
A PDE APPROACH TO REGULARITY OF SOLUTIONS TO FINITE HORIZON

OPTIMAL SWITCHING PROBLEMS

TEITUR ARNARSON, BOUALEM DJEHICHE, MICHAEL POGHOSYAN, AND HENRIK SHAHGHOLIAN

Abstract. We study optimal 2-switching and n-switching problems and the corresponding system of

variational inequalities. By using PDE based methods we can extend the results of [DH] regarding existence

of viscosity solutions of the 3-switching problem to cover some special cases when the cost of switching

is non-deterministic. We also give regularity results for the solutions of the variational inequalities. The

solutions are C
1,1-regular away for the free boundaries of the action sets.
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1. Introduction

We consider the problem discussed in [DH] where an investment manager faces the options to run the

project when conditions are profitable, to temporarily shut it down when conditions are non-profitable

and to permanently shut it down when the project is bankrupt. As mentioned in [DH] this problem

has several industrial applications. The study of this class of problems, referred to as optimal switching

problems, originate in the work of Brennan and Schwartz (1985) and Dixit (1989) who study different

models for the life cycle of an investment in the natural resource industry. We refer to [DH] for a list of

several extensions and related papers on this subject.

The special case when risk of default is not present was considered in Hamandène and Jeanblanc

(2007). In the Markovian setting when the underlying commodity follows a diffusion process this problem

corresponds to a double obstacle problem which is a well studied problem and existence of a solution

follows by classical results. As is made clear in [DH] this representation is lost when adding the possibility

of default. Instead the problem can be expressed in terms of a system of variational inequalities with

inter-connected obstacles. In [DH] existence of viscosity solutions to this system is assured under the

assumption that the cost of switching is constant.
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In the present paper we use PDE-based methods to establish uniqueness for some special cases when

the cost of switching depends on the underlying diffusion process. In the same spirit we obtain C1,1-

regularity of the solutions away from the free boundary. More precisely, if we denote the solutions of the

system of variational inequalities by v1 and v2 we will get, at most, two disjoint action sets on which

the difference of the two solutions, vi − vj , equals the cost of switching from state j to state i, where

i, j ∈ {1, 2}. C1,1-regularity is in fact obtained everywhere except on the free boundaries of the action

sets. Furthermore, we present an example where C1,1-regularity is lost and the solution is only Lipschits

continuous on the boundary of the action set.

The paper is organized as follows. In section 2 we define the problems of two- and multiple switching

in stochastical terms using the notion of Snell envelopes. In section 3 we consider the corresponding

variational inequalities and give regularity and partial uniqueness results. Section 4 includes some com-

ments on the multiple switching problem. The last section is devoted to numerical treatment of systems

of variational inequalities. We suggest an algorithm for solving the problem and illustrate with some

examples.

2. Formulation of the problem and preliminary results

2.1. Two-modes switching problem. The two-modes switching problem can be formulated as fol-

lows. The production activity of the investment project, under a time interval [0, T ], can be either

”on/open” indicated by 1, ”off/closed” indicated by 0, or ”definitely closed/defaulting” indicated by †.

The management strategy of the project consists of

• An increasing sequence of stopping times (τn)n≥1 (i.e. τn ≤ τn+1 and τ0 = 0) where the manager

decides to switch the activity from a mode to another. Here, for any n ≥ 1, τ2n (resp. τ2n−1) is

the instant where the activity is switched to mode 1 ”on/open” (resp. mode 0 ”off/closed”). On

(τ2n, τ2n+1] the activity is in mode 1 and on (τ2n+1, τ2n+2] it is on mode 0.

• A stopping time γ at which the manager decides to definitely stop the production. The activity

is then switched to the mode †.

Let ut be an indicator of the production activity being either on the mode 1 or 0, at time t ∈ [0, T ]:

(2.1) ut = 11[0,τ1](t) +
∑

n≥1

11(τ2n,τ2n+1](t), t > 0, u0 = 0.

Letting Xt denote the market price process of a set of underlying commodities at time t, the state of the

whole economic system related to the project at time t is represented by the vector:

(2.2)
(t, Xt, ut), if τn < t ≤ τn+1;

(γ, Xγ), if in mode †.

The sequence of stopping times δ := ((τn)n≥1, γ) is called a strategy for our starting and stopping problem.
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Let ℓ1 := (ℓ1
t )0≤t≤T (resp. ℓ2 := (ℓ2

t )0≤t≤T ) be two positive continuous adapted stochastic processes. The

closing (resp. opening) cost of the production at time τ2n−1 (resp. τ2n) is given by ℓ1
τ2n−1

(resp. ℓ2
τ2n

).

Fi(γ, Xγ), i = 1, 2 stands for the cost of default at time γ, when the system defaults while it is in mode

1 resp. 0. The functions Fi are assumed non-positive. Moreover, let ψ1(t, x) be the profit per unit time

when the system is in state (t, x, 1). This profit can be a loss (negative) as well. Such a situation occurs

when the price has gone below the running costs. When the system is in state (t, x, 0), the profit is

ψ2(t, x). Denote

(2.3) Φ(t, x, u) =







ψ1(t, x), if u = 1;

ψ2(t, x), if u = 0,

and

(2.4) F (t, x, u) =







F1(t, x), if u = 1;

F2(t, x), if u = 0.

Then the expected total profit of running the system with the strategy δ := ((τn)n≥1, γ) is then given

by:

J(δ) = E





∫ γ

0
Φ(s, Xs, us)ds −

∑

n≥1

{ℓ1
τ2n−1

11[τ2n−1<γ] + ℓ2
τ2n

11[τ2n<γ]} + F (γ, Xγ , uγ)11[γ<T ]



 .

Roughly speaking, solving an optimal switching problem with default risk consists in finding a strategy

δ∗ := ((τ∗
n)n≥1, γ

∗) such that J(δ∗) ≥ J(δ) for any other strategies δ := ((τn)n≥1, γ).

We make the standard assumptions that (Ω,F , P ) is a fixed probability space on which is defined a

standard n-dimensional Brownian motion B = (Bt)0≤t≤T whose natural filtration is (F0
t := σ{Bs, s ≤

t})0≤t≤T . Let F = (Ft)0≤t≤T be the completed filtration of (F0
t )0≤t≤T with the P -null sets of F . Fur-

thermore, let P be the σ-algebra on [0, T ] × Ω of F-progressively measurable sets and Sp is the set of

P-measurable, continuous processes w := (wt)0≤t≤T such that E[sup0≤t≤T |wt|
p] < ∞.

Let (Y 1
t , Y 2

t ) be the value-function associated with the optimal switching problem, where the process

Y 1
t (resp. Y 2

t ) stands for the optimal expected profit if, at time t, the production activity is on/open

(resp. off/closed).

In terms of a Verification Theorem, it is shown in [DH] that the two processes Y 1 := (Y 1
t )0≤t≤T and

Y 2 := (Y 2
t )0≤t≤T of Sp are continuous and uniquely solve the following system of Snell envelopes.

(2.5)

Y 1
t = ess supτ≥tE

[∫ τ

t
ψ1(s, Xs)ds + (−ℓ1

τ + Y 2
τ ) ∨ F (τ, Xτ , uτ )11[τ<T ]

∣

∣Ft

]

(Y 1
T = 0),

Y 2
t = ess supτ≥tE

[∫ τ

t
ψ2(s, Xs)ds + (−ℓ2

τ + Y 1
τ ) ∨ F (τ, Xτ , uτ )11[τ<T ]

∣

∣Ft

]

(Y 2
T = 0).

where the essential sup is taken over F-stopping times τ larger than t. Furthermore,

Y 1
0 = sup

δ

J(δ).

Consider the following F-stopping times.
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(i) The first time the activity defaults while in mode i:

σi
t := inf{s ≥ t, Y i

s = Fi(s, Xs)} ∧ T, i = 1, 2,

(ii) The first time the activity is switched from mode 1 to mode 0:

σ12
t := inf{s ≥ t, Y 1

s = −ℓ1
s + Y 2

s } ∧ T,

(iii) The first time the activity is switched from mode 0 to mode 1:

σ21
t := inf{s ≥ t, Y 2

s = −ℓ2
s + Y 1

s } ∧ T,

Using the properties of the Snell envelop (see [DH] and the references therein), the F-stopping times

τ i
t , i = 1, 2, 0 ≤ t ≤ T , defined by

τ1
t = σ12

t ∧ σ1
t ∧ T

and

τ2
t = σ21

t ∧ σ2
t ∧ T,

are optimal in the sense that

(2.6) Y 1
t = E

[

∫ τ1
t

t

ψ1(s, Xs)ds + ((−ℓ1
τ1
t

+ Y 2
τ1
t
) ∨ F1(τ

1
t , Xτ1

t
))11[τ1

t <T ]

∣

∣

∣

∣

∣

Ft

]

and

(2.7) Y 2
t = E

[

∫ τ2
t

t

ψ2(s, Xs)ds + ((−ℓ2
τ2
t

+ Y 1
τ2
t
) ∨ F2(τ

2
t , Xτ2

t
))11[τ2

t <T ]

∣

∣

∣

∣

∣

Ft

]

.

In particular, on the continuation region {(ω, t); σ12
t > σ1

t } in which it is more profitable to run the

activity, while at t the system is in mode 1, until default than switching to mode 0, we have

(2.8) Y 1
t = E

[

∫ σ1
t

t

ψ1(s, Xs)ds + F1(σ
1
t , Xσ1

t
)11[σ1

t <T ]

∣

∣

∣

∣

∣

Ft

]

.

Similarly, on the set {(ω, t); σ21
t > σ2

t } in which it is more profitable to run the activity, while at t the

system is in mode 0, until default than switching to mode 1, we have

(2.9) Y 2
t = E

[

∫ σ2
t

t

ψ2(s, Xs)ds + F2(σ
2
t , Xσ2

t
)11[σ2

t <T ]

∣

∣

∣

∣

∣

Ft

]

.

When the market price process X of the commodity is an Itô diffusion with infinitesimal generator

(2.10) A =
1

2

∑

i,j=1,n

(σ · σT )ij(t, x)Dij +
∑

i=1,n

bi(t, x)Di,
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and the switching cost processes ℓi are given by sufficiently smooth deterministic positive functions

ai(t, x), i.e. ℓi
t = ai(t, Xt), and provided that the functions ψi(t, x) are smooth, the pair of the value-

processes (Y 1, Y 2) associated to our optimal switching problem can be characterized (see [DH]) in terms

of deterministic functions of the underlying price process X in the sense that Y 1 = v1(t, Xt) and Y 2 =

v2(t, Xt) where the deterministic functions v1(t, x) and v2(t, x) are viscosity solutions of the following

system of two partial differential equations with inter-connected obstacles:

(2.11)



















min{v1(t, x) − (−a1(t, x) + v2(t, x)) ∨ F1(t, x),−∂tv1(t, x) −Av1(t, x) − ψ1(t, x)} = 0,

min{v2(t, x) − (−a2(t, x) + v1(t, x)) ∨ F2(t, x),−∂tv2(t, x) −Av2(t, x) − ψ2(t, x)} = 0,

v1(T, x) = 0, v2(T, x) = 0.

In particular, the set {(ω, t); σ12
t > σ1

t } on which Y 1 satisfies (2.8) corresponds to the complement of

the action set

A1 = {(x, t); v1(t, x) = v2(t, x) − a1(t, x)}.

Correspondingly, on Ac
1, v1 solves the following variational inequality:

min{v1(t, x) − F1(t, x),−∂tv1(t, x) −Av1(t, x) − ψ1(t, x)} = 0, v1(T, x) = 0.

Similarly, the set {(ω, t); σ12
t > σ1

t } on which Y 2 satisfies (2.9) corresponds to the complement of the

action set

A2 = {(x, t); v2(t, x) = v1(t, x) − a2(t, x)}.

Furthermore, on Ac
2, v2 solves the following variational inequality:

min{v2(t, x) − F2(t, x),−∂tv2(t, x) −Av2(t, x) − ψ2(t, x)} = 0, v2(T, x) = 0.

In fact, in [DH] (see also [DHP]), using purely probabilistic methods, the authors were only able to

show existence of continuous functions v1 and v1 with polynomial growth in (t, x) such that Y 1 = v1(t, Xt)

and Y 2 = v2(t, Xt) and are viscosity solutions of the System (2.11) under the following conditions on the

involved coefficients:

Assumption [H]:

(1) The processes ℓ1 and ℓ2 are deterministic functions of the time parameter, i.e. ℓ1
t (ω) ≡ a1(t) and

ℓ2
t (ω) ≡ a2(t) where a1 and a2 are positive deterministic functions.

(2) The non-positive functions Fi(t, x) ≡ F (x) and ψi, i = 1, 2 (of Subsection 2.1) are continuous,

respectively, jointly continuous. Moreover, they are of polynomial growth, i.e., there exist some

positive constants C and γ ≥ 1 such that:

|ψ1(t, x)| + |ψ2(t, x)| + |F (x)| ≤ C(1 + |x|γ), (t, x) ∈ [0, T ] × R
n.
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(3) The functions b and σ, with appropriate dimensions, satisfy the following standard conditions:

There exits a constant C ≥ 0 such that

(2.12) |b(t, x)| + |σ(t, x)| ≤ C(1 + |x|) and |σ(t, x) − σ(t, x′)| + |b(t, x) − b(t, x′)| ≤ C|x − x′|

for any t ∈ [0, T ] and x, x′ ∈ R
n.

2.2. Multiple switching problem. Suppose that besides running the production at full capacity or

keeping it completely off (the two-modes switching model), there also exit a total of q − 2 (q ≥ 3)

intermediate operating modes, corresponding to different subsets of production running.

Let ℓij denote the switching costs from state i to state j, to cover the required extra fuel and various

overhead costs. Furthermore, let X = (Xt)t≥0 denote a vector of stochastic processes that stands for the

market price of the underlying commodities and other financial assets that influence the production of

power. The payoff rate in mode i, at time t, is then a function ψi(t, Xt) of Xt. Fi(γ, Xγ) stands for the cost

of default (definitely stop the production) at time γ, when in mode i and denote F (γ, Xγ , uγ) := Fi(γ, Xγ)

when uγ = i. The functions Fi are assumed non-positive.

A management strategy for our model is a combination of the following sequences:

(i) a nondecreasing sequence of stopping times (τn)n≥0, where, at time τn, the manager decides to

switch the production from its current mode to another one;

(ii) A stopping time γ at which the manager decides to definitely stop the production. The activity is

then switched to the mode †.

(iii) a sequence of indicators (ξn)n≥1 taking values in {1, . . . , q} of the state the production is switched

to. At τn the station is switched from its current mode ξn−1 to ξn.

When the power plant is run under a strategy (δ, u) = (((τn)n≥1, γ), (ξn)n≥1), over a finite horizon

[0, T ], the total expected profit up to T for such a strategy is

J(δ, u) = E





∫ T

0
ψus(s, Xs)ds −

∑

n≥1

ℓuτn−1
,uτn

(τn)11[τn<γ] + F (γ, Xγ , uγ)11[γ<T ]



 .

The optimal switching problem we will investigate is to find a management strategy (δ∗, u∗) =

(((τ∗
n)n≥1, γ∗), (ξ

∗
n)n≥1)) such that

J(δ∗, u∗) = sup
(δ,u)

J(δ, u).

In the same fashion as in the two-modes switching model, it can be shown that (see [DHP]) that the

value-processes (Y 1, . . . , Y q) associated to the optimal multiple switching problem are continuous and

satisfy the following system of Snell envelops.

Y i
t = ess supτ≥tE

[
∫ τ

t

ψi(s, Xs)ds +

(

max
j 6=i

(−ℓij(τ) + Y j
τ ) ∨ Fi(τ, Xτ )

)

11[τ<T ]

∣

∣

∣

∣

Ft

]

, i ∈ {1, . . . , q}.

Furthermore,
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Y 1
0 = sup

δ

J(δ).

Consider the following F-stopping times.

(i) The first time the activity defaults while in mode i:

σi
t := inf{s ≥ t, Y i

s = Fi(s, Xs)} ∧ T, i = 1, 2, . . . , q

(ii) The first time the activity is switched from mode i to any of the other modes j 6= i:

σ̃i
t := inf{s ≥ t, Y i

s = max
j 6=i

(−ℓij
s + Y j

s )} ∧ T,

Using the properties of the Snell envelop (see [DH] and [DHP] etc..), the F-stopping times τ i
t , i =

1, 2, . . . , q, 0 ≤ t ≤ T , defined by

τ i
t = σi

t ∧ σ̃i
t ∧ T,

are optimal in the sense that

(2.13) Y i
t = E

[

∫ τ i
t

t

ψi(s, Xs)ds + (max
j 6=i

(−ℓij

τ i
t

+ Y j

τ i
t

) ∨ Fi(τ
i
t , Xτ i

t
))11[τ i

t <T ]

∣

∣

∣

∣

∣

Ft

]

.

In particular, on the set {(ω, t); σ̃i
t > σi

t} in which it is more profitable to run the activity, while at

time t the system is in mode i, until default than switching to another mode j 6= i, we have

(2.14) Y i
t = E

[

∫ σi
t

t

ψi(s, Xs)ds + Fi(σ
i
t, Xσi

t
)11[σi

t<T ]

∣

∣

∣

∣

∣

Ft

]

.

When the process X is an Itô diffusion, with infinitesimal generator A, and the switching cost processes

ℓij are given by sufficiently smooth deterministic functions aij(t, x), i.e. ℓij
t = aij(t, Xt), and provided

that the functions ψi(t, x) are smooth, the q-ple of the value-processes (Y 1, Y 2, . . . , Y q) associated to

our optimal switching problem can be characterized (see [DHP]) in terms of deterministic functions of

the underlying price process X in the sense that Y i = vi(t, Xt), i = 1, 2, . . . , q where the deterministic

functions vi(t, x), i = 1, 2, . . . , q are viscosity solutions of the following system of q partial differential

equations with inter-connected obstacles:

min

{

φi(t, x) −

(

max
j 6=i

(−aij(t) + φj(t, x)) ∨ Fi(t, x)

)

,−∂tφi(t, x) −Aφi(t, x) − ψi(t, x)

}

= 0,

with

φi(T, x) = 0, i ∈ {1, . . . , q}.

In particular, the sets {(ω, t); σ̃i
t > σi

t} on which Y i satisfy (2.13) correspond to the complement of

the sets

Ai = {(x, t); vi(t, x) = max
j 6=i

(vj(t, x) − aij(t, x))}.
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Correspondingly, on Ac
i , vi solve the following variational inequality with fixed obstacle:

min{vi(t, x) − Fi(t, x),−∂tvi(t, x) −Avi(t, x) − ψi(t, x)} = 0, vi(T, x) = 0.

In fact, using similar assumptions as Assumption [H] on the involved coefficients, the results in [DHP],

corresponding only to the default-free model i.e. when Fi(t, x) = −∞, insure only existence of q determin-

istic continuous functions v1(t, x), . . . , vq(t, x), with polynomial growth, such that for any i ∈ {1, . . . , q},

Y i
t = vi(t, Xt) and for which the vector (v1, . . . , vq) is a viscosity solution of the following system of q

variational inequalities with inter-connected obstacles.

min

{

φi(t, x) − max
j 6=i

(−aij(t) + φj(t, x)),−∂tφi(t, x) −Aφi(t, x) − ψi(t, x)

}

= 0,

with

φi(T, x) = 0, i ∈ {1, . . . , q}.

3. Regularity of the solution of system of variational inequalities

3.1. Notation and Definitions. We start this section by giving some necessary notations and defini-

tions from the standard parabolic PDE theory.

Let X = (t, x) = (t, x1, ..., xn) ∈ R × R
n and r > 0. We define the lower cylinder with the center X

and radius r as

Q−
r (X) = (t − r2, t] × Br(x),

where Br(x) = {y ∈ R
n : ||y − x||Rn < r} is the open ball in R

n with center x and radius r.

For X = (t, x), Y = (τ, y) ∈ R × R
n we define the parabolic distance between X and Y to be

d(X, Y ) =
√

||x − y||2
Rn + |t − τ |.

Let Ω ⊂ R × R
n be an open subset and 0 < α ≤ 1. As usual, we denote by C(Ω) = C0(Ω) the set of

continuous functions f on Ω with finite

||f ||C(Ω) = sup
X∈Ω

|f(X)|

sup-norm. The parabolic Hölder space C0,α(Ω) is defined as the subset of C(Ω) consisting of functions f

such that the norm

||f ||C0,α(Ω) := ||f ||C(Ω) + sup
X,Y ∈Ω,X 6=Y

|f(X) − f(Y )|
(

d(X, Y )
)α

is finite. Next, the parabolic space Ck(Ω) for positive integer k is defined as the space of continuous

functions f for which the derivatives Di
xDj

t f are continuous for all multi-indices i and all nonnegative

integers j with |i| + 2j ≤ k and for which the norm

||f ||Ck(Ω) :=
∑

|i|+2j≤k

||Di
xDj

t f ||C(Ω)
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is finite. For positive integer k, 0 < α ≤ 1 and f ∈ C(Ω) let

[f ]k,α(X) := inf
Pk

sup
r>0

1

rα
||f − Pk||C(Q−

r (X)∩Ω),

where Pk(X) =
∑

|i|+2j≤k aijx
itj are polynomials of parabolic order ≤ k. Then the parabolic Hölder

space Ck,α(Ω) is defined as the subspace of Ck(Ω) consisting of functions f such that the norm

||f ||Ck,α(Ω) := ||f ||Ck(Ω) + sup
X∈Ω

[f ]k,α(X)

is finite.

For a, b ∈ R we denote a+ = max(a, 0) and a ∨ b := max{a, b}.

Recall the operator A given by (2.10) and let H be the following operator

(3.1) H =
∂

∂t
+ A.

Now consider the following system of variational inequalities in (0, T ) × R
n:

(3.2)



























min
{

v1(t, x)−
(

v2(t, x) − a1(t, x)
)

∨F1(t, x);−Hv1(t, x)− ψ1(t, x)
}

=0,

min
{

v2(t, x)−
(

v1(t, x) − a2(t, x)
)

∨F2(t, x);−Hv2(t, x)− ψ2(t, x)
}

=0,

v1(T, x) = v2(T, x) = 0 in R
n.

Definition 3.1. Let v1, v2 ∈ C([0, T ] × R
n) are real-valued functions with v1(T, x) = v2(T, x) = 0,

x ∈ R
n. The pair (v1, v2) is called a viscosity supersolution of the system (3.2) in [0, T ] × R

n if for

any (t0, x0) ∈ [0, T ] × R
n and any pair of functions ϕ1, ϕ2 ∈ C2([0, T ] × R

n) satisfying

(i) ϕi(t0, x0) = vi(t0, x0) for i = 1, 2,

(ii) (t0, x0) is a local maximum point of ϕi − vi for i = 1, 2,

we have

(3.3)











min
{

v1(t0, x0)−
(

v2(t0, x0) − a1(t0, x0)
)

∨ F1(t0, x0);−Hϕ1(t0, x0) − ψ1(t0, x0)
}

≥0,

min
{

v2(t0, x0)−
(

v1(t0, x0) − a2(t0, x0)
)

∨ F2(t0, x0);−Hϕ2(t0, x0) − ψ2(t0, x0)
}

≥0.

Respectively, the pair (v1, v2) is called a viscosity subsolution of the system (3.2) in [0, T ] × R
n if

for any (t0, x0) ∈ [0, T ] × R
n and any pair of functions ϕ1, ϕ2 ∈ C2([0, T ] × R

n) satisfying

(i) ϕi(t0, x0) = vi(t0, x0) for i = 1, 2,

(ii) (t0, x0) is a local minimum point of ϕi − vi for i = 1, 2,

we have

(3.4)











min
{

v1(t0, x0)−
(

v2(t0, x0) − a1(t0, x0)
)

∨ F1(t0, x0);−Hϕ1(t0, x0) − ψ1(t0, x0)
}

≤0,

min
{

v2(t0, x0)−
(

v1(t0, x0) − a2(t0, x0)
)

∨ F2(t0, x0);−Hϕ2(t0, x0) − ψ2(t0, x0)
}

≤0.

The pair (v1, v2) is called a viscosity solution of the system (3.2) in [0, T ]×R
n if it is both a viscosity

subsolution and supersolution.
Refer to

tence of solution
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3.2. Regularity of the solution. The following regularity result for parabolic obstacle problems has

been proved in [PS]

Theorem 3.2. Let u be the viscosity solution to the following obstacle problem in Q−
1 :

min
{

u − ψ,H(u)
}

= 0

where H(u) =
∂u

∂t
+F(D2u, Du, u, t, x) and F is a fully nonlinear uniformly elliptic operator with certain

homogeneity properties (see [S]). Then up to the C1,1, the function u is as regular as ψ is. More precisely,

if ψ ∈ Ck,α(Q−
1 ) with k = 0 or k = 1 and 0 < α ≤ 1, then u ∈ Ck,α

loc (Q−
1 ).

This result allows us to analyze the question of the regularity of the viscosity solutions of (3.2).

For this, let us introduce the following notations:

A1 =
{

(t, x) : v1(t, x) = v2(t, x) − a1(t, x)
}

,

A2 =
{

(t, x) : v2(t, x) = v1(t, x) − a2(t, x)
}

.

It is clear, that the sets A1 and A2 are closed subsets of [0, T ]×R
n, and since ai > 0 for i = 1, 2 we have

A1 ∩ A2 = ∅.

By the first equation of the system (3.2), on the open set Ac
1 the function v1 is the solution to the

following obstacle problem:

min
{

v1(t, x) − F1(t, x);−Hv1(t, x) − ψ1(t, x)
}

= 0.

Let us assume that Fi, ai ∈ C1,1([0, T ] × R
n) for i = 1, 2. It follows from Theorem 3.2 that v1 ∈

C1,1(Ac
1∩ ([0, T )×R

n)). In the same way, v2 ∈ C1,1(Ac
2∩ ([0, T )×R

n)), and, in particular, v2 ∈ C1,1(A1).

Since v1 = v2 − a1 on A1, then it follows that v1 ∈ C1,1(A1). Also, v2 ∈ C1,1(A2). So we have proved the

following

Theorem 3.3. Assume that Fi, ai ∈ C1,1([0, T ] × R
n) and ai(t, x) > 0 for all (t, x) ∈ [0, T ] × R

n and

i = 1, 2. Let (v1, v2) be a viscosity solution of (3.2). Then vi ∈ C1,1([0, T )×R
n \∂Ai)∩C0,1([0, T ]×R

n),

i = 1, 2.

The following example shows that we can loose C1,1-regularity on ∂Ai.

Example : Let T = 1, F1 = F2 ≡ 0, a1 = a2 ≡ 1, ψ1(t, x) = x2 − 2(1− t), ψ2(t, x) = −2. It is easy to

check, that the pair (v1, v2) =
(

x2(1− t),
[

x2(1− t)− 1
]+

)

is a solution to system (3.2) (in fact, it is the

unique solution to (3.2), as it follows from the next paragraphs). But the function v2 is only C0,1 along

the boundary of v2 = v1 − 1, that is, along {(t, x) : x2(1 − t) = 1} (see Figures 1).



A PDE APPROACH TO REGULARITY OF SOLUTIONS TO FINITE HORIZON OPTIMAL SWITCHING PROBLEMS11

0
0.5

1

−202
0

1

2

3

t

T=1, b=0, σ=1.4142, F=0, 
a

1
=1, a

2
=1, ψ

1
=x2−2(1−t), ψ

2
=−2

x 0 0.5 1
−2

−1

0

1

2

White: v
i
 solves PDE, Gray: v

i
 = F

i
 

Black: v
i
 = v

j
 − a

ij

t

x

0
0.5

1

−202
0

1

2

t

v
2

x −2 −1 0 1 2

0

0.2

0.4

0.6

v
2
(x,0.5)

x
v 2

Figure 1. v1 = x2(1 − t), v2 = [x2(1 − t) − 1]+. C1,1-regularity is lost on ∂A2

.

3.3. Partial uniqueness results. Here we prove uniqueness of the solution of the system (3.2) in

following three cases: when F1 = F2 = −∞, that is, in language of finance, in case of absence of default;

in the case when ψ1(t, x) 6= ψ2(t, x) for every (t, x) ∈ [0, T ] × R
n, F1 ≡ F2 and a1, a2 ≡ const; and in the

case when ψ1 ≡ ψ2, F1 ≡ F2 and a1, a2 ≡ const.

The uniqueness of the solution of the system (3.2) in the general case still remains open.

Case 1: F1 = F2 = −∞.

In this case, the system (3.2) takes the following form:

(3.5)



























min
{

v1(t, x)−
(

v2(t, x) − a1(t, x)
)

;−Hv1(t, x) − ψ1(t, x)
}

=0,

min
{

v2(t, x)−
(

v1(t, x) − a2(t, x)
)

;−Hv2(t, x) − ψ2(t, x)
}

=0,

v1(T, x) = v2(T, x) = 0 in R
n.

It is easy to show that, after letting ψ := ψ1 − ψ2, the function v := v1 − v2 is a viscosity solution of

the following double obstacle variational inequality (see [HJ]):

(3.6)











min
{

v(t, x) + a1(t, x); max
{

v(t, x) − a2(t, x),−Hv(t, x) − ψ(t, x)
}

}

=0,

v(T, x) = 0 in R
n.

In a standard way one can show that the solution to (3.6) is a solution to the following problem:

(3.7) v ∈ K : a(t; v, u − v) ≥ 〈ψ, v − u〉, ∀u ∈ K
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where

a(u, v) :=

∫

1

2

n
∑

ij

σ̃ijuivjdx +

∫

(

ut +
n

∑

i

b̃iui

)

vdx

is a coercive bilinear form, where σ̃ and b̃ are such that H is given in divergence form by

Hu = ut +
1

2

n
∑

i,j=1

Di(σ̃ij(t, x)Dju) +
n

∑

i=1

b̃i(t, x)Diu,

and

K := {u ∈ W 2([0, T ] × R
n) : a1(t, x) ≤ u(t, x) ≤ a2(t, x)}.

So the uniqueness of the solution of (3.6) is a consequence of well-known results (see [F],[BL]).

As soon as we get the unique solution v to the problem (3.6), the system (3.5) can be rewritten in the

following form:

(3.8)



























min
{

v(t, x) + a1(t, x);−Hv1(t, x) − ψ1(t, x)
}

= 0,

min
{

− v(t, x) + a2(t, x);−Hv2(t, x) − ψ2(t, x)
}

= 0,

v1(T, x) = v2(T, x) = 0 in R
n.

In the region v(t, x)+a1(t, x) > 0, the function v1 is the solution to −Hv1(t, x)−ψ1(t, x) = 0, v1(T, x) = 0,

so on this region the function v1 is determined in a unique way . In the same way, in the regionneed some

condition −v(t, x) + a2(t, x) > 0, the function v2 can be determined in a unique way. And for the uniqueness of

the solution it is enough to ensure that these two regions are disjoint and use the fact that v = v1 − v2.

Case 2: ψ1(t, x) 6= ψ2(t, x), ∀(t, x) ∈ [0, T ] × R
n, F1 ≡ F2 and a1, a2 ≡ const.

Since the functions ψ1, ψ2 are continuous, then it follows that ψ1(t, x) > ψ2(t, x), for all (t, x) ∈

[0, T ] × R
n or ψ1(t, x) < ψ2(t, x), for all (t, x) ∈ [0, T ] × R

n.

Let us assume, that ψ1(t, x) > ψ2(t, x), for all (t, x) ∈ [0, T ] × R
n. Then it follows, that the set A1 :=

{

(t, x) : v1(t, x) = v2(t, x) − a1

}

has no interior points. Indeed, let (t0, x0) ∈ intA1. From (3.2) we have

v1(t0, x0) = v2(t0, x0)−a1 ≥ F1(t0, x0) and −Hv1(t0, x0) ≥ ψ1(t0, x0). Since v2(t0, x0) = a1 +v1(t0, x0) ≥

a1 + F1(t0, x0), it follows from the second line of the system (3.2) that −Hv2(t0, x0) = ψ2(t0, x0). But

from (t0, x0) ∈ intA1 we get −Hv1(t0, x0) = −Hv2(t0, x0) = ψ2(t0, x0) ≥ ψ1(t0, x0), which contradicts

our assumption.

It follows, that in this case the function v1 is the solution to










min
{

v1(t, x) − F1(t, x);−Hv1(t, x) − ψ1(t, x)
}

= 0,

v1(T, x) = 0 in R
n,

so it is unique. As soon as we have the values of the function v1, the function v2 can be found by solving

an obstacle problem with fixed obstacle
(

v1(t, x) − a2

)

∨ F2(t, x), so it is also can be found by a unique

way.
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Case 3: ψ1 ≡ ψ2, F1 ≡ F2 and a1, a2 ≡ const.

Let (v1, v2) and (u1, u2) be solutions of the system (3.2). If (v1, v2) 6≡ (u1, u2), then, without loss of

generality, we can assume, that the set {(t, x) : v1(t, x) > u1(t, x)} is not empty. Let Ω be a connected

component of the open set {(t, x) : v1(t, x) > u1(t, x)}. It is clear, that on ∂Ω we have v1(t, x) = u1(t, x).

Next, in Ω, v1(t, x) > u1(t, x) ≥ F1(t, x), so by the first line of the (3.2), either v1(t, x) = v2(t, x) − a1

or −Hv1(t, x) − ψ1(t, x) = 0. Let Ω1 ⊂ Ω be the set where v1(t, x) = v2(t, x) − a1. In Ω1 we have

v2(t, x) = v1(t, x) + a1 > F2(t, x), so by the second line of the system (3.2), −Hv2(t, x) = ψ2(t, x) in

Ω1, hence, −Hv1(t, x) = −Hv2(t, x) = ψ2(t, x) = ψ1(t, x) in Ω1. As a consequence we obtain that

−Hv1(t, x) = ψ1(t, x) in the whole Ω.

On the other hand, −Hu1(t, x)−ψ1(t, x) ≥ 0 for all (t, x), and particularly, in Ω, so we get Hv1(t, x) ≥

Hu1(t, x) in Ω and v1(t, x) = u1(t, x) on ∂Ω. Applying the maximum principle, we get u1(t, x) > v1(t, x)

in Ω, which is a contradiction.

4. Some issues concerning multiple switching problem

In [DHP] the authors consider the following system of variational inequalities

(4.1)











min
{

vi(t, x) − max
j 6=i

{vj(t, x) − aij(t, x)};−Hvi(t, x) − ψi(t, x)
}

= 0,

vi(T, x) = 0 in R
n, i = 1, ..., m

where H is the operator defied in (3.1), the functions ψi, aij are continuous and aij(t, x) ≥ a0 = const > 0

for all i, j = 1, ..., m, i 6= j and for all (t, x) ∈ [0, T ] × R
n. They prove, under some assumptions, the

existence of viscosity solution of this system.

Here we consider a slightly more general system of variational inequalities:

(4.2)











min
{

vi(t, x) − max
j 6=i

{vj(t, x) − aij(t, x)} ∨ Fi(t, x);−Hvi(t, x) − ψi(t, x)
}

= 0,

vi(T, x) = 0 in R
n, i = 1, ..., m

with Fi, aij ∈ C1,1([0, T ] × R
n).

We can define the notion of viscosity solution for this problem in the same way as in the 2-dimensional

case. In this section we give several remarks on the nature of this solutions.

Denote

Ai =
{

(t, x) ∈ [0, T ] × R
n : vi(t, x) = max

j 6=i
{vj(t, x) − aij(t, x)}

}

.

First of all, it is easy to see, that
m
⋂

i=1

Ai = ∅. Indeed, assume that (t0, x0) ∈
m
⋂

i=1

Ai. Let j0 be such that

vj0(t0, x0) = max
j=1,...,m

vj(t0, x0). Then vj0(t0, x0) ≥ vj(t0, x0) for all j = 1, ..., m. But since (t0, x0) ∈ Aj0 ,

we have

vj0(t0, x0) = max
j 6=j0

{vj(t0, x0) − aj0j(t0, x0)}.

which means that for some j1, vj0(t0, x0) = vj1(t0, x0) − aj0j1(t0, x0) < vj1(t0, x0).

Next, we show by an example that the sets Ai, i = 1, ..., m are not necessarily pairwise disjoint.



14 TEITUR ARNARSON, BOUALEM DJEHICHE, MICHAEL POGHOSYAN, AND HENRIK SHAHGHOLIAN

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

T=3, b=0, σ=1.4142, a
12

=1, a
13

=1, a
21

=1, a
23

=1, a
31

=2, a
32

=1, F=−1, ψ
1
=1, ψ

1
=0, ψ

3
=0

t

 

 
v

1

v
2

v
3
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Example: Let n = 1, T = 3, m = 3, a12 = a21 = a23 = a32 = a31 ≡ 1, a13 ≡ 2, H = ∂
∂t

+ d2

dx2 ,

ψ1(t, x) ≡ 1, ψ2(t, x) = ψ3(t, x) ≡ 0 and F1 = F2 = F3 ≡ −1.

Then, it is easy to see that the triple (v1, v2, v3) is a solution for the system (4.2), where

v1(t, x) = v1(t) = 3 − t, v2(t, x) = v2(t) = (2 − t)+,

v3(t, x) = v3(t) = (1 − t)+

for all (t, x) ∈ [0, 3] × R
1 (see Fig. 2).

In this case, A1 = ∅, A2 = [0, 2] × R
1 and A3 = [0, 1] × R

1, so A2 ∩ A3 6= ∅.

The next issue is addressed to the regularity of solutions of the system (4.2). As in the case of (3.2),

in the complement of the set Ai, the functions vi is C1,1, because it is a solution to the following obstacle

problem:










min
{

vi(t, x) − Fi(t, x);−Hvi(t, x) − ψi(t, x)
}

= 0,

vi(T, x) = 0 in R
n.

The set Ai can be represented in the form Ai =
⋃

j 6=i Aij , where

Aij =
{

(t, x) ∈ Ai : vi(t, x) = vj(t, x) − aij(t, x)
}

.

Then there exists a finite family of disjoint sets {Dk}, Dk ⊂ Ai, such that every intersection Aij ∩Apq

can be represented as a union of some subfamily of {Dk}. Let us show, that the function vi is C1,1 in

the interior of every set Dk.

Assume Dk ⊂ Aij . Then vi = vj − aij in Dk. If Dk ∩ Aj = ∅, then the function vj is C1,1 in Dk, and

so is vi. In the case of Dk ∩ Aj 6= ∅, there exists k such that Dk ⊂ Ajs. It follows that vj = vs − ajs

in Dk, so vi = vs − aij − ajs in Dk. If Dk ∩ As = ∅, then the function vs is C1,1 in Dk, and so is vi.

In the case of Dk ∩ As 6= ∅, there exists p such that Dk ⊂ Asp and so on. At the end we’ll arrive to
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vi = vq −aij −ajs − ...−alq in Dk and Dk ∩Aq = ∅, so the function vq is C1,1 in Dk, and we can conclude

that vi is C1,1 in Dk.

As a conclusion, we get the following theorem for the regularity of viscosity solutions of (4.2):

Theorem 4.1. Let Fi, aij ∈ C1,1([0, T ] × R
n) for all i, j = 1, ..., m (i 6= j) and the operator H given by

(3.1). If (v1, v2, ..., vm) is a viscosity solution of the system (4.2), then

vi ∈ C0,1
(

[0, T ] × R
n
)

∩ C1,1
(

([0, T ] × R
n) \ (∪j 6=i∂Aij)

)

, i = 1, ..., m.

Remark 4.2. Here we want to emphasize that by C0,1 and C1,1 we denote the parabolic Hölder spaces

defined in the section 3.1. So, in particular, the last result states that in [0, T ] × R
n the function vi(t, x)

is Lipschitz continuous in time variable t as well as in spatial variable x, and in the set ([0, T ] × R
n) \

(∪j 6=i∂Aij) the function vi(t, x) has Lipschitz continuous partial derivatives in x variable (but it can fail

to have partial derivative in t at some points).

This kind of situation naturally arises in parabolic obstacle problems, where even for infinite differen-

tiable obstacles the solution can have Lipschitz continuous partial derivatives in spatial variable and can

be only Lipschitz continuous in time variable.

5. Numerical results

In this section we describe a numerical solution of the optimal switching problem (3.2). The same

algorithm applies to the multiple switching problem (4.2).

We solve the system (3.2) iteratively and in each step we treat the two variational inequalities sep-

arately. This is done by assuming that v2 is fixed in the first variational inequality and v1 is fixed in

the second. Hence v1 is treated as the solution to the classical obstacle problem with the fixed obstacle

(v2(t, x) − a1(t, x)) ∨ F1(t, x) and vice verse for v2. We initiate the procedure with v1 = v2 = 0, which

agrees with the terminal condition v1(T, x) = v2(T, x) = 0. The iterations are continued until the norm of

the difference of the solutions between two iteration steps, ‖vk+1
i − vk

i ‖, is smaller than some prespecified

tolerance. For our application we chose the L∞-norm.

We use finite differences to solve the variational inequalities. The derivatives in the PDEs are approx-

imated by the Crank-Nicolson finite difference scheme. Denoting the time index m and space index n

this scheme gives the following approximations

∂

∂t
v ∼

1

∆t
(vm+1

n − vm
n ) + O(∆t2)

∂2

∂x2
v ∼

1

2∆x2
(vm+1

n+1 − 2vm+1
n + vm+1

n−1 + vm
n+1 − 2vm

n + vm
n−1) + O(∆x2).

A naive approach to solving the variational inequality would be, for each time step, to solve the PDE

with this scheme and apply the obstacle condition to the solution of the PDE. We note however that the

Crank-Nicolson scheme gives us an expression for vm+1
n which depends on vm+1

n−1 and vm+1
n+1 . Thus there is
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no guarantee that the result will satisfy the PDE part of the variational inequality if we follow the naive

approach.

Instead we apply the iterative method of projected successive over relaxation (SOR). Introduce the over

relaxation parameter ω ∈ (1, 2). Suppose the Crank-Nicolson scheme applied to the PDE gives us vm+1
n =

Φ(vm+1
n−1 , vm+1

n+1 , vm
n−1, v

m
n , vm

n+1). In the k’th step of the iterative process we set y = Φ(vm+1,k
n−1 , vm+1,k−1

n+1 , vm,k
n−1, v

m,k
n , vm,k

n

We set

vm+1,k
n = max(vm+1,k−1

n + ω(y − vm+1,k−1
n ), Fm

n ),

where F = vi − aj ∨ Fi is the obstacle (recall that F is known since we have fixed the involved function

vi). This procedure is iterated until the norm of vk − vk−1 is smaller than some prespecified tolerance.

Convergence is guaranteed for ω ∈ (1, 2) (see [WDH]). The algorithm counts the number of iterations

required to obtain the tolerance condition and value of ω is adjusted in order to minimize the number of

iterations at each time step.

5.1. Transformation to the Heat operator. In order to reduce the number of calculation and get

faster convergence the PDE given by the operator (3.1) is transformed to the heat equation. This

is straight forward if the coefficients σ and b are constants. We introduce the new variable (τ, x) =

(1
2σ2(T − t), x) and set

(5.1) ṽi(τ, x) = exp

(

−
b

σ2
x −

3b2

2σ2
τ

)

vi(T, x −
σ2

2
τ).

The system (3.2) becomes

(5.2)



























min
{

ṽ1(τ, x)−
(

ṽ2(τ, x) − ã1(τ, x)
)

∨F̃1(τ, x);−H̃ṽ1(τ, x)− ψ̃1(τ, x)
}

=0,

min
{

ṽ2(τ, x)−
(

ṽ1(τ, x) − ã2(τ, x)
)

∨F̃2(τ, x);−H̃ṽ2(τ, x)− ψ̃2(τ, x)
}

=0,

ṽ1(0, x) = ṽ2(0, x) = 0 in R
n.

where H̃ = − ∂
∂τ

+ 1
2

∂2

∂x2 and all involved functions are transformed as in (5.1).

Applying the Crank-Nicolson scheme to the heat equation and setting α = ∆t/∆x2 gives us the

following expression

vm+1
n =

1

1 + α

(

(1 − α)vm
n +

α

2
(vm+1

n+1 + vm+1
n−1 + vm

n+1 + vm
n−1)

)

+ ∆t ψm+1
n .

5.2. Boundary values. For numerical treatment of the problem we can only calculate the solution on

a bounded domain. This introduces a problem since the numerical methods require the solution to be

known on the boundaries of the domain. We only know the values of ṽi at initial time t = 0, but we

have no information on the values at x0 and xN+1, where xk, k = 0, . . . , N + 1 is our spacial mesh. We

overcome this by linear interpolation at the boundaries. Hence we set vi(t, x0) = 2vi(t, x1)− vi(t, x2) and

vi(t, xN+1) = 2vi(t, xN ) − vi(t, xN−1).
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5.3. The algorithm. We summarize the above discussion by presenting the following pseudo-code for

solving the optimal switching problem

v1 = zeros;

v2 = zeros;

while max( ||v1-v1Old||, ||v2-v2Old|| ) > tolerance

v1Old = v1;

G1 = max(v2 - a1, F1);

v1 = SOR_CrankNicolson(v1, G, ...);

v2Old = v2;

G2 = max(v1 - a2, F2);

v2 = SOR_CrankNicolson(v2, G, ...);

end

v SOR_CrankNicolson(v, G, ...)

{

alpha = dt/dx^2;

loops = 0;

for m=[1:M+1]

v(:,m) = v(:,m-1);

while err > tolerance

err = 0;

for n=[1:N+1]

y = 1/(1+alpha) * ( (1-alpha) * v(n,m-1) ...

+ alpha/2*(v(n+1,m) + v(n-1,m) + v(n+1,m-1) + v(n-1,m-1)) ...

+ dt * psi(n,m) );

y = max( v(n,m) + omega*(y - v(n,m)), G(n,m) );

err = err + (y - v(n,m))*(y - v(n,m));

v(n,m) = y;
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end

v(1,m) = 2*v(2,m) - v(3,m);

v(N+1,m) = 2*v(N,m) - v(N-1,m);

loops++;

end

end;

if loops >= loopsOld

domega = -domega;

end

omega = min(max(omega + domega,1),2);

loopsOld = loops;

return v;

}

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

0.4

0.6

0.8

1

T=4, b=0, σ=1.4142, a
1
=1, a

2
=0.5, F=−1/4, ψ

1
=1+0.75t, ψ

2
=−2+1t

t

 

 
v

1

v
2

Figure 3. Smooth fit occurs on ∂{vi = Fi} but not on ∂{vi = vj − aij}.
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Figure 6. Three switching problem.
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