similar argument proves also that D;w < 0.

5.2. Behavior near the fixed boundary.

THEOREM 5.4 (Touch with the fixed boundary). Let u be a solutions of the
obstacle problem in Q1 with ¢, g € C>®(Q1). Suppose for a boundary point Z =
(2,0) with z € OBy and Hy(Z) < 0, we have that Z € OE, i.e. there exists Z3 — Z
with Z7 € C(u). Suppose further |g(X) — g(Z)| = o(|X — Z|?) for X € 8,Q1. Then
we have that the set
(5.2) Er(u) =Ew)NQ(Z)NEQ1
is thin in the following sense

Er(u) (@) —(z—2)- 2 <[X = Z]o(|X = Z])} N Qry (2) N Q-

Here o is a modulus of continuity, which along with he constant o, depends only
on the appropriately defined classes of ¢ and g.

This result is currently known only for the heat operator, see [AUS03].

REMARK 5.5. In contrast to the interior regularity, the boundary condition
forces the free boundary to touch the fixed boundary parabolically-tangentially
both forward and backward in time.

The proof in the case F = A in [AUSO03] is based on the following classification
of global solutions.

LEMMA 5.6 (Global solutions with zero fixed boundary data). Let w be a non-
negative solution of Aw — Dyw = coX{w>0} M R} x R and w = 0 on OR} x R,
where R = {x € R" : 21 > 0}. Then w(z,t) = co(x])?/2 for all (z,t) € R} x R.
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5.3. Initial behavior. In the special case when 1) = g (of interest in applica-
tions to finance) and when ¢ has a structure

¢(x7t) = 1/}a(xat) = (xf)ad}l(xat) + 1/}2(x7t)

for a certain a > 0 with continuous 1, 12 such that

U)l(0,0): 17 ¢2(X) :0(|X|a)a
one can characterize the initial behavior of the free boundary as follows.

We consider the cases a > 1 and 0 < a < 1 separately, as they offer different
geometric behaviors for the coincident set.

THEOREM 5.7. Let u be a solution of the obstacle problem with g =¥ = ¥* as
above for a certain a > 1. Then there exists rg > 0, and a modulus of continuity o
such that

(5.3) E(uw) N Q7 C{(z,1) : t <|afo(lz)} N Q.
Here ry, and o depend on the class of the obstacles 1 = 1, only.

THEOREM 5.8. For 0 < a < 1, there exist positive constants rg, cq, and a
modulus of continuity o, such that if u is a solution to the obstacle problem with
g =1 =" as above then

(5.4) Ew)NQE C P, UT,
where
Pyi={(x,t): @1 >0, t < (ca +o(|2]))ad)},

and
T, = {(x,t) : t <o(la])]z]*)}.

These results correspond to Theorems 1.4, 1.6 in [Sha06] and known for a
class of uniformly parabolic fully nonlinear operators H; see [Sha06] for precise
assumptions on H.

As before, the proof relies on a classification of global solutions.

LEMMA 5.9 (Global solutions with g = ¢ = (z])%). Let u be a global solutions
of the obstacle problem in R™ x R with 1 (x,t) = g(x,t) = (7).
(1) Ifa > 1, then E(u) = 0.
(2) If 0 < a < 1, then there exists a constant cq > 0 such that

E(u) = {(x,t) : 0 < t < co(xf)?}.
6. Specific applications to finance

6.1. Regularity theory. In applications of the regularity theory one needs to
verify the thickness conditions in Theorem 5.1. However, in general the equations
and ingredients (the obstacle and the boundary data) are such that one usually
has monotonicity in the ¢, for the solution u. Such monotonicity in general reflects
the fact that usually the value of the option becomes smaller in time (the time
is reversed in applications) since the possibility of the change of the value of the
underlier is becoming less. Hence, in general, D;u > 0 in our formulations. Another
feature, reflected in applications, is the convexity of u in space directions, Deeu > 0,
and also the monotonicity of v in some of its space directions . Such conclusion
to hold requires that the governing operator, the obstacle and boundary data to
satisfy certain conditions. Let us illustrate this by an example that arise in the
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valuation of the early exercise contacts in incomplete markets; see [OZ03]. The
equation in this problem (after inverting time) are given by

1
min {ut — Lu+ 57(1 —pAatut, u— g(:z:)} =0, u(z,0) = g(x),

where )

L= 5aD2, + (b - pg) D,.
Observe that = is one space dimensional. Here, with correct assumptions on the
ingredients a,~,--- one may use standard comparison principle (use sliding in ¢-

direction) to conclude that D;u > 0. To obtain the regularity of the free boundary
we need to make further assumptions on the ingredients, and especially on the
obstacle (payoff) g.

We may replace the function uw with v = u — g, which satisfies (this requires
some work)

Av — Div = gX{v>0}> v>0.

Here g contains all extra terms that is given rise to after reformulation. It is also
not hard to verify that §(Z) > 0, for any free boundary point, and that § is C%<.

6.2. Close to maturity. The study of the exercise region, for one underlier
(one space dimension), close to maturity has been much in focus, for American
put as well as American call option. These results give accurate description of the
exercise region close to maturity. More precisely for the American put, with payoff
(obstacle) (E — x)" one has that the early exercise boundary can be represented
by a graph t = h(x) with h(z) ~ ((zx — E)")?/log|E — x|.

The methods for all such results rely heavily on one space dimension, and
representations of the solutions and pure computational methods (see [CCO03]).

Theorems 5.7-5.8 above give good descriptions of the exercise region close to
maturity, for a more general equations as well as a general payoff function. The
methods are purely geometric and do not take into account the space dimensions.
The main differences (in one space dimension) with the existing results is that our
modulus of continuity ¢ in Theorems 5.7-5.8 is not give explicitly, while in classical
results its known to be 1/log |r|. In this regard our result is not a good replacement
for classical results in one dimension, unless one has nonlinear equations to treat,
or if one has ingredients that are not “clean” so that the computations have to take
into account error terms.

Here we want to exemplify our technique for a simple model of American type
contract for the min-put option

(6.1) P(z,t) = min{(E —a1)", (E —22) "},

where E denotes the exercise price for both underlier x1,z2. We refer the reader
to [DFTO03] for the corresponding call option on the minimum of two assets

(min{zy, 20} — E))T.

It should be remarked that the local behavior of the free boundary close to the
point (E, E,0), and along the set (z1,21,0), in both put and call case seem to be
pretty much the same!

Let us now consider a forward parabolic operator H, and analyze the behavior
of the exercise region close to initial state (i.e. close to maturity for corresponding
finance problem), for the min-option.
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According to Theorem 4.1 we have that our solution « is a Lipschitz function
up to the time ¢ = 0. Suppose also that the free boundary touches the initial state
at the point (E, E, 0); this is the case of the American put option. As one can easily
show that for the European option the value goes below the obstacle for small times
and close to (E, F).

From both theoretical and numerical point of view, the behavior of the exercise
region close to this point is more difficult to analyze. For other points like (E, s,0),
with s < E, one can use the one-dimensional analogy.

Following the lines of the proof of Theorems 1.4, 1.6 in [Sha06] we want to
classify global solutions of the corresponding problem for the min-option. This
would give us a good information about the behavior of the local solutions close to
maturity. We consider a translation of the point (F, E,0) to the origin, and replace
x; with —; so that in the global setting the the obstacle becomes min{z;, x5 }.
The blow-up operator Hy also as before has the strong minimum principle. This in
particular implies that the only possible points where the solution and the obstacle
touch could be on the set {1 > 0,22 > 0, x1 = z2} N {t > 0}.

We know that the global solution to the obstacle problem is unique (otherwise
we take the minimum of the two solutions, which also is a solution) and hence by
scaling we see that the solution is parabolically homogeneous of degree one, i.e.
uo(ra, r?t) = rug(x,t).

Next, let us analyze the solution to the Cauchy problem in ¢ > 0 with initial
datum g = min{xf, :C;r} If this solution goes below the obstacle at some point,
then it obviously implies that the solution to the obstacle problem, with this obsta-
cle must touch the obstacle, and consequently at the set {z1 = x2 > 0}. Now it is
not hard to realize that the solution to the above mentioned Cauchy problem has
the property that Dyu = Au, where Au < 0 on the the set {t =0, x; = x5 > 0}.
Hence, for very small ¢ values our solution is pushed down from its position along
the set {1 = x2 > 0}. Therefore we conclude that the global solution to the
obstacle problem must touch the obstacle at the set {z1 = z2 > 0}.

Let us now describe the exercise region (coincidence set), ug = 1. We know
from the discussion above that the exercise region is a subset of the set G := {t >
0, 1 = 22 > 0}. The question is whether it coincides with G. If it where so, then
one has by uniform Lipschitz regularity of ug that the solution is bounded close to
the set (0,0,t) for all £ > 0. Since uy is also monotone non-decreasing (this is simple
sliding and comparison principle) we may look at the limit vo(z) := lim;_,o0 uo(z, t),
which is a solution to the global elliptic obstacle problem in R? with obstacle 1.

It is not hard to show that such a solution does not exists. Indeed, due to ho-
mogeneity of degree one, vg(x) = rég(), where (r,0) denote the polar coordinates
in the plane, we can apply Laplacian in polar coordinates to arrive at

do + Do = 0, —3n/4<0<m/4, 7/4<0<51/4

Next using the simple fact that ¢y is symmetric across the line 1 = x9, and it is
non-increasing for 57/4 < 6 < 7/4, we should have

Digdo(5m/4) > 0.

The above two equations imply ¢o(57/4) = 0, i.e. {# = 5n/4,r < 0} is in the
exercise region. This is a contradiction to what we have above.

This particular analysis implies that the global solution to the parabolic equa-
tion, must be so that as time increase then the graph of the solution function to
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the obstacle problem detaches from the obstacle and eventually it becomes infinity
at every point, i.e.

lim ug(z,t) = 0o

t—oo

for all z € R2. This along with the parabolic homogeneity implies, in particular,
that the exercise region for the global solution can be represented as follows

S(UQ):{O<!E1 = 9, tgc(xl)Q}u

for some positive constant c.

Using ideas of the proof of Theorems 14, 1.6 in [Sha06], the conclusion from
above analyzes is an accurate description of the free boundary close to maturity.
We summarize this in the following theorem.

THEOREM 6.1. Let u be a solution to the American put option, with the payoff
P(x,t) = min{(E —21)", (E —22)7},

and exercise time T. Denote by L the line {x1 = x2} in the z1xo—plane. Then the
exercise region E(u) along the line L lies above a parabola like region. More exactly,
there are constants co, 7o > 0 and a modulus of continuity o such that

E(uw)n{(s,s, T-1)}NQ, (E,E,T)C

{(T=1) > (co —o(jor = B)((@1 = E))*}n{(s,5.T - )} N Q; (B, E,T),
where Q; (E, E,T) is the lower half-cylinder By,(E,E) x {—r§+T <t <T}.

In financial terms the above theorem tells us that immediate exercise is optimal
at a given point (z1,21) close to maturity. Similarly, Theorem 5.7 tells us that at
points close to (s,as, E), with a > 0 and a # 1 exercise is suboptimal. There is a
sub-optimality constant depending on a, above.

6.3. Barrier Options. In the literature, Barrier options (for American type
contracts) are usually considered so that one avoids the free boundary, e.g. for the
American put one considers up-an-out options, or down-and-in, and for American
call one considers down-and-out options, and up-and-in.

Here we want to give some insight into the case of American down-and-out,
with an appropriate rebate, which is to stay above the payoff. For simplicity of the
argument let us again look at a reversed time, so that we are in the situation of our
problem obstacle problem.

We consider a general situation as follows. In the obstacle problem, above, we
assume that the boundary value u = ¢(0,¢) > 1(0,t) is prescribed; for simplicity
we assume only the one space-dimensional case. We also assume that in finite time
the free boundary meets the t-axis. In application one may of course replace the
boundary x; = 0 with any other boundary z; = s and s below the exercise price
E, so that the free boundary of the American type contract, starting at £ moves
towards 1 = s, and meets this line in finite time. Naturally the constant s should
be taken so that it stays above the exercise price at maturity. In mathematical
terms (with forward parabolic equation) this means that we assume that the free
boundary should appear on the right hand side of the line {z; = s} and after some
time it heats this line.

The question that we raise here, is how the free boundary approaches the fixed
boundary {z; = s}. The qualitative feature we are looking for is whether the free
boundary approaches the fixed one in a tangential or non-tangential way.
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In [AUSO03], the authors prove that, in the one-space dimension, the free
boundary touches the fixed one only in a non-tangential way. They show this
using an explicit barrier. However, in the same paper, the authors also show that
the free boundary touches the fixed one in a parabolically-tangential way. More
exactly one has the following: Take s = 0 for simplicity. Let Z, on the fixed bound-
ary x1 = 0, be also a free boundary, i.e. there exists a sequence Z7 — Z such that
w(Z7) > g(Z7), and u(Z) = g(Z). Let us once again simplify things by assuming
Z = (0,0). Then there exists ¢ such that

E(u)NQry CH{(z,t): 0< 1 <O} N QY
for some constant C.

The proof of this results is very much in the spirit of that of Theorem 5.4. We

refer the reader to the papers [AUS03].

A similar behavior can be established for the American up-and-out call option.
We refrain ourselves discussing it here.

Appendix A. Numerical Solutions of American Put Options

BY TEITUR ARNARSON
Below are presented pictures concerning the global solutions of the problem
-+ Au <0, (—0wu+Au)(yp —u) =0,
u>P(x), u(z,0)=1(z)

in R?x (0, 7], where ¢)(x) = (min{z1,22})", and the two-dimensional Black-Scholes
equation

(A1)

LV +0,V <0, (LV4oV)¢—V)=0,
VZi, V(ST)=1(5)

in (R7)2 x [0,T), where ¢(S) = min{(E — S*)*,(E — §?)*}. The equations are
solved numerically using finite difference schemes. For stability reasons we use
implicit methods as follows. Let A be the finite difference coefficient matrix and
denote the time index n. We then use Gaussian elimination to calculate u"*! from
u” = Au™T! for the forward equation and V" from V"1 = AV™ for the backwards
equation.

Since numerical computations can only be carried out in finite domains we
approximate R? in (A.1) with [—10,4] x [~10,4] and (R")? in (A.2) by [0,10.5] x
[0,10.5]. We then impose as boundary conditions the solution to the corresponding
one-dimensional problem on the boundaries where the obstacle is greater then or
equal to zero, and zero boundary conditions on the boundaries where the obstacle is
zero. The boundary conditions are verified to be reasonable by solving the problem
in a larger domain and using the values of this solution as boundary conditions for
the smaller domain. The difference between the two approaches is insignificant.

(A.2)
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=5

(min(X, X,))", T

Heat equation: w(xl,xz)

uonnjos

F1GURE 1. Approximation of global solution, —d,u + Au < 0, u > 1

(K-max(S,,S,))"
4,r=03,3=01%,=01,0,=05,0,=05,p

American max put: lJJ(Sl,SZ)

T=5K

=0.7

FIGURE 2. Price of the American max put option for given pa-

rameters, O,V + LV <0, V > .
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Free boundary for global solution for increasing time

FIGURE 3. The contact set of the global solution for increasing
time. It exists on the diagonal 21 = x».

Free boundary on the diagonal X=X, for increasing time
5 T T T T

45 i

35 b

= 25F R

FIGURE 4. The contact set on the diagonal 1 = 2 for the global
solution. It decreases as time increases. The picture is similar for
the American max put on the diagonal.
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Free boundary for American max put for increasing time.

FIGURE 5. The exercise region (i.e. contact set) of the American
max put for increasing time.

Projection of exercise region in the Sl,SZ—pIane.

FIGURE 6. Projection of the exercise region of the American max
put at time 0. The payoff function (i.e. the obstacle) is zero outside
the gray region.
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