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ABsTRACT. Let 0 < g,h € L®(RN)(N > 2) be two given density functions, at
least one of them bounded away from zero outside a compact set and g (Holder)
continuous. We prove that for any compactly supported positive measure p which
is sufficiently concentrated (e.g. has sufficiently high (N — 1)-dimensional density)
there exists a bounded open set © C RY such that the Newtonian potential of the
measure hLN |Q + gHN 1|09 agrees with that of p outside Q. Some regularity of
0fQ is obtained, as well as several results on the geometry of 2. Example: if h and
g are constant then, for any z € 92, the inward normal ray of 9Q at = (if it exists)
intersects the closed convex hull of u.
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NOTATION

a generic constant , (D C RV, N > 2)
{u e L*(D) : Vu e L*(D)}

the closure of C°(D) in H'(D)

s — dimensional Hausdorff measure

N — dimensional Lebesgue measure
{ue H'RN) :u >0}

the radially symmetric decreasing rearrangement of
{ueK:u=u"}

the characteristic function of the set D
RN \ D, the complement of D

the closure of D

{yeRY : |y — x| < p}

B(z, p)

(/ v2)Y2, L2 — norm of v

reduced boundary of €2, see the discussion
following Proposition 2.12

measure theoretic boundary of €2, see the
discussion following Proposition 2.12

area of the unit sphere in R

Radon measures

support of

the Newtonian potential of p

N — dimensional volume of the set D

distance function, see Corollary 2.6

Dirac measure at z € RY

quadrature domain, see 4.2 — 4.5

| 9uP =270 Pxguso)da

][ udH™ ~'the average of u over dB,.(z)
d

the restriction of u to the set D.

0. Introduction

This paper deals with a free boundary problem which arises in many areas of
physics (free streamlines, jets, Hele-show flows, electromagnetic shaping, gravita-
tional problems etc) but for which we take, as the title indicates, a somewhat
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potential theoretic point of view. From this point of view the problem can be
stated as follows.

Let two nonnegative density functions, h and g, in RN (N > 2) be given. For
any positive measure p with compact support in RY we ask for a bounded domain
(or open set) Q containing supp p such that, outside (2, the Newtonian potential
U* of u agrees with that of the measure

v=hLN|Q+ gHN 0%

here £V |Q denotes Lebesgue measure restricted to Q and HVN~1|9Q denotes (N —
1)-dimensional Hausdorff measure on 0€2.

One may view this problem as a kind of balayage problem (or search for ”quadra-
ture domains”). In particular, if h = 0 then it is intimately connected with classical
balayage (Poincaré sweeping) but with one major difference: we prescribe the den-
sity g of the swept out measure v and ask for the domain {2, whereas classically €2
is given and one asks for g.

In concrete terms our problem comes down to finding a domain 2 containing
supp p such that there exists a solution u of the overdetermined boundary value
problem

(0.1) —Au=p—nh in Q,
(0.2) u=0 on 012,
(0.3) |Vu| =g on Of.

The relation with the previous formulation is that v = U* — U in RV if u is
extended by zero outside (2.

The aim of the paper is, first, to prove existence of solutions of the problem
when natural conditions are satisfied and, second, to study the geometry, and partly
regularity, of solutions. Simple examples show that solutions cannot be expected
to exist unless g is continuous, at least one of A and ¢ is bounded away from zero
outside a compact set and p is ”concentrated” enough, e.g. has a sufficiently high
density with respect to (N — 1)-dimensional Hausdorff measure on its support.

On the other hand, we prove, and this is our main result, that good solutions
indeed exist when such conditions are fulfilled. By "good” we mean that the free
boundary 0f2 is reasonably regular. As to the geometry, we prove e.g. that if h and
g are constant and if (2 is one of our constructed solutions, then for any x € 0Q2
the inward normal ray of 9Q at x (if it exists) intersects the closed convex hull of
. (This excludes e.g. domains with long fingers.)

We know of at least two general methods for proving existence of solutions of
our problem. One is to first construct a kind of subsolution and then take the
infimum of all supersolutions majorizing this. This idea goes back to A. Beurling
[Beur] (for a related problem) and has recently been generalized and adapted to
our problem by A. Henrot [Henrot]. In this way Henrot is able to find solutions of
(0.1)(0.3) with (0.3) holding in some weak sense. It is not proved in [Henrot] that
0Q is regular and that (0.3) holds in the sense we require it (e.g. that (0.5) below
holds).

The other method, which is the one we use, goes back to K. Friedrichs [Friedr]|, or
even to T. Carleman [Car], and was considerably developed and deepened by H.W.
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Alt and L.A. Caffarelli [5]. Our work relies heavily on the methods and results in
[5]. The method consists (in our case) of minimizing the functional

(0.4 T = [ (VuP =2fut 4*xus0))da

over all 0 < u € HY(RN). Here f = ji — h, where i is a mollified version of p.
If v minimizes (0.4) then = {u > 0} solves our problem, provided supp p C €.
In [5] they have f = 0 but instead nonzero Dirichlet boundary conditions, working
in a subdomain of RY. Using the method in this original form the second author
obtained solutions of our problem in the case that u is a finite sum of point masses
[Shah94a].

Free boundary problems similar to (0.1)-(0.3) have been intensively studied for
several decades now, and there is an enormous amount of literature. If g = 0 then
(0.1)-(0.3) is equivalent to a variational inequality (of the same type as what occurs
for the obstacle problem, the dam problem etc.) provided we moreover require that
u > 0. General references here are [Ki-St], [F], [Rod] and special references, for our
type of questions e.g. [Gust90], [Sak82], [Sak83], [Mar]. The emphasis of the paper
is however on the case when g > 0 on at least part of RY. Here we may refer to [F]
for an overview up to the year (1982) and (selection) [Friedr|, [Beur], [2], [Shah92],
[Shah94b], [LV2], [Serrin], [GNN], [Kaw] (uniqueness, symmetry, convexity) [Ki-
Ni], [Caff(survey)], [5] (existence, regularity), [Henrot], [He-Pi], [Zol], [Shah94b]
(quadrature surfaces).

In addition to the above literature there are papers treating the two-dimensional
case with complex variable methods. We mention [Avci], [Sh-Ul], [Gust87], [Shap92].}}

The paper is organized as follows. In section 1 we show that the functional
(0.4) is bounded from below and that its infimum is attained for at least one w.
One ingredient in the proof (and in several later proofs) is a simple but useful
rearrangement lemma (Lemma 1.1) which makes it possible to compare solutions
with explicit solutions in a spherically symmetric case (Example 1.5) and in this
way obtain estimates.

In section 2 we prove that minima (minimizers), or more generally local minima,
of J solve (0.1)-(0.3) (with u — h replaced by f) in an appropriate sense. Indeed,
we show that any local minimum wu is Lipschitz continuous in all RY (assuming
f € L>®(RM)) and that

(0.5) Au+ fLY Q= gHN 109,

where Q = {u > 0} (Theorem 2.13). Moreover, it is shown that 0 is regular, at
least at most points (e.g. Oreqf? is regular when g > 0).

Continuous functions u > 0 satisfying (0.5) are called weak solutions (for the
problem of minimizing J). In section 3 we study questions of geometry of Q =
{u > 0} when u is a weak solution. We show e.g. (Corollary 3.8) that if g is
constant and if € is convex and contains supp f4 then {v > 0} C Q for any other
weak solution v. This partly generalizes a corresponding result in [Shah92]. We
also prove (for local minima) the previously mentioned result on inward normal
rays of 0Q (Corollary 3.11).

That (0.5) holds for local minima does not automatically mean that the original
problem is solved: we also need to make sure that supp p C 2. This can be done
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if p is sufficiently concentrated, and in section 4 we establish two results (Theorem
4.7 and 4.8) in this direction. These can be regarded as our main results.

It turns out that the original formulation of our problem is quite weak, indeed
so weak that it (if ¢ > 0) admits an abundance of “bad” solutions with irregular
boundaries (“non-Smirnov” domains when N = 2). These can easily be ruled out
by imposing additional conditions, but in principle there remains the question what
is a really good formulation of our problem. The above matters are briefly discussed
in Remark 4.2 and Example 4.3.

Acknowledgements. The authors are grateful to Harold S. Shapiro and Michel Zins-
meister for stimulating discussions on non-Smirnov domains. The first author has
been partially supported by the Swedish Natural Science Research Council (NFR).
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1. Existence of minimizers

Throughout this paper N > 2. Most of the paper (section 1-3) is devoted to
studying a minimization problem. The data for this problem are two functions f
and g in RY satisfying Condition A below.

Condition A.

(A1) f.9 € L=RY),

(A2) supp f+ is compact ,
(A3) g>0

(A4) at least one of

f < const. <0
g > const. >0

holds outside a compact set.
Let K={u€ HY(RN): u> 0} and set

Tw) = Ipglu) = [ (Vul = 2fu+ g*X(uso))da
RN

Then J is well defined on K, taking values in (—oo, 4+00]. We shall consider the
problem:
Minimize J(u) for u € K.

The following lemma turns out to be very useful. Similar results have previously
been used by Friedman and Philips [F-P].

Lemma 1.1. Let Ji(u) = Jy, g, (u), where fi < fa, g1 > g2 and k = 1,2. For
uy,us € K define v = min(uy, ug) and w = max(uy, us). Then v,w € K and

Jl(’U) + Jz(’w) < Jl(ul) -+ J2(u2).

In particular, if uy minimizes J, then Jo(w) < Ja(u2) and if us minimizes Jo
then Ji(v) < Jy(u1). If ugp minimizes Jy for k = 1,2 then v minimizes J, and w
minimizes Js.

Proof. In general, if ®(¢) is a nondecreasing function of t € R and hy < hg then, as
is easily seen,

/(h1q>(u1)+h2q>(u2)) < /(h1q>(v)+h2q>(w)).
Applying this with h; = f;, ®(t) =t we find that
/(f1U1 + faug) < /(flv + faw),

and choosing h; = —g2, ®(t) =0 for t <0, ®(¢t) = 1 for t > 0 we find
J J

/(Q%X{u1>0} + 9§X{uQ>0}) > /(Q%X{wo} + 9§X{w>o})-

Since also [(|Vu1]? + [Vuz|?) = [(|[Vv|* + |[Vw|?) the proof is finished. O

In order to get comparison solutions we shall first prove the existence of solutions
(minimizers) in a special case.
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Lemma 1.2. Let f = axpo,r) — b and g = cxg~\B(0,R,), where a,b,c, R and Ry
are nonnegative constants with a > b and b+ c > 0. Then J has at least one
minimum (minimizer) v in K. Any minimizing u is radially symmetric, radially
nonincreasing and vanishes outside a compact set. Moreover the minima form a
nested family and there is a largest minimum as well as a smallest one.

Proof. For any v in K let u* denote its radially symmetric decreasing rearrangement
(for background see [Moss]). Then uv* € K and

/\VU*I2 S/IVUI2, /fU* Z/fu, /g2X{u*>0} §/92X{u>0};

where the first inequality follows from a classical theorem of Polya and Szeg6 (see
[Moss, Theorem 4.1]) and the last two inequalities use the fact that f is nonincreas-
ing and g is nondecreasing as functions of » = |z|. It follows that J(u*) < J(u) and
hence that we only need to look for minima in K* = {u € K : u* = u}. It should
be observed also that J(u*) < J(u) unless u* = u.

From now on we assume that ¢ > 0, because if ¢ = 0 then J is convex and it
is well-known that there exists a unique minimizer «» in K. This » has compact
support with radius of support p = (%)UNR. (Note that b > 0 when ¢ = 0.) Cf.
Example 1.5 below. Thus the lemma holds if ¢ = 0.

We first prove that J is bounded from below on K* (and hence on K). For v in
K* there is a unique p in [0, co] depending on u such that u(z) > 0 for |z| < p and
u(z) = 0 for |z| > p. Set Q@ ={u > 0} = B(0, p). Regarding f, g and u as functions
of r = |z| we have

1 P c?

—J(u) = / (' (r))2rN = dr — 2/ fur®=tdr + — max(p™ — RY,0).

WN 0 0 N

Since J(u) = +oo if p = 400 we need only to consider u with p < co. Set
1/2

A= ([Cwereiar) = il

" b
= /0 f(s)sVN"tds = % min(r, R)N — NTN'

If b # 0 then there is an 79 > 0 such that ¢(r) > 0 for 0 < r < rg, ¢(r) < 0 for
r > ro, and since v’ < 0 we then get

p p
(1.1) / fur¥ "tdr = — / du'dr < AN,
0 0

where A = ( f #?r1—Ndr) 1/2 i5 a constant independent of u. Thus

1 2
(1.2) —J(u) > A% - 24X+ ¢ max(pY — RN, 0) > — A%
wWN N

If b=0 then 0 < ¢(r) < const. < oo for r >0 and (1.1), (1.2) hold with

p p
A=A,= / $*r*~Ndr < const. / ri=N,
0 0
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Since ¢ > 0 we still see from the second inequality in (1.2) that J is bounded from
below (provided N > 2).

Thus J is always bounded from below. Let {u,} C K* be a minimizing sequence,
pn the radius of support of u, and A2 = [/ (ur,)?rN " ldr = \/%_NHVunH Then it
follows from (1.2) that

(1.3) pn < const. < oo,
(1.4) An, < const. < 00.

Now from (1.3) and (1.4) the existence of a minimum for .J follows by standard
arguments. In fact, (1.3) shows that we may work in KN H} (B) for some fixed ball
B and (1.4) then shows that the minimizing sequence {u,} is precompact in the
w-H}(B) (i.e. H}(B) provided with the weak topology). As J is easily checked to
be lower semicontinuous in w-H!(B) the existence of a minimum follows.

If ¢ > 0 and a is not too large there may be several solutions u (cf. Example
1.5 below). However any solution is uniquely determined by its radius of support
p (e.g. because u will satisfy —Au = f in Q = {|z| < p}, u = 0 on 0%, as will be
proved later (Lemma 2.2) independently of the present proof), and a larger p will
correspond to a larger solution u. Therefore the solutions form a nested family and
it follows that there is a largest solution (note that any family of solutions at the
same time is a minimizing sequence). O

Remark 1.3. When N = 1, J(u) is not always bounded from below. Take e.g.
a=2,b=0,c=1, R=1 and consider u(z) = 1(p — |z|) for |z| < p and u(z) =0
for |z| > p, where p > 1 is a parameter. Then J(u) = 2 — 2p, which obviously goes
to —oo as p — +00.

When N = 2 J(u) is not bounded from below if b = ¢ =0 (and a > 0, R > 0),
while, as is seen from the proof, J(u) is bounded from below when N > 3 even if
b= c¢ = 0. However the (unique) minimizer does not have compact support then.

It is also worth mentioning that the Condition A is not optimal. However g and

f— are not allowed to tend to zero too fast at infinity.
We now turn to the general case.

Theorem 1.4. If f and g satisfy Condition A then J is bounded from below and
its infimum is attained for at least one u in K. All minimizers have support in a
fized compact set (which depends only on f and g) and the set of minimizers is
compact in the weak topology of H*(RY).

Proof. Let f = axB(o,r)—b, § = cXrM\B(0,r,) With a,b,c, R, R1 > 0,a > b, b+c > 0
chosen so that f < f, g > g and set J = J~§. By Lemma 1.2 there is a largest

minimizer @ in K of .J. Clearly

(1.5) J(u) > J(u) for all u € K
and also, by Lemma 1.1,

(1.6) J(min(u, %)) < J(u).

Thus J(u) decreases if u is replaced by min(u, %). Choose an open ball B such that
supp @ C B. (1.5) together with Lemma 1.2 shows that J is bounded from below
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and (1.6) shows that if {u,} is a minimizing sequence then so is {min(u,,, %)}. Thus
there exists a minimizing sequence {u,} with supp u, C B. By Poincaré’s lemma
then [lun|| < C[|Vuy||, so that

I (un) > [Vun|* = 2| fxalllunll > Vunl? - 20 Vug| > —C*.

Thus J is bounded from below, ||Vu,|| < C and the existence of a minimizer follows
as in Lemma 1.2.

If now u € K denotes any minimizer of J then Lemma 1.1 shows that max(u, @) <
@I, since @ is the largest minimizer of J, hence that u < @. This shows that u has
compact support in a fixed compact set. If a > b+ N¢/R and Ry = 0 we in fact
have supp u C B(0, p), where by Example 1.5 below p can be taken to be

a\ /N .
(5) R it b £ 0,
p= NN 1/(N-1)
aR .
< No > if ¢ # 0.

(Ifa < b+Nc/R then p = R works.) It moreover follows as above that ||u||+||Vu|| <
C < oo, C independent of u, and therefore that the set of minimizers is compact
in w-HYRY). O

Ezample 1.5. Assume that f and g are radially symmetric with f nonincreasing
and g > 0 nondecreasing as functions of 7 = |z|. As was noticed in the proof of
Lemma 1.2 any minimum « in K of J is itself radially symmetric and nonincreasing
as function of r = |z|, i.e. u € K*. Moreover u has compact support. It will be
proved later (without using the results of this example) that a necessary condition
that a function u € K* is a minimum (or local minimum, Definition 2.1) is that it
is a weak solution, i.e. u satisfies

—Au=f in Q={u>0},
u=0 |Vu|=g, on 01,

We shall now discuss weak solutions belonging to K* and compare J(u) for
these. So let u € K* be a weak solution. Since f, g and u only depend on r and u is
nonincreasing there is a unique p in [0, 00) such that = B(0, p) and the equations
above become

(1.7) - NT_ Ly = ), 0<r<p
(1.8) u(p) =0,
(1.9) —u'(p) = g(p)-

By (1.7) we have (rV~1') = —rN=1£(r) and by (1.9)

(1.10) ) = oY g (o) + " N1 (s)ds.

r

As r — 0 we shall have 7V =1u/(r) — 0 (otherwise we get a distributional con-
tribution to Au at the origin). Thus

(1.11) / "N (s)ds = pN g p).
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This is a condition for p. Once p is determined u is obtained by integrating (1.10)
and using (1.8). Explicitly

ur) = ["07 () - [T (s )

for 0 <7 < p. Set
p
F(p) = / N1 (s)ds — pN~1g(p),

for p > 0 so that (1.11) becomes F(p) = 0. Thus the weak solutions in K* are in
bijective correspondence to the zeros of F.

Let us now specialize to the case f(r) = axo,r)—band g(r) = ¢, where a, b, c, R >
0 are constants with a > b,b4+c > 0, R > 0. F' becomes

—b
anN—CPN‘l 0<p<R,
Flp)=1 , b e
— RN — —pN —¢pN Tt > R.
N Ty —ep p>R

Note that F'(p) < const. < 0 for p > R. It follows from the equations for a
weak solution that [ |Vu|?dz = [ fudz. Therefore

2

(1.12) J(u) = wy [CN o — /0 p(u'(r))er_ldr]

if u is the weak solution corresponding to p. By (1.10)

—b
(1.13) PNl (1) = —cpN1 4 a N _ Ny

Nt =
for 0 <r <pif 0 < p < R, while

_ _ b
(1.14) Nl (r) = —epN T = —(pV =)+ — (RN — TN)X[O,R) (r)

for 0 < r < pif p > R. Inserting this into (1.12) gives

(1.15) iJ()—éN—/p AR L1 g N)Zl—Nd
. on u) = 5P ; cp ~ P r T T,
if0 < p< R and

1 2 N

EJ(U)_NP

P _ b a 2
_/(; (_CpN 1_N(pN_TN)+N(RN_TN)X[O,R)) 7,,1 Nd’f':

2 R 2 P 2
C N a—b N 1-N a LN b N 1-N
- p— - p— - JR— <
Np /O ( N 4 > 4 dlr /R (NR NT ) 4 d[r

N (a —b)? N+2 L[ N N\2,1-N
—p - = - — —b d
4 N2(N+2)R N R(aR ) r T,
if p > R (recall that F'(p) = 0).

We shall now determine all zeros p = p,, of F' and compare J(u,) for the cor-
responding weak solutions u, € K* (n =0,1,...). Observe first that p = pg = 0 is
always a zero of F', corresponding to ug = 0 with J(ug) = 0. Next we divide into
cases.

(1.16)
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Case 1: ¢ = 0. Then J is convex and there is, besides pg, exactly one more zero

of F, namely p; = (%)1/NR > R. Tt is easily seen from (1.16) that J(ui) < 0.

Thus u; is the only minimum of .J and there are no other local minima.

Case 2: ¢ > 0 and b < a < b+ IJ£. In this case F(p) < 0 for all p > 0. Hence
up = 0 is the only weak solution (in K*) and it is the global minimum of J. In
particular J(u) > 0 for all u € K.

Case 3: ¢ > 0 and a = b+ %. Here pp = 0 and p; = R, are the zeros of F.
Equation (1.16) gives that J(u1) > 0. Thus wug is the only minimizer and J > 0.

Case 4: ¢ >0 and a > b+ &£, In this case F(R) > 0 and it follows that F has

exactly three zeros: pp =0 < p2 < R < p1. We have py = a]\icb and from (1.15) one

finds that J(u2) > 0 always. As to pi, it is determined by

(1.17) aRN =bpl + NepM 1,

and J(uy) is then obtained by inserting this into (1.16). It is clear from (1.17) that
when a increases from b+ % to 400 (with b, c and R kept fixed), then p; increases
from R to +oo. Moreover J(uq) at the same time decreases monotonically to —oo
from its positive value when a = b + %. This can be seen e.g. by estimating

the derivative - .J(u;) or %J (u1). It follows that there exists a critical value

ap > b+ % such that we have the following three subcases.

Subcase 4a: ¢ >0 and b+ ¢ < a < ag. Then J(up) =0, J(u1) > 0, J(uz) > 0.
Thus ug is the only minimizer and J > 0. However u; can be shown to be a local
minimizer in this case. Indeed, it is not hard to see that u; is a local minimizer
among other functions in K*, and when moving out from K* (into K \ K*) the
functional J increases as was observed in the proof of Lemma 1.2.

Subcase 4b: ¢ > 0 and a = ag. Then J(ug) = J(u1) = 0, J(uz) > 0. Thus we
have two minima, and J > 0.

Subcase 4c: ¢ > 0 and a > ag. Then J(up) = 0, J(u1) < 0, J(uz) > 0 so that
uy is the only minimizer. By the same argument as in subcase 4a, ug is a local
minimizer.

Finally in this example we need (for later use) an estimate of ag. We claim the
following: if

cN
1.18 b4+ — )3V
( ) a > ( + 3R>
then J(u;1) < 0 and
(1.19) p1 > 3R.

In particular ag < (b+ £5)3".
That p; > 3R when (1.18) holds follows immediately from (1.17). Observe next

that (1.17) also implies

QR V(1)
. < | —
(1.20) o < (N) R
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(and p; < (a/b)NR). Using (1.20) and (1.18) in (1.16) gives by a little computation

that already the two first terms make J(u1) negative when N > 3. When N = 2

one also has to take the last term into account and the calculation becomes a little

more tedious. (In the last term (the integral) one may replace p by 3R and b by

372a according to (1.19) and (1.18).)

Suberample. If N = 2 and b = 0 then a( can easily be calculated to be ag = 2—15\4/?3.
As a corollary of Example 1.5 and Lemma 1.1 we have

Proposition 1.6. Let f, g satisfy Condition A and set a = sup f, ¢ = inf g and let
R be the radius of the smallest closed ball containing supp fi+. Then, if aR < Ne,
J = Jrg > 0 and u = 0 is the only minimizer. There even exists a number
ap = ap(N, R, c) > % such that the same conclusion holds whenever a < ag.

Proof. We have f < axp, —b, g > ¢ with b = 0. Then combine Example 1.5 with
Lemma 1.1 [

Proposition 1.7. Let f,g satisfy Condition A and let u be a minimizer of J.
Assume that u =0 on B where Bg is a ball such that Rsupg, f+ < Ninfp, g.
Then u =0 in Bg.

Proof. Set v =wu in B and v = 0 outside Bg. Clearly v minimizes J=J; P where

f=(f+)XBr> § = 9xBx + (infBy 9)Xr~\B,- Now apply Proposition 1.6 to J. O

Proposition 1.8. If u and v are minima of J then also min(u,v) and max(u,v)
are minima. Also, if {u,} are minima and vy < us < ... then u = supu, is a
mangmum. Stmilarly, if uy > ug > ... then inf u, is a minimum. Finally there is a
largest minimizer of J, and also a smallest one.

Proof. The first statement follows immediately from Lemma 1.1 and the second
(and the third) from the compactness assertion of Theorem 1.4.

To prove the last assertion, first note that since H'(RY) is separable there is a
finite or infinite sequence {v,} of minima which is dense in the set of all minima.
Define u; = v; and, inductively for n > 2, u,, = sup(un_1, vy ), so that u; < ug < ....
As shown above u = sup u,, is also a minimizer and it is readily verified that v < u
for every minimizer v. [

2. Local minima

In this section we deduce basic properties of minima, or more generally of local
minima, of J. The data f and g will generally be assumed to satisfy Condition A.
The main result of this section is Theorem 2.13, saying that any local minimum
solves the appropriate free boundary problem in a potential theoretically satisfac-
tory sense, provided g is continuous. This means that the distributional Laplacian
Awu can be expressed in terms of purely geometric quantities related to the open
set @ = {u > 0}, more precisely that

Au+ fLN Q= gnN 100

Continuous functions u € K satisfying this equation will be called weak solutions
(Definition 3.1).
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It should be told that this section is very much based on the methods and
results of the pioneering paper [AC] (see also [ACF] and [F]). Many of our proofs
are modifications of corresponding proofs in [AC].

Definition 2.1. A function u € K is a local minimum of J if, for some ¢ > 0,
J(v) > J(u) for every v € K with

(2.1) / (IV(0 — )P + [xuso} — Xqusoy]) de < e.

Lemma 2.2. If u is a local minimum then

(2.2) Au+fr >0 in RN,
(2.3) Au+ f=0 in Q={u> 0},
(2.4) Au+f<0 in RN\ supp g.

Remark. It follows from (2.2) that u has an upper semicontinuous representative,
which is the one we will refer to in the sequel, and it will be proved later that this
u actually is continuous. For the present proof of (2.3) €2 should strictly speaking
be defined as the set of points z € RY such that there exists 0 < ¢ € C°(RY) with
¢(x) > 0 and u > ¢ everywhere.

Proof. Take 0 < ¢ € C°(RY) and define, for € > 0, v. = (u — €¢),. Then v, € K,
0 <wve <u. Set D, = {u < ep} = {v. = 0}. Clearly |D.N Q| — 0 as e — 0. Since
Ve —u = —u in D, ve —u = —e¢ outside D, it follows that v. — u in H*(RY) and
that

/92|X{u5>0} — X{u>0}|dT = / g’dr —0.
QND,

Since u is a local minimum we conclude that J(u) < J(v.) for € > 0 small enough.
Next we estimate

0 < J(ve) — J(u)

:/|V1}6|2—/|VU|2—Q/f(ve_u)+/g2(X{vs>O} = X{u>0})
=/DS V-eP- [ |Vu\2+26/Dgf¢+2/D€fu—/mDeg2

< —2¢ Vu-V¢+62/ V| + 2¢ f+q§+2/ fru
De D.

De De

< 2¢ (/RNf+¢—/RNVU-V¢> +26/Dmvu-V¢s+e2/Dg V|2

Dividing both sides by € and letting ¢ — 0 we obtain

0§—/Vu-Vq5+/f+(b
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for all 0 < ¢ € C°(RY), and hence that Au+ f, > 0in RV,

If supp ¢ C 2 we can take v = u £ ep € K for € > 0 small enough (and
0 < ¢ € C(RY)) and this readily gives that Au+ f =0 in Q.

Finally, taking v, = u + €¢ where supp ¢ Nsupp g = 0 gives that Au+ f < 0 in
RN \supp g. O

Theorem 2.3. Let u be a local minimum and assume g € HY(RN). Then

lim (|Vu|®> = g*)n-vdHN =1 =0
N0 O{u>e}

for every n € C° (RN ,RY). (v denotes the outward normal vector of 8{u > 0}.)
The proof is similar to that of Theorem 2.5 in [AC] and therefore omitted.

Lemma 2.4. (“Harnack”) Assume v € H'(B,), u > 0 on 0B, (B, = B(0,7))
and let M > 0.
a) If Au< M in B, then

r— |z 1 2N=1 01
>N T 2 _
o2 i | e S
for x € B,.

b) If Au> —M in B, then

T+ |z| 1 M
<pN_T7F —
) < e [ JQBT“ 2N] ’

for xz € B,.
¢) If |Au| < M in B, then

N2 T —|7] Mr?

PR 0) — <

Grfap O NS

r+ |z| (0) MrN 4 |z|
T F L A A O e

r

u(z) < pN—2

for xz € B,.
d) If |Au| < M in B,, then

1 M
<N |- —].
Vu(0)| < L« ]éBTu-i- o 17«}

Note that, by Lemma 2.2, b) is always applicable (with M = supp_fy) if u is a
local minimum, while a), ¢) and d) are applicable if B, C .

The proof consists of straightforward applications of the Poisson formula com-
bined with super- and subharmonicity properties of functions u(z) £ 2% (r? — |z|2).
(Details are omitted.)
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Lemma 2.5. Suppose u is a local minimizer of J. Then there is an rq > 0 such
that for any ball B, with 0 < r < ry we have

1
—][ u > 2N (L sup f_ + sup g) - u > 0 and continuous in B,.
T Jon N B, B,

Note. The reason that r has to be small is simply that u is assumed only to be a
local minimizer. For a global minimum the implication is true for all » > 0.

Proof. We may assume that B, is centered at the origin. Define v € H'(RY) by
v = u on RV \ B, (in particular on 8B,) and —Av = f in B,. Note that v is
continuous in B,.. Then, as in [AC, 3.2],

(2.5) J(w) - J(v) > /

[V (u—v)|* = sup g*|{u = 0} N B, |.
B, B,

On the other hand a) of Lemma 2.4 (applied to v) shows that

r— |z| 1][ oN=1 M
>pN__T TR | — _
o) 2T ey [ BTN |

for x € B,. Here M = supg_f_. Thus whenever

1 2N M
2.6 — > —
we have
N~z 1 N 1
en @z ne S uzeVe-la)) f
2 (r+[z)N"1r? Jop, r Jos,
and in particular v(z) > 0 for z € B,. As in [Ac, 3.2] one derives from (2.7) the

estimate

{u=0}NB,| (1][33“) < 22N/BT V(02

When (2.6) holds v is nonnegative by (2.7) so that v € K, and if > 0 is small
v is moreover close to u in the metric (2.1). Thus, since u is a local minimum,

J(u) < J(v), i.e. by (2.5)

/|v<u—v>|2ssupg%{u:omm
B B,

r

Hence
1 2

(2.8) {u =0} N B,| <—][ u) < 22N sup g?|{u = 0} N B,|,
T JoB, B,

whenever (2.6) holds.
This proves the lemma, for if

1
—][ u > 2N <Lsupf_ +supg>
T JoB, N B, B,
then (2.6) does hold, and (2.8) leads to a contradiction unless [{u = 0} N B,.| = 0.

In the latter case we have fBr |[V(u — v)|2 = 0 and hence u = v > 0 in B, as
desired. [
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Corollary 2.6. Any local minimum u is Lipschitz continuous. Moreover near 0S)
we have the estimates

u(z) < 2V6(z) ( sup g+M(5(a:)) ,
B(z,26(x))

(2.9) |Vu(z)| < N2V ( sup g +M(5(:c)) ,
B(z,25(z))

where M = sup |f|, Q@ = {u > 0} and 6(x) denotes the distance from x to Q°. Thus
u(z) < Cé(z) always, and if x approaches a point of 02 where g vanishes we have
a better estimate (e.g. u(xz) < Co'™%(z) if g is a-Holder continuous).

For a proof see [AC, 77].

Remark 2.7. (On homogeneity) For ¢ > 0 and ¢(z) any function of z € RY,
set ¢i(x) = p(x/t). Then a straightforward computation shows that for any real
number o« we have

Jia g, pat1g, (% 2uy) = NP2, o (u).

Lemma 2.8. Let u be a local minimum. Ifg > const. > 0 in an open set D C RV
then there is a constant C' > 0 such that for any sufficiently small ball B, C D we
have

1 .
(2.10) —][ u<C = u=0 in B,j.

T JoB,

More precisely, C' depends only on infp, g, rsupg_fy and N and is positive when-
ever infp_g > 0 and rsupg_fy is sufficiently small.

Remark. The lemma holds with By, in place of B, /4 for any 0 < x < 1; C then
also depends on k.

Proof. For u a local minimizer of J b) of Lemma 2.4 always applies and gives, for
some constants C; and C5 only depending on N, that

(2.11) u < Cl][ u + Cyr?sup f4
)

B, B,

in B, /5. For notational convenience we assume that B, = B,.(0).
Set m = infp, g, M = supp_f and define

50) = [ (907 = 200+ gXpuse) d,
Br/2

Jr(v) = / (|Vv|2 —2Mv + mzx{v>0}) dz.
Br/2

As in Lemma 1.1 we have

(2.12) Jr(min(uy, ug)) + Jpr (max(uy, uz)) < Jp(u1) + Jr(u2),
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for any uy,us € H'(B,2).

Given a constant 8 > 0 consider the problem of minimizing J,(v) over {v €
HY(B,;3) : v > 0,v = B on 0B, /3}. We claim that the largest minimizer vg of
J, vanishes on B, /2 provided r and 8 are small enough. Clearly vg is radially
symmetric. Therefore the claim can be proved by comparing J, (wy,) for the various
radially symmetric weak solutions w, = wg, for jr, in a similar way as in Example
1.5.

We take 0 < r < 2Nm/M. It then follows from Proposition 1.7 that if the largest
minimizer vg vanishes somewhere then there is some 0 < p < r/2 such that vg =0
on Pp, vg > 0in B, /5 \ B,. Therefore it is enough to compare weak solutions w of
the corresponding form, i.e. satisfying as functions of radius |z| (cf. (1.7)-(1.9)),

w(|z]) =0 0 < |zf < p,
w'(p+0)=m
(JeVtw) = —[z|VTIM p <z <7/2,
w(r/2) = p.

Note that by the third equation w’ changes sign at most once. Therefore it is
easy to see that the above system has at most three solutions, call them wqg, w;
and wy (w, = wp,g). W is the one corresponding to the largest value pg of p, with
wy(|z|) > 0 for pg < |z| < r/2. w; is the solution obtained if w’ changes sign.
Thus 0 < p1 < po and w)(|z]) < 0 for |z| close to r/2. Finally wy is the uniquely
determined weak solution which does not vanish at all.

Now consider what happens when 8 \, 0. Clearly wog — wpo = 0, e.g. in
H'(B,3) and pg — r/2 (since w'(p+ 0) = m) so that

lim J, = J.(0)=0.
limn J, (wo,5) = J,(0) = 0
wn g exists if and only if M > 0 and then w; g — w10 # 0 and

lim j?"(wl,ﬂ) > jr(wl,O) >0
B—0

where the last inequality follows from the fact that v = 0 is the unique minimizer
when 8 = 0 (by Proposition 1.6).
For the same reason we have wy g — wy o and

lim jT(“’lB) 2 jr(w2,0) >0
B—0

when M > 0. When M = 0 then ws ¢ = 0 so that jr(wz,o) = 0, but then wy g = f8
so that )
lim J, (wa,8) > m?|B,/3| > 0.

—

=
(=}

From the above limits we conclude that .J(wp g) is smaller than both J(wy g)
and J(wz,g) if B is small enough. Since clearly wg g vanishes on B, , if 3 is small
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this proves our claim: the largest minimizer vg(= wop g) of J, vanishes on B, /4 if
0 <7< 2Nm/M and, say, 0 < 8 < fp.

Now Sy depends on 7,m and M. Indeed, it is easily seen (cf. Remark 2.7) that
if r is scaled to tr (¢ > 0) then the minimizer v(z) of J, will be scaled to tv(z/t)
provided m, M and 3, are scaled to, respectively, m, M/t and t3. In other words,
Bo(tr,m, M/t) = tBo(r,m, M) for t > 0 or, with ¢t =1/r,

(213) ﬂo(’f‘,m, M) :TBO(17m7TM)‘

For M = 0 estimates for 3y were computed in [AC, 2.6]. One has that 8o(1,m, 0) >
0 for m > 0 and is an increasing function of m. Moreover, Sy(1,m, M) is decreas-
ing as a function of M and can be taken to depend continuously on (m,M) in a
neighbourhood of M = 0.

It follows from (2.11) and (2.13) that we can achieve

(2.14) u < B < Bo(r,m, M)

on 9B,y by letting

1
01—][ U+CQT'M<,B()(1,’ITL,’I‘M).
r JoB,

Since fBo(1,m,0) > 0 this shows that (2.14) holds if an estimate of the form (2.10)
holds.

Now it only remains to show that (2.14) implies that w = 0 in B, /4. Let w denote
the function which equals min(u, v) in B, /5 and equals v outside B, /,. When (2.14)
holds then w € K, and if » > 0 is small enough then w will be so close to u in
the metric (2.1) that J,.(u) < J,.(w), u being a local minimizer of J. We also
have J, (v) < J,(max(u,v)). But these two inequalities contradict (2.12) unless we
have equality everywhere. Since v was the largest minimizer of J, it follows that
v = max(u,v), i.e. that u < v. Hence u vanishes in B, /4. O

Corollary 2.9. Ifg > const. > 0 in a neighbourhood of a point oy € OS2 then
u(z) > Co(z)

near .

Proof. With C; the constant in (2.10) we have by a) of Lemma 2.4 and (2.10) (for
x € Q close to zg, r = 0(x), B, = B.(z,1)),

u(z) > ][ w—Cor?2>Cir — Cor? > Cr. O
9B,

Lemma 2.10. Let u be a local minimum, Q@ = {u > 0} and assume that g >
const. > 0 in a neighbourhood of a point xy € 0S2. Then there are constants c;
and co such that

|B, N Q|

0<er £ ———+
| B, |

<ec <1

for small r > 0 (B, = B(zo,7)).
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For a proof see [AC, 2.7].

Remark 2.11. In addition to Lemma 2.8 the following lemma, due to Caffarelli, is
useful: _
Assume 0 < u € HY(B(0,R)), Au>c¢>0in Q = {u > 0}, 0 € Q. Then, for

any 0 <r< R

C’l"2

sup u > —.
oB.(0) 2N

(See [Caffl] for the simple proof). If u is a local minimum (or weak solution) for
our problem, then this lemma shows that

2

r
2.15 sup u > — inf f_
(2.15) 8B, (z) 2N B, (z)

for any = € Q.
Proposition 2.12. Any local minimizer u of J has compact support.

Proof. By Lemma 2.2 u is subharmonic outside supp f;. Therefore

1/2
u(z) < R u < 1 / u < ||l
| B, ()| B, (z) V|Br(z)| \UB,(z) | By |

for  a distance r away from supp fi. Thus
(2.16) u(z) < Cla|~N/?

for |z| large.

By Condition A either ¢ > ¢ > 0 or f_ > ¢ > 0 (or both) far away. In the
first case we conclude that u(z) = 0 for large |x| by combining (2.16) with Lemma
2.8. In the second case the same conclusion follows from (2.16) combined with
(2.15). O

In order to prepare for the main result in this section we need to recall a few
facts about functions of bounded variation and sets of finite perimeter.[Gi],[EG, ch.
5] are good references for this.

Let E C RN be a Lebesgue measurable set. The measure theoretic boundary
OmesE of E is defined to be the set of points z € RY such that F and E°€ have
positive density at z. Thus OnesE C OF (the topological boundary). E' is said to
have locally finite perimeter if Vxg is a vector-valued Radon measure. This means
that there exists a positive Radon measure y = pg in RY and a p-measurable
function vy : RV — SN¥=1 U {0} (the direction factor) such that —Vxg = p|vg,
Le. [pdivedz = [¢-vgdp for all € CL(RV,RY) (the left member being equal
to (—=Vxg,®)). The measure p will occasionally be denoted |Vxg|. It can be
shown [EG, 5.11] that a measurable set E has locally finite perimeter if and only if
HY YK N Opes E) < 00, for each compact set K C RY.

Assuming that E has locally finite perimeter the reduced boundary 0,.qF of E can
be defined as the set of points € RN for which the density lim,_, m i) Bla.r) VEdMI
exists and has modulus one. It is convinient to work with that representative of vg
which equals this limit on 0,.qF and is zero elsewhere and vg then is the measure
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theoretic outward unit normal vector of F on 0,cqF. Clearly 0peqF C OmesE
and it is not hard to show that HYN"1(0pesE \ 0reaE) = 0, ([EG, ch. 5.8]).
A basic structure theorem says that p = |Vxg| actually agrees with (N — 1)-
dimensional Hausdorff measure restricted to OpeqE: |Vxg| = HY1|8rcqF. Thus
also Vxg = —vgHY "1 0peqE.

All the above definitions and results carry over to the case with an open subset
G C RY in place of RY. One then speaks of sets having locally finite perimeter in
G etc.

Theorem 2.13. Assume that f,g satisfy Condition A, that g is continuous and
set G = {x € RN : g(x) > 0}. If G # 0 assume moreover that for some 0 < a < 1
g is a-Holder continuous near OG and that HN 1% (0G) = 0. Then, if u is a local
minimizer of J = Jg 4, then Q = {u > 0} has locally finite perimeter in G,

HN (00 0,e4) N G) = 0,
and
(2.17) Au+ fLY Q= gHV 7100 = gHN 710,042 = g|Vxal.

Here the right members shall be interpreted as zero outside G'.

Remark 2.14. €2 need not have locally finite perimeter outside GG. To see this, take

eg. g=0, f =axp — 1 where D is a bounded domain such that 0D has positive

N-dimensional Lebesgue measure |0D|, and 1 < a <1+ %DH is a parameter. By

(2.4), Au < 1—axp < 0in D showing that D C Q. Also, D C Q. Next (2.17)
yields Au = (1 — axp)xao = xo — axp, by which || = a|D|. Thus

Q| < |D|+ |0D| = |D| < |Q| = |Q| + |09,

i.e. 00 has even positive N-dimensional Lebesgue measure.

Corollary 2.15. (to Lemma 2.10) With assumptions as in Theorem 2.13

ONNG = 0Opes2NG.

Remark. O0pmes$)2 may be strictly smaller than 02 outside G. Indeed, in the case
g = 0 there are examples with 9 having singular points (e.g. inward cusps and
double points, when N = 2) at which €2 has density one.

For the proof of Theorem 2.13 we need the following observation.

Lemma 2.16. Assume u > 0 is a continuous function such that Au is a signed
Radon measure. Then Au >0 on {u = 0}.

The proof of Lemma 2.16 is quite straightforward and therefore omitted (cf. [AC,
4.2]).

Proof. (of Theorem 2.13) (2.2) shows that Awu is a Radon measure and (2.3) and
Lemma 2.16 then show that Au + fxq = A, where X is a positive Radon measure
on 0f).
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For any x € RY, |Vu| is integrable on dB,.(x) for almost every r > 0 and for
these r

(2.18) [ A< / VuldHN-1 < Cr¥=1 sup [V,
B, (z) 9B, (z) 8B, (x)

But |Vu| < C by (2.9), hence (2.18) shows that Au, and also A, is absolutely
continuous with respect to HV 1.

If z € 00\ G then (2.9), (2.18) even yield that | [ Aul < CrVN-1te forr > 0
small, hence that Au and X are absolutely continuous with respect to HY~1% on
0N\ G. From this it follows that A = 0 on 9Q\G. Indeed, on 9QNIG we have A = 0
since by assumption HY~1+%(9G) = 0. Outside G we have Au € L™ by Lemma
2.2, and then standard arguments [Ki-St, II, Lemma A.4] show that A = Au = 0
a.e. on 002\ G.

By the above we see that Au+ fyxq = hHN 1|99 for some Borel function h > 0
on 0Q N G. It just remains to identify h with g i.e. to prove that

(2.19) h(z) = g(z) for HN -ae. z € 00N G.

We shall merely give an outline of the proof of (2.19). The details are virtually the
same as in [AC, 4.7-5.5].
It is enough to prove (2.19) for those z € 92 N G which satisty z € 0yeq2,

(2.20) m HYY(B(z,7) N ON)
) r—0 WN_1

e <1,

(2.21) lim b —h(z)|dHN "1 =0
=0 JoonB(z,r)

since the remaining set has H~~! measure zero (see [EG, Theorem 2, 2.3] for
(2.20)). So fix such an z € IQNG. For simplicity of notation we assume that z = 0
and that vo(0) =eny = (0, ...,0,1).

Define the blow-up sequences un(z) = nu(2), fo(z) = Lf(£), gu(z) = g(%),
hn(z) = h(%), @ = {u, > 0}. Note that u, f and g are scaled in the right
way according to Remark 2.7 (with o = —1). Let B = B(0,1), B, = B(0,r),
H = {:L'N < 0}

By general properties of the reduced boundary [EG, 5.7.2]

(2.22) (QAH) N B| -0,

where A means the symmetric difference between the sets, and by our assumptions
frn — 0 uniformly, and

T

Lo —g@is o, [ ) - want oo

n

as n — 00.
As to u, we know (Corollary 2.6 and 2.9) that |Vu| < C and u(z) > Co(z).
Thus |Vu,| < C, u,(x) > Cé, () where J,(z) = dist(z, Q) = nd(z/n). It follows
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that there exists a Lipschitz continuous limit function ug > 0 such that, for a
subsequence,
Uy, — Ug uniformly in B,

Vu, = Vg w* — L*=(B).

Setting Q¢ = {ug > 0} it also follows, using nondegeneracy (u, > C6d,) and that
|Auy,| = |ful < C/n in Q,, that ug is harmonic in g, that Q, N B — QN B
in Hausdorff distance and in measure. By the last property combined with (2.22)
|QoAH| =0 and hence (since €2 is open) Qo C H, |H \ Q| = 0.

Next one proves, and this is more technical [AC, 4.8], that actually Q¢ = H (for
this (2.20) has to be used) and that, due to (2.21),

(2.23) uo(z) = h(0)(—xN)+-

The final step consists of proving that wug is (global) minimum of

Jo(v) = /B (V92 + 9(0)X(us0))

among all 0 < v € H'(B) with v = ug on dB ([AC, 5.4]). This is intuitively
reasonable since by scaling (Remark 2.7) u,, is seen to be a minimum of

Tn(v) = /B (IV0[2 = 20 + g X 050)

(among 0 < v € HY(B) with v = u,, on dB) if n is large (recall also that f, — 0,
gn — 9(0)).

Now it follows from Theorem 2.3 (adapted to the unit ball B) that the function
(2.23) can be a minimizer of Jy only if A(0) = ¢g(0). This was the desired conclusion
and the proof is finished. [J

As to regularity of the free boundary 0€2 we have

Theorem 2.17. [AC], [Caff80] Assume that f and g satisfy Condition A and that
w 1s a local minimum of J. Let B, = B,(xo) be a small ball.

a) If g is Holder continuous and satisfies g > const. > 0 in B, then for some
a > 0 OreqgQ is a CY* surface locally in B,. If N = 2 then this even holds for 09
(i.e. Oreat = 02 in B,.).

b) If g = 0, f is Hoélder continuous and < 0 in B, and if moreover Q° satisfies
the minimal thickness condition of Caffarelli at xy (see [Caff80], [F]) then 02 is
a C' surface near xy. This thickness condition is satisfied e.g. if Q° contains a
nondegenerate cone in B, with vertex at xg.

¢)Ifg=0and f >0 in B, then 0QN B, = (.

Proof. a) is proved in [AC, 6-8] in the case f = 0. When f # 0 basically the same
proof works. The modifications needed are listed in Appendix, section 5.

b) is proved in [Caff80].

As to c), (2.4) shows that Au < 0 in B,, hence either v > 0 in B, or u = 0 in
B,.. U

Note. This theorem covers all cases except some limiting ones. However, in these
limiting cases not much can be said in general. See e.g. Remark 2.14, where g = 0
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and for any z¢o € 0D N 0N) f takes both positive and negative values in every
neighbourhood of xy. We may even redefine g to be any positive function outside
Q (e.g. g(z) = dist(z, 2), which is Lipschitz continuous) and we will still have the
same irregular solution. See Remark 3.6.

As to higher regularity we just mention that if f and g are real analytic in B,
then, in Theorem 2.17, the conclusions C1* (in a)) and C! (in b)) can both be
replaced by “real analytic” (see again [AC], [Caff80]). If f and g are real analytic
and moreover N = 2 the regularity theory seems infact to be almost complete: If
g > 0 in B, then 0L is real analytic by the above and if g = 0 and f < 0 in B,
then it is shown in [Sak91], [Sak94], that OS2 is analytic in B, except possibly for
a few types of singular points which may occur [Schal,[F]. These are certain types
of inwards cusps, double points (including the case of a real analytic arc with 2 on
both sides) and isolated points of 0f.

3. Geometry of local minima and weak solutions

In this section we derive some results on the geometry of Q = {u > 0} when u is
a local minimum. In some cases we really do not need the full strenght of u being
a local minimum, just that u satisfies equation (2.17) in Theorem 2.13. We call

such a function a weak solution. Our notion of weak solution is weaker than that
of [AC].

Defintion 3.1. Assume that f and g satisfy Condition A and that g moreover is
continuous. Then by a weak solution for J; , we mean a continuous function u > 0
with compact support satisfying

(3.1) Au+ fLV[Q = gHV 100

where @ = {u > 0}.

Remark 3.2.

a) u =0 is always a weak solution.

b) A priori, gHN 1|09 is a (positive) Borel measure whereas the left member
of (3.1) is a distribution. The equation (3.1) is to be interpreted as saying, first of
all, that gH™N~1|0Q also is a distribution, hence a Radon measure, and, secondly,
that equality holds in the sense of distributions. Thus it is a consequence of (3.1)
that Awu is a (signed) Radon measure and also that  has locally finite perimeter
in G ={g>0}.

c) It follows, as in [AC, 4.2], that any weak solution u is in K. Indeed, this
readily follows from the estimate

/u>e Vul* = /VU V(=€) = —/Au(u —€)4 =

[Hu=0:= [ fu<c.

Also, by Theorem 2.13, if g satisfies the Holder condition there (or g > 0 every-
where), any local minimum is a weak solution.

d) If some portion I' C G of 9Q2 bounds @ from two sides (which is impossible
for local minima by Lemma 2.10) then (3.1) is perhaps not the most natural defi-
nition: either u should be forced to have the normal derivative g in both directions
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from T' (which would give 2gH~N=1|0Q on T in (3.1)) or T should be neglected,
which is accomplished by replacing the right member of (3.1) by gHY 1| OpmesQ or
gHN 710,492 However, for simplicity we shall stick to (3.1).

We begin with some miscellaneous comparison results for minima and local min-
ima.

Proposition 3.3. (Cf. [F-P]) Assume fi1 < fa, g1 > g2, let u; € K be a minimizer
of Jj = Jy; 4, and let Q; = {u; >0} (j=1,2).
a) In each component Dy of Q1 one of the following holds:

(1) w1 < ug in Dq;

(2) w1 =wug and f1 = fo in Dy,

(3) uy > ug and f1 = fy in D;.
b) Iffl SO ianﬂQ2 then Jl ZO andQlﬂQQ :@
¢) If f1 <0 in a component Dy of Q1 then D1 N Qe = 0.
d) If f1 <0 in a component Dy of Qy then Q1 N Dy = (.

Proof. Let v = min(uy, u2) and w = max(u1, ug). Then, by Lemma 1.1, v minimizes
J1 and w minimizes J5.

Next, to prove a), Aw = —fy in {w > 0} = Q; U Qy by Lemma 2.2. Thus
A(w—uy)=—fo+ f1 <0in Qy and A(w — ug) = —fa + fo = 0 in Qy. Moreover
w—u; >0 (j=1,2).

Let D; be a connected component of €2;. By the maximum principle, either
w — uy = 0 in Dy, in which case f; = fy there, or w — uy > 0 in Dq. In the latter
case u; < ug in Dy, which is case (1) in the proposition. In the first case u; > us
in Dq, and it just remains to prove that either w; > ug or u; = us holds in all D;.

Since u; — us = w — ug > 0 is harmonic in 5 we have, in each component of
D1 N Qy, either u; > ug or uy = ug. Assume that u; = us holds in one component
D of D1 N Qs. Then u; = usg also on dD. It follows that 0D N Dy, = () (because if
x € 0D N Dy then ug(xz) = ui(xz) > 0 so that x € Dy N Qq, contradicting z € 9D).
Since D C D; and D; is connected this shows that D = D4 i.e. u; = ug in all Dy
(case (2)).

If u; = us on no component of Dy N 2y then u; > us in each component, and
since trivially u; > ug in D1\ Q9 we get u; > ug in all Dy (case (3)). This completes
the proof of a).

Since v minimizes J; we have Av + (f1)+ > 0 in RY by (2.2). Thus if D is an
open set such that f; < 0in D and v = 0 on D then v = 0 in D by the maximum
principle.

In b) the above is assumed to hold for D = Q; N Qe = {v > 0}. Thus v =0 in
D, hence v = 0 everywhere, 1 N Qy =@ and J; > Jy(v) = 0.

In ¢) we choose D = Dy (v = 0 on 0D; since u3 = 0 on 9D; C 0€;) and we
conclude that v =0 in Dy, i.e. D1 N Qo = (. d) is proved similarly. O

Corollary 3.4. Let u € K be a minimizer of Js 4 and let fi = (1 — xa)f+ — f-
where @ = {u > 0}. Then J¢, 4 > 0 and Q1 NQ =0 where Q1 = {uq > 0} for any
minimizer uy of Jf, 4 (w1 =0 is a minimizer).

Proof. Apply b) of Proposition 3.3 with fo = f and f; as in the statement. Note
that f1 <0inQ (Q=Q,). O
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Corollary 3.5. Let u € K be a minimzer of Jg 4, let 21 be a component of 2 =
{u > 0} and set f1 = xq,f+ — -, u1 = uxq,, Q2 = 2\ Q1. Then u; minimizes
J1 = Jy, .4 and for any minimizer v of J; we have {v > 0} NQy = 0.

Proof. Apply d) of Proposition 3.3 with fo = f and f; as in the statement (of the
corollary). Note that Q9 is a union of components of 2 and that f; < 0 in Q.
It follows that {v > 0} N Q2 = @ for any minimizer v of J;, and hence also that
w1 minimizes J; (for otherwise J; could be made smaler by changing « in £2; to a
minimizer of J;). O

Note that if f > 0 then Corollary 3.4 roughly says that if minimization of J does
not produce a domain €2 covering f then another minimization, for the uncovered
part, does not help. Similarly, Corollary 3.5 says (when f > 0) that if Q turns out to
be disconnected, then separate minimizations for the parts of f in each component
of 2 always produces domains which do not meet each other.

Remark 3.6. Assume that v € K is a (local) minimizer of J = J¢ 4 and let f =f,
G<ginQ={u>0}, f<f,§>goutside Q. Then u is a (local) minimum also
for J = J; ;- Indeed, one immediately finds that J(u) — J(u) < J(v) — J(v), and
hence J(u) < J(v), for every v € K (close to u).

One conclusion from this observation is that if g is not continuous then a local
minimizer u cannot be expected to satisfy the equation (3.1) for a weak solution

(because g can be replaced by any larger function on 99 (or on RY \ Q) and u will
still be a local minimizer). Cf. [AC, 5.9].

Theorem 3.7. Assume that u; > 0 (j = 1,2) are weak solutions for Jr g, ; =
{u; > 0} and that f <0 outside Q3 (or simply that le\Q2 f <0). Then

/ gdHN 1 < / gdHN 1,
6(91U92) 192N

Proof. We have
8(91 U Qz) - (891 \ Qz) U (892 \ﬁl), 892 - (892 N ﬁl) U (892 \ﬁl),

where the unions are disjoint. Thus it is enough (and necessary) to prove that

/ gdHN 1 < / gdHN 1,
821\ Qs 022N

Set u = inf(uq, us). Then u > 0, u is continuous and 2 N Qy = {u > 0}. Since
u; € HY(RY) (Remark 3.2) also u € H'(RY). Since —Au; = f in ; we have

(39) —Au Z f in Ql N Qg.

In particular, Au is a Radon measure in 27 N 2s.

Now we claim that Au actually is a Radon measure in all RV . It is not hard to
show (cf. [AC, 4.2]) that this is the case if and only if Au has finite total mass in
Ql N Qg, i.e.

(3.10) —/ Au < C < o0,
u>e
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for all € > 0. Here the left member can also be written

‘L>EA(“‘€)+:L§6A(“‘€)+

Since A(u —€)4 is a Radon measure with compact support in €3 Ny Lemma 2.16
can be applied to (v —€)4 and (u; — €)4 — (u — €)4+ showing that

0<A(u—e€)+ <A(u; —€)+ in {u; <e}.

From this (3.10) easily follows using the fact that Awu; have finite total masses.
Next we apply Lemma 2.16 to u, u; — u and ug — u. This gives

0 <Au < Au; on 094, and 0 < Au< Aug on 0.

Combining with (3.9) we obtain

/ fg—/ Au:/ Au:/ Au <
Q1N Q21N (anﬂg)c 8(91092)

/ Au-l—/ Aug/ Au1+/ Aus
01NN, 02N 01N, 802N,

and hence

/ gdHN 1 = / Aug > / f- Auq =
02N, 02N,y Q1N 1NNy

/ f+/ A+ [ A =/ f+/ gdHN =1
Q1NQs 801\ Q2 Q4 Q1N 801\ Q2

f=—/ f+/ gd’HN‘lz/ gdHN !
Q1 Q1\Q2 0021\ Q2 021\ Q2

as required. [

Corollary 3.8. Assumeu; > 0 (j = 1,2) are weak solutions with g = const. >0,
that f <0 outside Qo and that Qo is convex. Then Q1 C Qo (Q; = {u; > 0}).

Proof. Let P : RN — Q, be the projection, taking x € RY onto the closest point
P(x) on the compact convex set 2. Then

(3.11) |P(z) — P(y)| < |z -yl
(3.12) P(0(£21 UQ2)) = 0%y,

as is easily seen. But (3.11) implies [E-G,Theorem 1, p. 75] that P shrinks Hausdorff
measure, in particular

HNHP(O(Q1UQ))) < HVNTHO(Q21 U Q).
Thus, by (3.12)

(3-13) HYTH(092) < HYTHO(21 U Q).
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If Q1 ¢ Qo then Q1 \ Q2 # 0 (since Q5 is convex), and it is easy to see that
the inequality (3.13) must be strict in this case. But this contradicts Theorem 3.7.
Thus 2, C Qy. O

Corollary 3.8 partly generalizes [Shahl, Theorem 2.6], where the same conclusion
was obtained assuming some regularity of 02 but without any positivity assumption
on u. Other results related to convexity can be found in [Beur]|, [Acker81] and [Kaw].

Next we shall use some reflection methods to obtain a result on monotonicity or
convexity along lines. The method is related to the "moving plane method” which
has previously been used in similar problems in [Serrin|, [GNN], [B-N], [Shah94b],
[Gu-Sa]. Important points in our approach are that we do not require any regularity
of the solutions u and that we are able to work with local minima (not only global
minima).

For a fixed unit vector a € RY and for A € R set

Ty =Ty ={z-a= A} Ty :=={z-a <A}, Ty =={z-a > A}.

For z € RN let 2* denote the reflected point with respect to Ty and for ¢ a
function set o*(z) = ¢(z?). If @ C RN we define

O\ =QNT; = the cap cut off by Ty,
Q) = {z* : £ € Q\} = the reflection of Q in T).

Theorem 3.9. Assume that f and g satisfy Condition A and moreover that for
some unit vector a € RN and some Ay € RY we have

A A .
(3.14) F<r,  g>gt inTY

for all A > \g. Then for any local minimum u of J the following hold.

(3.15) u < u in Qy for all A > X,
(3.16) Q\ CQ for all X > Ao,
(3.17) a-Vu <0 in Qy,-

Note. (3.14) holding for all A > )¢ is equivalent to that
F<r, a-Vf<O0,
9> g%, a-Vg>0

hold on T;\'; (in the sense of distributions).

Proof. Define

A { min(u, ut) in Ty,

max(u, u) in T,

I(p) = /T+(|V<P\2 —2fp+ 9°X{p>0})dz,

A

I(p) = /T+(|V<p\2 =2/ + (8)*X(p>0))dz.
A
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Then Lemma 1.1 (with RV replaced by Ty") shows that

J(v?) (min(u, u*)) + Iy (max(u, u*))

=7
(3.18) < I(w) + L) = J(w)

for all A > Ag.
On the other hand J(v*) > J(u) whenever v* is close enough to u in the metric
(2.1), since u is a local minimum. Thus

(3.19) J(0*) = J(u)

for all values of A > )¢ such that v* is close to u.
Now for A > Ag so large that 2 C T,  we have

(3.20) v = u,
i.e. u <w*in T3 . Note that (3.20) implies
(3.21) Qx C Q.

We shall prove that (3.20) holds for all A > Aq. For this it is enough to prove that
if for some A\; > Ao (3.20) holds for all A > \; then it also hold for all A in a full
neighbourhood of A;. Note that the set of values of A for which (3.20) holds is a
closed set.

By Lemma 1.1

J(min(u, v*)) + J(max(u, v*)) < J(u) + J(v*)

and if v* is close to u then also min(u,v*) and max(u,v*) are close to u. Thus by
(3.19) also min(u,v*) and max(u,v*) are local minima when v* is close to u. In
particular, by Lemma 2.2

(3.22) —Amax(u,v) = f in Q
(note that max(u,v*) > 0 in Q).
Set
\ { 0 in TF U Ty,
p = max(u, ") —u=14 .
(u™ —u) 4 in T, .

Then (3.20) is equivalent to ¢ = 0 in RY. Clearly we have
(3.23) e=0 inRY\Qy

and, when (3.22) holds,

(3.24) Ap =0 in Q.

Thus by the maximum principle (3.21) implies ¢ = 0, i.e. (3.20) (when (3.22)
holds).
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If Q is connected then the above readily shows what we want, namely that
(3.20) holds for all A > Ap. Indeed assume that (3.20), and hence (3.21), holds
for all A > A; > Ag. Then, for any A in some small neighbourhood of A\; we have
(3.22) and hence (3.24). If Q C T (for such \) then obviously (3.21), and hence
(3.20), holds. If QN Ty # 0 then (3.23) implies that ¢ = 0 in an open subset of
Q. Therefore, by (3.24) ¢ = 0 in all  and hence (3.20), (3.21) hold. Finally note
that, by (3.21), |, | < 3|Q|. Therefore, the remaining case, namely that Q C Ty
cannot occur for A\ close to Ap.

Thus (3.20), (3.21) hold for all A > Ay provided Q is connected. If € is not
connected a similar reasoning can be applied to each component (we omit the
details) and the same conclusion is obtained.

We have now proved (3.16) and that u < w* in T} for all A > Ag. This readily
implies that a - Vu < 0 in Qy, (note that u € C1(Q)).

Next A(u* —u) = f — f» < 0in Q5. On 8Q>\0Tj, uw —u =ud > 0 and
on 0Qy N Ty we have u» — u = 0. Moreover, when A > )¢ then u* must be
strictly positive somewhere on 02y N T;' (or even on 0DNT ;L for any component
D of Q) because A can be decreased further with (3.21) still holding. Therefore it
follows from the minimum principle for superharmonic functions that u* —u > 0
in Q)N T;r when A > Ag. It also readily follows that a - Vu < 0 in ,,. The proof
is finished. [

Corollary 3.10. Let u, f and g be as in Theorem 3.9 and assume moreover f and
g are symmetric in Ty,. Then u is symmetric in T),.

Corollary 3.11. Assume that f and g satisfy Condition A and that moreover
both f and g are constant outside some compact conver set K (then necessarily
supp f+ C K). Let Q = {u > 0} where u is a local minimum for J. Then for any
x € Opreaf2\ K the inward normal ray Ny = {—tvq(z) : t > 0} of 00 at x intersects
K. Moreover, 00\ K is Lipschitz.

Proof. If for x € 0,42\ K we have N, N K = () then one can find a € RY and
Ao € R such that K C Ta_, at Na C T, ;" %o+ The first inclusion implies that the
assumption of Theorem 3.9 are satisfied while the second inclusion implies that the
conclusions do not hold (e.g. 92N T(: A, 18 not a graph near x). This contradiction
proves the first statement of the corollary. The second statement follows easily by
varying a and Ag such that K C T, . U

Theorem 3.12. Assume that f, g satisfy Condition A and that u is a local mini-
mizer of Jg¢ 4. Assume moreover that

flz/t) <tf(x) and g(z/t) > g(x)
for all0 <t <1 (and all z € RY ). Then
tu(z/t) < u(x)
forall0 <t < 1. In particular Q = {u > 0} is starshaped with respect to the origin.

More generally the same conclusion holds with the above inequalities replaced by,
respectively

t*f(z/t) < f(z), t*tg(z/t) > g(x) and  t*T2u(z/t) < u(z)
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for any (fized) real number c.

Proof. Fix a € RY and set ¢;(z) = ¢(z/t) for any function ¢. It follows from
Remark 2.7 that t*T2u; is a local minimizer of J;, = Jiaf, patig, -

Since t*f; < f, t**1g; > g Lemma 1.1 therefore shows that w; = max(t*+?uy, u)
is a local minimizer of J and that J(w;) = J(u), provided ¢ < 1 is close enough to 1.
Clearly w; = u for t = 1. Now similar arguments as those in the proof of Theorem
3.9 show that actually wy = u for all 0 < ¢ < 1. Thus t*?u; <u (0 <t < 1), and
this readily shows that €2 is starshaped. [

Theorem 3.13. Assume that f¢, f, g%, g satisfy Condition A. Let u®, u be the
largest minimizers of J¢ = Jye gc and J = Jy 4 respectively, and let Q¢ = {u® > 0},
Q= {u > 0}. Assume also that

(3.25) f-+g> const. >0

outside 2. Then if

FENS and 9 g a.e.

(or in the sense of distributions) as € \, 0 we have

(3.26) ut N\ u uniformly and in w-H'(RY),
(3.27) QN Q with respect to Hausdorff distance.

Note. Condition (3.25) is needed only for (3.27)

Proof. By Lemma 1.1 u® decreases (pointwise) with e. Thus v = lim.,qu® =
inf.so u® exists. As in the proof of Lemma 1.2 one has ||[Vu¢|| < C < oc. Hence
u¢ — v weakly in H'(RY) (and strongly in L2(RY)). It is now easy to check that
J(v) <lim J¢(uf). Since J¢(u¢) < J¢(u) < J(u) (also, lim J¢(u) = J(u)) it follows
that v € K minimizes J. But v > wu since © < u€ for € > 0. Thus v = u since u was
the largest minimizer. Thus u® \, u, and the convergence is uniform since u¢ and
u are continuous. This proves (3.26).

Clearly Q¢ decreases with € and Q C N0, In order to prove (3.27) it is
enough to prove the following: for any ball B, = B,.(x) with By, N Q = () we have
B, N Q¢ ={ for € > 0 small enough.

So assume B, N Q = (). Then u¢ \, 0 uniformly in Bs,.. Assume now that
B, NQ¢ # () for some € > 0. By combining Corollary 2.9 and Remark 2.11 we have,
if (3.25) holds in B,

supu® >  sup u® > Cir+ Cyr?
B2r BBT(y)ﬂQf

for y € B, N Q¢ where C;,Cy > 0, C; + C3 > 0. This contradicts the uniform
convergence of u¢ if € is small enough, proving (3.27). O
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Theorem 3.14. Assume that f¢, f, g%, g satisfy Condition A. Let u®, u be the
smallest minimizers of J¢ = Jge g and J = Jy 4 respectively, and let Q¢ = {u® > 0},
Q= {u>0}. Then if

fef and 9° g a.e.

(or in the sense of distributions) as € \, 0 we have

u® Mu uniformly and in w-H*(RY),
Qc 1 Q with respect to Hausdorff distance.

The proof is similar to (and somewhat simpler than) that of Theorem 3.13 and
therefore omitted.

Example 3.15. Take f = f, = axp, —b, g = c as in Example 1.5, where now R > 0,
b >0, ¢c > 0 are kept fixed and a > 0 is regarded as a parameter. Then, as we saw
in Example 1.5, there is a critical value ag with b+ Nc¢/R < ag < (b+ Ne¢/3R)3N
such that for a < ag u = up = 0 is the unique minimizer of J, = Jy, 4, for a = ay
there are two minimizers, ug = 0 and u; # 0, say, while for a > a there is again a
unique minimizer u; #Z 0 (depending on a).

For a > ag the set Q, = {u; > 0} is a ball whose radius p = p(a) > R (given by
equation (1.17)) increases with a.

Thus we see that the largest solution is continuous from the left with respect to
a (i.e. it depends continuously on a, on the intervals 0 < a < ag and ap < a < 0)
while the smallest solution is continuous from the right. This is in accordance with
Theorem 3.13 and 3.14, and it also shows that one cannot expect to have more
than the semicontinuities stated. See also Example 4.4.

4. Quadrature domains and balayage

Let 0 < g,h € L®(RY) be given density functions. In this section we shall
study the following type of balayage problem. Given a positive Radon measure p
with compact support find a bounded open set 2 containing supp p such that yu is
"graviequivalent” to the measure

(4.1) v=hLN|Q+gHN 09,

in the sense that U¥ = U* in RY \ Q. Here, if ¢ is any (positive) Borel measure,
U°? denotes its Newtonian potential, i.e.

U (z) = / E(w—y)do(y), (z€RV)

where E(z) = (wn/N)|z[>™™ (N > 3), and E(z) = 5-log|z| (N = 2) so that
—-AU? =o.

When a measure p is graviequivalent to a measure v associated with a domain
Q, as in (4.1), and Q contains supp p (or at least p(Q2°) = 0) then the word
"quadrature domain” for @ is sometimes used [Sak82], [Shap92]. The reason for
this terminology is indicated after Remark 4.2 below. In this paper we shall use
the following definition of a quadrature domain.
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Definition 4.1. Let h,g and u be given as above. Then 2 is a quadrature domain
for 11 (and for the given densities g and h) if Q is a bounded open set in RY such
that

(4.2) supp u C €,

(4.3) v’ =0* on RV \ Q,
where

(4.4) v=hLN|Q+ gHN 0.

We then write
QeQu) or QeQ(ush,g).

Remark 4.2.

a) As in Remark 3.2 b) it follows that if Q € Q(u; h, g) then € has finite perimeter
in any open set in which g > const. > 0.

b) Suppose that (4.2) holds. Then, by definition, Q € Q(u;h, g) if and only if
the ”quadrature identity”

(4.5) /god,uz/gohdx-i-/ wgdHN 1
Q Q a0

holds for a certain class of harmonic functions ¢ in €2, namely for all linear com-
binations of the functions ¢(z) = E(x — y), with y € Q°. By an approximation
argument, (4.5) then also holds for every harmonic ¢ in © which can be extended
to a smooth function in a neighbourhood of €.

¢) Our definition of quadrature domain is quite weak e.g. in the sense that the
identity (4.5) is required to hold only for a rather small class of harmonic functions
. Indeed, as is explained in Example 4.3 below, our definition allows for a large
class of nonsmooth members in Q(u; h,g) when g > 0. (When g = 0 the situation
is much better.)

Therefore we wish to point out conceivable ways of strengthening the require-
ments. In addition to (4.2), (4.3) one could ask e.g. to have

(4.6) U*<U* inRY,
(4.7) IVU”| < const. < oo.

Since these inequalities look a little ad hoc we have preferred not to put them into
the definitions, but they do have some good properties: (4.7) rules out the type
of nonsmooth domains occurring in Example 4.3 (relevant when g > 0) and (4.6)
implies uniqueness (up to nullsets) of quadrature domains when g = 0 [Sak82],
[ Gust90]. Moreover, both (4.6) and (4.7) hold for the quadrature domains we
construct in Theorem 4.7, 4.8.

Quadrature domains have been extensively studied in the case h = 1,9 = 0
[Davis], [Ah-Sh], [Sak82], [Gust90], [Shap92] and also (to a smaller extent) when
h = 0,9 = 1 [Shah94b] [Gust87], [Henrot], [Sh-Ul], [Avci], [LV1], [LV2]. If e.g.
h = 1,9 = 0 and p is a finite sum of point masses then the identity (4.5) gives
a very simple way of computing the integral fQ wdx for ¢ harmonic in Q. This
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explains the terminology. Let us now give a couple of examples, primarily for the
case h=0,g9 = 1.

Ezample 4.3. Let p = dp be the point mass at the origin and let h = b, g = ¢
be constant. Then the ball Q = B(0, R) with R > 0 chosen so that bwyRY +
cNwyRN~1 = 1is in Q(bp;b,c). If b > 0, ¢ = 0 this Q is the unique element in
Q(09p;b,0) (see [Kuran|, [ASZ], etc).

Ifb =0, c> 0, Q is still unique among domains with smooth boundary [Shah92].
Indeed, it is even shown in [LV2] that 2 is unique among domains in Q(dp; 0, ¢) satis-
fying in addition (4.7) and HN =1 (0Q\ OmesQ) = 0 ((4.6) is automatically satisfied).
However, without these additional assumptions there turns out to exist also a quite
large family of domains in Q(dp; 0, ¢) with rather ”pathological” boundaries. In two
dimensions these are the famous non-Smirnov domains first found by Keldysh and
Lavrentiev and later (in a more constructive way) by Duren, Shapiro and Shields
[DSS], [Shap66] (see also [Duren]). In higher dimension such domains were recently
constructed by Lewis and Vogel [LV1].

It should be told that these non-smooth domains 2 are not extremely patho-
logical. E.g. they are images of the unit ball under Holder class homeomorphisms
RY — RY (which when N = 2 even can be taken to be quasiconformal). They
satisfy

(4.8) c /8 . pdHN " = (0)

for every ¢ harmonic in € and continuous on Q. Also, it follows from our Corollary
3.8 that 2 C B(0,R) € Q(do;0,¢).
Finally we mention that, when N = 2, we have uniqueness of finitely connected

domains satisfying (4.8) if the test class of functions ¢ is enlarged to the appropriate
Hardy (or ”Smirnov”) space. See [Avci, Theorem 2.1], [Gust87, Remark 3.4].

Ezample 4.4. We cite the following interesting example due to Henrot [Henrot].
Let N=2,9g=1,h=0, u= a(é(_l,o) + (5(1,0)) where a > 0.

(i) If 0 < a < 27 then Q¢ = B((—1,0),a/27) U B((1,0),a/2r) is a disconnected
element in Q(u).

(ii) If 4.60... < @ < 27 then there moreover exist two connected domains, 2 and
Qy, in Q(p). We have Qg C Q1 C Qo, and for a = 4.60... Q7 = Q.

(iii) As a increases towards 27 Qg expands and €, shrinks. For a = 27 Qy = ;.
For a > 27w Qg and €21 do not exist.

(iv) As a > 4.60... increases towards +oo 22 expands all the time, and from
a = 5.65... on it is convex.

The above is proved by conformal mapping. For more details, see [Henrot]. This
example illustrates in a beautiful way several of our (and also Henrot’s) results, e.g.
Corollary 3.8 and Theorems 3.13 and 3.14. As to the different behavior (shrinking,
expanding etc) of Qp, Q21,5 as functions of the parameter a > 0, there is a classi-
fication of weak solutions (into ”hyperbolic”, "elliptic” and ”parabolic”) based on
such properties due to Beurling [Beur].

The existence of two different simply connected and smoothly bounded quadra-
ture domains for a measure as simple as the above p is particularly interesting. In
the case g = 0, h = 1 there is no such example known for any u.
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Ezample 4.5. Let N =2, g =1, h = 0 and let yg = aH!|I where a > 0 and I
is the closed line segment from (—1,0) to (1,0). If Q@ € Q(u;0,1) then I C Q by
(4.2), which implies that H!'(0Q) > 4. On the other hand (4.3) implies [dv = [ dp
and hence H'(0Q) = [dv = 2a. Thus we see that a necessary condition for the
existence of a quadrature domain for y is that a > 2.

Now to relate quadrature domains with our minimization problem, assume p €
L>®(RN) (i.e. p is absolutely continuous with a bounded density function, also
denoted p) and set f = p— h. Let u > 0 be a weak solution for J¢ 4 so that

Au+ fLY Q= gHN 109,
where Q = {u > 0}. This identity can also be written
B+ Au = v,

where

v=hLN|Q+ gHN 00 + pu|QF.
Clearly, u = U* — U". Thus we see that
(4.9) Qe Q(us;h,g) — supp p C Q.

When p is a more general measure (not in L°°), e.g. a sum of point masses,
then our minimization problem does not make sense, but one can still pass between
quadrature domains and the minimization problem by mollifying.

Lemma 4.6. Let 0 < ¢ € L>®(RY) be radially symmetric, non-increasing as a
function of |z|, have compact support and satisfy [ pdz = 1. Then, for p a positive
measure with compact support,

Qe Q(ux;h,g) = Q€ Q(u;h,g).
Moreover, if (4.6) holds for p 1 it holds also for p.

Proof. By the supermeanvalue property for superharmonic functions

Uwv < g+ everywhere
and by the ordinary meanvalue property (for harmonic functions)
Uk = g outside supp (u * ).

Note that supp u C supp (p*). Thus the assertions of the lemma follows directly
from Definition 4.1. [

From (4.9) and Lemma 4.6 it is clear that in order to construct quadrature
domains for general positive measures p using the minimization problem one just
has to make sure that supp (pu* ) C Q = {u > 0} for a suitable mollifier 1), where
w is a (local) minimizer. This is the way two of our main results, Theorem 4.7 and
4.8 below, are proved. Since u > 0 and w is Lipschitz continuous (Corollary 2.6)
the quadrature domains constructed will automatically satisfy (4.6) and (4.7).

In these theorems b,c > 0 are constants with b +c¢ > 0, g,h € L¥(RY) are
density functions satisfying

0<h<b,
0<g<ec
Moreover, at least one of h and ¢ is assumed to be > const. > 0 outside a

compact set, and ¢ is assumed to be continuous and to satisfy the Holder condition
in Theorem 2.13 (unless g > 0 everywhere).
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Theorem 4.7. Let 1 be a positive measure which is concentrated to a ball Bp =
B(zp, R) to the extent that

(4.10) u(B3) =0,

(4.11) u(BR) > (b + %) 6" |Bg|.

Then, for any h,g as above there exists Q € Q(u;h,g), which moreover satisfies
(4-6), (4.7) and Byg C 9.

Proof. For p > 0 set

1
4.12 - )
( ) ¢p |Bp(0)|XBp(O)
Then (4.10), (4.11) imply that
N —
,u,*'l/)2R>(b+3—Rc>3N inBR
W*op =0 outside Bsp.

Setting f = p * thor — b (€ L°(RY)) we may choose a > (b + )3V so that
f > axp, — b. Note that a satisfies (1.18) of Example 1.5.

Let w denote the largest and unique minimizer of Jg, Bp—be and u the largest
minimizer of J = Jf,g. Then 0 < w < @ by Proposition 3.3 and B3r C {w > 0}
by Example 1.5 (subcase 4c). Now denote 2 = {@ > 0}. Then supp (u * 92r) C

Bar C {w > 0} C Q and it follows that Q € Q(u * ¥2r; h,g). Thus Q € Q(u; h, g)
by Lemma 4.6. [

Theorem 4.8. With b,c,h,g as in Theorem /4.7 there exists a constant C =
C(N,b,c) such that if

B
(4.13) sup w >C for every x € supp p
r>0

(for 1 a positive measure with compact support) then there exists Q € Q(u;h,g),
which moreover satisfies (4.6), (4.7). If ¢ = 0 the condition (4.13) can even be
replaced by

B
(4.14) sup Mzéac)) >C for every x € supp
r>0 r

(for another C = C(N,b)).
Proof. Take (if ¢ > 0) any

N
C> sup RV <b+ _c) 6" |Bg|.
0<R<1 3R
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Then, if (4.13) holds with this C there exists for each z € supp u a radius R; > 0
such that

Ne
3R,

(4.15) 1(B(z, Ry)) > (b+ )6N|B(a:,Rz)|.

Since supp p is compact we can select finitely many z1, ..., x,, € supp p such that
supp p C B(x1, R1) U ...U B(Zp, Ri),
where R; = R;;. Now we can choose € > 0 small enough so that

N¢

——— 6N |Bg. 1.
3(Rj+6)> | R]+|

w(B(zj, Ry)) > <b+

for j =1,...,m. With ¢, as in (4.12) this means that

Nc

———— ) 6| Bg, 1.
3(Rj+e)> B+

() (B, Ry + ) > (b+

Now minimize Jy g4 with f = p* ¢ — h and set @ = {u > 0} where u is a
minimizer. Then as in Theorem 4.7 B(z;,3(R;+¢)) C , j =1, ...,m. In particular
supp (p * ¥.) C Q and it follows that Q € Q(u * ¥e; h, g) and Q € Q(p; h,g). This
proves the theorem if ¢ > 0. If ¢ = 0 then one also gets (4.15) if (4.14) holds with
C > b|By|, and the rest of the proof is unchanged. O

Comments. Clearly (4.13) is satisfied if p is a finite sum of point masses or if y is
supported by a finite system of manifolds of dimension < N —1 and has a sufficiently
high density on them (for dimension s < N — 1 it is enough that the H?® density is
bounded away from zero).

Moreover it is clear from Example 4.5 that an assumption of the sort (4.13) really
is necessary for the existence of a quadrature domain. However, the constant C'
obtained in the proof is probably far from the best possible. Indeed, Example 4.5
indicates that if N =2, h =0, g = 1 then any C' > 1 should work in (4.13), whereas
our proof needs C' > 24r in this case. If ¢ = 0 then, according to [Mar], [Sak,
unpublished], Theorem 4.7 holds with 6%V in (4.11) replaced by 2%V, which is the best
constant. This also gives the best constant in (4.14), namely C(N,b) > 2V|B,|b.

Aside from interesting cases of nonuniqueness of quadrature domains, as in Ex-
ample 4.4, there is sometimes, for nonconstant g, a kind of trivial nonuniqueness:
if 4 > 0 is any measure, take h = 0, g = |[VU*"| (outside supp p at least). Then
O = {x € RN : Ur(z) > t} is in Q(u; h,g) for any t € R such that Q; contains
supp p and is bounded. Cf. discussions in [Beur|. The function u = U¥ — U" in
this case simply is (U* —t) .

Finally note that when €2 is a quadrature domain obtained from a local minimizer
of J then the regularity results of section 2 and the geometric results of section 3

apply.
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1. Existence of minimizers

Throughout this paper N > 2. Most of the paper (section 1-3) is devoted to studying a
minimization problem. The data for this problem are two functions f and g in RN satisfying
Condition A below.

Condition A.

(A1) frg € L*RY),

(A2) supp f+ is compact ,
(A3) 920

(A4) at least one of

f < const. <0
g > const. >0

holds outside a compact set.
Let K= {u € HYRY): u > 0} and set

J(u) = Jfg(u) = /mN (|V'u|2 —2fu+ gQX{u>0})dm.
Then J is well defined on K, taking values in (—oo, +00]. We shall consider the problem:
Minimize J(u) for u € K

The following lemma turns out to be very useful. Similar results have previously been used by
Friedman and Philips [F-P].

Lemma 1.1. Let Jy(u) = Jy, g, (u), where f1 < f2, g1 > g2 and k = 1,2. For ui,uz € K define
v = min(u1,u2) and w = max(ui,u2). Then v,w € K and

J1(v) + J2(w) < J1(u1) + J2(u2).
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In particular, if u1 minimizes J1 then J2(w) < Ja(u2) and if uz minimizes J2 then Ji(v) <
J1(w1). If up minimizes Jy for k = 1,2 then v minimizes J1 and w minimizes Ja.

Proof. In general, if ®(t) is a nondecreasing function of ¢ € R and h1 < ho then, as is easily seen,

/ (h1®(u1) + ha®(u2)) < / (h1®() + ha®(w)).

Applying this with h; = fj, ®(t) =t we find that

/(f1u1 + fauz) < /(flv + faw),

and choosing h; = —g2, ®(t) =0 for t < 0, ®&(t) = 1 for t > 0 we find
J J

/(Q%X{u1>0} + 93X {us>0}) > /(ng{u>0} + 93X {w>01})-

Since also [(|Vu1|? + |Vuz|?) = [(|]Vv|?2 + |[Vw|?) the proof is finished. O

In order to get comparison solutions we shall first prove the existence of solutions (minimizers)
in a special case.

Lemma 1.2. Let f = axp(o,r)—b and g = cxpn \B(0,R1)’ where a, b, ¢, R and R1 are nonnegative
constants with a > b and b+ ¢ > 0. Then J has at least one minimum (minimizer) v in K. Any
mimamizing u s radially symmetric, radially nonincreasing and vanishes outside a compact set.
Moreover the minima form a nested family and there is a largest minimum as well as a smallest
one.

Proof. For any u in K let u* denote its radially symmetric decreasing rearrangement (for back-
ground see [Moss]). Then v* € K and

/ IV P? < / Vul?, / fut > / fu, / X (ur 50} < / X (us0)i

where the first inequality follows from a classical theorem of Polya and Szegé (see [Moss, Theorem
4.1]) and the last two inequalities use the fact that f is nonincreasing and g is nondecreasing as
functions of r = |z|. It follows that J(u*) < J(u) and hence that we only need to look for minima
in K* = {u € K: u* = u}. It should be observed also that J(u*) < J(u) unless u* = u.

From now on we assume that ¢ > 0, because if ¢ = 0 then J is convex and it is well-known
that there exists a unique minimizer » in K. This u has compact support with radius of support
p= (%)UNR. (Note that b > 0 when ¢ = 0.) Cf. Example 1.5 below. Thus the lemma holds if
c=0.

We first prove that J is bounded from below on K* (and hence on K). For u in K* there is a
unique p in [0, co] depending on u such that u(z) > 0 for |z| < p and u(z) = 0 for |z| > p. Set
Q = {u > 0} = B(0, p). Regarding f, g and u as functions of r = |z| we have

1 P P 2
—J(u) = / (o (r))2rNtdr — 2/ furN "Ydr + c max(p™ — RY,0).
wN 0 0 N

Since J(u) = +o00 if p = 400 we need only to consider u with p < co. Set

A= (/op(u%r))er‘ldr)lﬂ = ——||Vul,

Vow
p(r) = /OT f(s)sN~tds = % min(r, R)N — %T‘N.

If b # 0 then there is an ro > 0 such that ¢(r) > 0 for 0 < r < 7o, ¢(r) < 0 for r > 7o, and since
u' < 0 we then get

P N1 P
(1.1) / fur™ " idr = —/ pu'dr < AN,
0 0
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where A = ([7° $2r1=Ndr)1/2 is a constant independent of u. Thus
0

1 2
(1.2) — J(u) > A2 — 24X + = max(p" — RY,0) > —A2.
wnN N
If b =0 then 0 < ¢(r) < const. < oo for r > 0 and (1.1), (1.2) hold with
L N P 1-N
A=A, :/ $%rt~Ndr < const. / e
0 0

Since ¢ > 0 we still see from the second inequality in (1.2) that J is bounded from below (provided

N > 2).

Thus J is always bounded from below. Let {un} C K* be a minimizing sequence, py, the radius
of support of u, and A2 = fO”n (uh)2rN—1dr = :]N [|[Vun||- Then it follows from (1.2) that
(1.3) pn < const. < oo,

(1.4) An < const. < co.

Now from (1.3) and (1.4) the existence of a minimum for J follows by standard arguments. In
fact, (1.3) shows that we may work in KN H}(B) for some fixed ball B and (1.4) then shows
that the minimizing sequence {uy} is precompact in the w-H} (B) (i.e. H}(B) provided with the
weak topology). As J is easily checked to be lower semicontinuous in w-H}(B) the existence of a
minimum follows.

If ¢ > 0 and a is not too large there may be several solutions u (cf. Example 1.5 below).
However any solution is uniquely determined by its radius of support p (e.g. because u will satisfy
—Au = fin Q = {|z| < p}, u = 0 on 99, as will be proved later (Lemma, 2.2) independently of the
present proof), and a larger p will correspond to a larger solution u. Therefore the solutions form
a nested family and it follows that there is a largest solution (note that any family of solutions at
the same time is a minimizing sequence). O

Remark 1.8. When N =1, J(u) is not always bounded from below. Take e.g. a =2,b=0,c =1,
R = 1 and consider u(z) = %(p — |=|) for |z| < p and u(xz) = 0 for |z| > p, where p > 1 is a
parameter. Then J(u) =2 — %p, which obviously goes to —oo as p — +o00.

When N = 2 J(u) is not bounded from below if b = ¢ = 0 (and a > 0, R > 0), while, as is seen
from the proof, J(u) is bounded from below when N > 3 even if b = ¢ = 0. However the (unique)
minimizer does not have compact support then.

It is also worth to mention that the Condition A is not optimal. However g and f_ are not
allowed to tend to zero too fast at infinity.

We now turn to the general case.

Theorem 1.4. If f and g satisfy Condition A then J is bounded from below and its infimum
is attained for at least one u in K. All minimizers have support in o fized compact set (which
depends only on f and g) and the set of minimizers is compact in the weak topology of H' (RN ).

Proof. Let f = axB(,r) — b, § = CXRN \ B(0,R;) with a,b,c, R,R1 > 0, a > b, b+ ¢ > 0 chosen
so that f < f, g > g and set J = Jfg' By Lemma 1.2 there is a largest minimizer % in K of J.
Clearly

(1.5) J(u) > J(u) for all u € K
and also, by Lemma 1.1,
(1.6) J(min(u, @)) < J(u).

Thus J(u) decreases if u is replaced by min(u, %). Choose an open ball B such that supp @ C B.
(1.5) together with Lemma 1.2 shows that J is bounded from below and (1.6) shows that if {un}
is a minimizing sequence then so is {min(uy,%)}. Thus there exists a minimizing sequence {un}
with supp un C B. By Poincaré’s lemma then ||uyn|| < C||Vuy||, so that

I(un) > [Vunll® = 2/l fxsllllunll > [Vun|[? = 20(|Vun|| > -C>.
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Thus J is bounded from below, ||Vuy|| < C and the existence of a minimizer follows as in Lemma
1.2.

If now u € K denotes any minimizer of J then Lemma 1.1 shows that max(u, ) < 4, since @
is the largest minimizer of J, hence that u < 4. This shows that u has compact support in a fixed
compact set. If a > b+ Ne¢/R and R1 = 0 we in fact have supp v C B(0, p), where by Example
1.5 below p can be taken to be

1/N
(%)/ R ifb#£0,
P = NN 1/(N-1)
(“ﬁ ) if ¢ £ 0.
C

(If a < b+ Nc/R then p = R works.) It moreover follows as above that ||u|| + ||Vu|| < C < o0, C
independent of u, and therefore that the set of minimizers is compact in w-H! (RN ). O

Ezample 1.5. Assume that f and g are radially symmetric with f nonincreasing and g > 0
nondecreasing as functions of r = |z|. As was noticed in the proof of Lemma 1.2 any minimum u
in K of J is itself radially symmetric and nonincreasing as function of r = |z|, i.e. v € K*. Moreover
u has compact support. It will be proved later (without using the results of this example) that a
necessary condition that a function v € K* is a minimum (or local minimum, Definition 2.1) is
that it is a weak solution, i.e. u satisfies

—Au=f in Q= {u>0},
[Vul|=g, v=0 on 99Q,
We shall now discuss weak solutions belonging to K* and compare J(u) for these. So let u € K*

be a weak solution. Since f,g and u only depend on r and u is nonincreasing there is a unique p
in [0, 00) such that Q = B(0, p) and the equations above become

n N-1

(1.7) —u'' = u' = f(r), O<r<p
(1.8) u(p) =0,
(1.9) —u'(p) = g(p)-

(1.7) gives (rN~1u') = —rN—1f(r) and by (1.9)
(1.10) PN ) = = gl)+ [V fayds

As r — 0 we shall have 7V ~1u/(r) — 0 (otherwise we get a distributional contribution to Awu
at the origin). Thus

(1.11) /0 " sN=1f(s)ds = PN 1g(p).

This is a condition for p. Once p is determined u is obtained by integrating (1.10) and using (1.8).
Explicitly

P p
utr) = [T 0N (g0 - [TV pas) a,

r t

for 0 < r < p. Set
p

F(p) = /0 sM U f(s)ds — pV g (p),
for p > 0 so that (1.11) becomes F(p) = 0. Thus the weak solutions in K* are in bijective
correspondence to the zeros of F'.

Let us now specialize to the case f(r) = axjo,r) — b and g(r) = ¢, where a,b,c, R > 0 are
constants with a > b,b+ ¢ > 0, R > 0. F becomes

—b
22N —gpN -t 0<p<R,
F(p) =
gRN ﬂN N-1 p> R.
N N -
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Note that F'(p) < const. < 0 for p > R. It follows from the equations for a weak solution that
[ |Vu|?dz = [ fudz. Therefore

(1.12) J(u) = wn [ﬁpN - /p(u'(r))2rN_1dr
N 0

if u is the weak solution corresponding to p. By (1.10)

1.13 N—=1, 17\ _ N-1,a=b Ky N

(1.13) r T u(r) = —cp +T(P —r)
for 0<r < pif 0 < p < R, while

_ _ b a
(114 PN () = —epN T = (N V) 4 (RN — N )gg ()

for 0 < r < pif p > R. Inserting this into (1.12) gives

1 ¢ N P N—1_a—b x N 2 1-N
(1.15) EJ(U)ZNP —/0 cp —T(P —r)|r dr,

if 0 < p < R and

1 c?
— J(u) = —p~
wn N
2

p b a
N—-1 N _ . N N_ N 1-N
—/0 (—CP ——N(P -r )+_N(R -r )X[O,R)) ! dr =

(1.16) N R ) )
— p
c—pN —/ (a—brN) rl_Ndr—/ (ERN - ETN) r1=Ndr <
N 0 N rR \N N
? N (a=b) nio 1 L N N\2 1-N
—pN — — L _RN* ——/ (aR™ —br™ )°r -~ dr,
N N2(N +2) N2 Jgr

if p > R (recall that F(p) = 0).

We shall now determine all zeros p = pn, of F' and compare J(up) for the corresponding weak
solutions upn € K* (n =0,1,...). Observe first that p = pg = 0 is always a zero of F', corresponding
to ug = 0 with J(up) = 0. Next we divide into cases.

Case 1: ¢ = 0. Then J is convex and there is, besides pg, exactly one more zero of F', namely
p1 = (%)UNR > R. It is easily seen from (1.16) that J(u1) < 0. Thus u1 is the only minimum
of J and there are no other local minima.

Case 2: c>0andb<a<b+ %. In this case F(p) < 0 for all p > 0. Hence up = 0 is the only
weak solution (in K*) and it is the global minimum of J. In particular J(u) > 0 for all v € K

Case 3: ¢ >0and a=b+ %. Here po = 0 and p1 = R, are the zeros of F. Equation (1.16)
gives that J(u1) > 0. Thus ug is the only minimizer and J > 0.

Case 4: c>0and a > b+ %. In this case F(R) > 0 and it follows that F' has exactly three

zeros: po = 0 < pa < R < p1. We have p2 = aj\icb and from (1.15) one finds that J(u2) > 0 always.
As to p1, it is determined by

(1.17) aRN = bplV +Ncpiv_1,

and J(w1) is then obtained by inserting this into (1.16). It is clear from (1.17) that when a increases
from b+ % to +oo (with b, c and R kept fixed), then p1 increases from R to 4+o00. Moreover J(u1)
at the same time decreases monotonically to —oo from its positive value when a = b + %. This

can be seen e.g. by estimating the derivative szJ('u,l) or d’%,](ul). It follows that there exists a

Nc

critical value ag > b+ - such that we have the following three subcases.
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Subcase 4a: ¢ > 0 and b+ % < a < ag. Then J(uo) =0, J(u1) > 0, J(uz2) > 0. Thus uog is the
only minimizer and J > 0. However u1 can be shown to be a local minimizer in this case. Indeed,
it is not hard to see that uj is a local minimizer among other functions in K*, and when moving
out from K* (into K\ K*) the functional J increases as was observed in the proof of Lemma, 1.2.

Subcase 4b: ¢ > 0 and a = ao. Then J(uo) = J(u1) =0, J(u2) > 0. Thus we have two minima,
and J > 0.

Subcase 4c: ¢ > 0 and a > ag. Then J(up) = 0, J(u1) < 0, J(u2) > 0 so that w1 is the only
minimizer. By the same argument as in subcase 4a, ug is a local minimizer.

Finally in this example we need (for later use) an estimate of ag. We claim the following: if

CN N
1.18 >(b+—13
(1.18) a (+3R)

then J(u1) < 0 and
(1.19) p1 > 3R.

In particular ap < (b+ %)SN.
That p1 > 3R when (1.18) holds follows immediately from (1.17). Observe next that (1.17)
also implies

1/(N-1)
(1.20) p1 < (ﬁ) R
Nc

(and p1 < (a/b)N R). Using (1.20) and (1.18) in (1.16) gives by a little computation that already
the two first terms make J(u1) negative when N > 3. When N = 2 one also has to take the
last term into account and the calculation becomes a little more tedious. (In the last term (the
integral) one may replace p by 3R and b by 372a according to (1.19) and (1.18).)

Subexample. If N = 2 and b = 0 then ag can easily be calculated to be ag = Q—R? Ye.

As a corollary of Example 1.5 and Lemma 1.1 we have

Proposition 1.6. Let f,g satisfy Condition A and set a = sup f, ¢ = infg and let R be the

radius of the smallest closed ball containing supp fy. Then, ifaR < Nc, J =Jf 4 >0 andu =0
Ne

= such that the same

is the only minimizer. There even exists a number ag = ao(N, R,c) >
conclusion holds whenever a < ag.

Proof. We have f < axpy —b, g > ¢ with b = 0. Then combine Example 1.5 with Lemma 1.1 O

Proposition 1.7. Let f, g satisfy Condition A and let u be a minimizer of J. Assume that u =0
on OBRr where Bg is a ball such that RsupBR f+ < Ninfgp, g. Then u =0 in Bpg.

Proof. Set v = u in B and v = 0 outside Bg. Clearly v minimizes J = J 5 where f= (f+)xBg>
g = gxBg + (infp, g)X]RN\BR. Now apply Proposition 1.6 to J. [

Proposition 1.8. If u and v are minima of J then also min(u,v) and max(u,v) are minima.
Also, if {un} are minima and u1 < uz < ... then u = supun is a minimum. Similarly, if
u1 > u2 > ... then infun is a minimum. Finally there is a largest minimizer of J, and also a
smallest one.

Proof. The first statement follows immediately from Lemma 1.1 and the second (and the third)
from the compactness assertion of Theorem 1.4.

To prove the last assertion, first note that since H'(RY) is separable there is a finite or infinite
sequence {vy} of minima which is dense in the set of all minima. Define u1 = v1 and, inductively
for n > 2, up = sup(¥p—1,vn), so that u; < uz < .... As shown above u = supuy is also a
minimizer and it is readily verified that v < u for every minimizer v. 0O
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2. Local minima

In this section we deduce basic properties of minima, or more generally of local minima, of
J. The data f and g will generally be assumed to satisfy Condition A. The main result of this
section is Theorem 2.13, saying that any local minimum wu solves the appropriate free boundary
problem in a potential theoretically satisfactory sense, provided g is continuous. This means that
the distributional Laplacian Awu can be expressed in terms of purely geometric quantities related
to the open set Q = {u > 0}, more precisely that

Au+ fLY Q= gHV 109

Continuous functions u € K satisfying this equation will be called weak solutions (Definition 3.1).

It should be told that this section is very much based on the methods and results of the pio-
neering paper [AC] (see also [ACF] and [F]). Many of our proofs are modifications of corresponding
proofs in [AC].

Definition 2.1. A function v € K is a local minimum of J if, for some € > 0, J(v) > J(u) for every
v € K with

(2.1) / (IV(v = w)]® + [x{v>0} = X{u>0}l) dz < e.

Lemma 2.2. If u is a local minimum then

(2.2) Au+fr >0 in RN,
(2.3) Au+f=0 in Q={u>0},
(2.4) Au+ <0 in RN\ supp g.

Remark. It follows from (2.2) that v has an upper semicontinuous representative, which is the
one we will refer to in the sequel, and it will be proved later that this u actually is continuous.
For the present proof of (2.3) © should strictly speaking be defined as the set of points z € RY
such that there exists 0 < ¢ € C®(RY) with ¢(x) > 0 and u > ¢ everywhere.

Proof. Take 0 < ¢ € C(RYN) and define, for € > 0, ve = (u—e€¢)+. Then ve €K, 0 < ve < u. Set
D, = {u < ep} = {ve = 0}. Clearly |[D.N Q| — 0 as € — 0. Since ve —u = —u in D¢, ve —u = —€g
outside D, it follows that ve = u in Hl(RN) and that

2 2
97X {w. - X dwz/ g°dr — 0.
/ IX{ve>0} = X{u>0}! oD,

Since u is a local minimum we conclude that J(u) < J(ve) for € > 0 small enough.
Next we estimate

0 < J(ve) — J(u)
= /|Vv€|2 — / |Vu|? — 2/f(ve —u) +/g2(X{u€>0} = X{u>0})

=/Dg V-l - [ |VUI2+26/Dgf¢+2/DCfu—/mDegQ

< —2€ w-v¢+62/ |v¢|2+2e/ f+¢+2/ fru
D¢ D¢ D,

D¢

526(/ f+¢—/ Vu-V¢)+2e/ vu-v¢+62/ |Vo|2.
RN RN D.NQ D¢
Dividing both sides by € and letting ¢ — 0 we obtain

0~ [Vu-vp+ [ 19

for all 0 < ¢ € C(RY), and hence that Au+ f+ > 0 in RY.

If supp ¢ C Q we can take v = u £ e¢ € K for € > 0 small enough (and 0 < ¢ € C°(RY)) and
this readily gives that Au + f =0 in Q.

Finally, taking ve = u+ €¢ where supp ¢Nsupp g = @ gives that Au+f < 0in RN \supp g. O
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Theorem 2.3. Let u be a local minimum and assume g% € HV'}(RY). Then

lim (\Vu|? = ¢*)n-vdHN "1 =0
eNO Jo{u>e}

for every n € C° (RN ,RY). (v denotes the outward normal vector of d{u > 0}.)
The proof is similar to that of Theorem 2.5 in [AC] and therefore omitted.

Lemma 2.4. (“Harnack”) Assume v € H'(By), u > 0 on 8B, (B, = B(0,r)) and let M > 0.
a) If Au < M in By, then

u($)>TNT_7|$| [i][ u_w]
— (rt )N L2 Jog, N

for z € By.
b) If Au > —M in By then

+ |z 1 M
< N_ T _][ -
ule) < TN [r'z aBT“zN]’

for x € By.
¢) If |Au| < M in B, then

N—=2 7“—|$| Mr?
0 —_
e+ apr-10
r 4 |2
eV

<
N =

MrN  r 4z
w(z) < rN2 u(0) + ,
N (r—|zN-1
for x € By.
d) If |Au| < M in By, then

Vu(0)| < N [1][ u+t r] .
r JoB, N+1
Note that, by Lemma 2.2, b) is always applicable (with M = supg_f+) if u is a local minimum,
while a), ¢) and d) are applicable if B, C €.
The proof is standard and therefore omitted. However, one has to work with u + ¢, where
p(z) = %(r2 — |z|?) so that u + ¢ becomes a superharmonic function.

Lemma 2.5. Suppose u is a local minimizer of J. Then there is an ro > 0 such that for any ball
B, with 0 < r < rg we have

1 T
— ][ u>2N [ —supf_ +supg = u > 0 and continuous in By.
r JoB, N B, B,

Note. The reason that r has to be small is simply that u is assumed only to be a local minimizer.
For a global minimum the implication is true for all » > 0.

Proof. We may assume that By is centered at the origin. Define v € HY(RY ) by v = v on RN \ B,
(in particular on 8B;) and —Av = f in B,. Note that v is continuous in By. Then as in [AC, 3.2]

(2.5) J(u)—J(U)Z/ |V(u—v)|2—S}BlngHu:O}ﬂBTL

r

On the other hand a) of Lemma 2.4 (applied to v) shows that

U($)>,.NT_7|””| [i][ U_M]
— (r+ 2PN Lr? Jas, N ,
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for z € B,. Here M = supp, f—. Thus whenever

1 2N M
(2.6) —f ou>
% JoB, N
we have
N
r r— |z 1 _N 1
(2.7) v(z) > —7—][ u>27" (r— |z|) = u
2 (r+z)N=1r2 Jop, r Jom,

and in particular v(z) > 0 for z € B;.
Now as in [AC, 3.2] one obtains

[{u = 0} N By (% jéBTu>2S22N/B IV (u — v)[?

r

provided (2.6) holds.
When (2.6) holds v is nonnegative by (2.7) so that v € K, and if » > 0 is small v is moreover
close to u in the metric (2.1). Thus, since u is a local minimum, J(u) < J(v), i.e. by (2.5)

I,

[V(u =) < sup g®[{u = 0} N By|.
By

r

Hence

1 2
(2.8) =005 (3 f u) <2¥owlu=0ns,|
T JoB, B,

whenever (2.6) holds.
This proves the lemma, for if

1
—][ u>2N Lsupf_+supg
r JoB, N B B

r r

then (2.6) does hold, and (2.8) leads to a contradiction unless |[{v = 0} N By| = 0. In the latter
case we have fBr |V(u —v)|? =0 and hence u = v > 0 in B, as desired. [

Corollary 2.6. Any local minimum u is Lipschitz continuous. Moreover near 02 we have the
estimates

u(z) < 2V6(x) < sup g+ M5($)> ,
B(x,24(z))

(2.9) [Vu(z)| < N2V ( sup g+ M(S(w)) ,
B(x,28(x))

where M = sup | f|, @ = {u > 0} and §(z) denotes the distance from x to Q°. Thus u(z) < Cé(x)
always, and if © approaches a point of O where g vanishes we have a better estimate (e.g.
u(z) < C81 1 (z) if g is a-Hélder continuous).

For a proof see [AC, 77].

Remark 2.7. (On homogeneity) For ¢t > 0 and ¢(z) any function of z € RN, set ¢p¢(z) = ¢(z/t).
Then a straightforward computation shows that for any real number a we have

Jta ft 7t°‘+19t (ta+2ut) = tN+2a+2Jf7g(’U,).
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Lemma 2.8. Let u be a local minimum. If g > const. > 0 in an open set D C RN then there
is a constant C' > 0 such that for any sufficiently small ball B, C D we have

1 .
(2.10) ;]gBuSC == u=0 n B,y.

More precisely, C depends only oninfp g, rsupg _f+ and N and is positive whenever infg_ g > 0
and rsupg, f+ is sufficiently small.

Remark. The lemma holds with By, in place of B, /4 for any 0 < x < 1; C then also depends on
K.

Proof. For u a local minimizer of J b) of Lemma 2.4 always applies and gives, for some constants
C1 and C3 only depending on N, that

(2.11) u < C1 ][ u 4 Car? sup f4
OBy By
in B, /5. For notational convenience we assume that By = Br(0).
Set m = infp, g, M =suppg_f+ and define

Tn(v) = / (W0l - 2fv + x>0} de,

Br/2

jr,-(v) = / (|V’U|2 —2Mv + m2x{v>0}) dx.

Br/2

As in Lemma 1.1 we have
(2.12) Jr(min(u1,u2)) + jr(ma.x(uhuz)) < Jp(u) + jr(uz),

for any u1,u2 € Hl(BT/2).

Given a constant 8 > 0 consider the problem of minimizing J(v) over {v € Hl(Br/Z) Tv >
0,v = B on BBT/2}. We claim that the largest minimizer vg of Jy vanishes on B3 provided
r and 8 are small enough. Clearly vg is radially symmetric. Therefore the claim can be proved
by comparing Jy(wy) for the various radially symmetric weak solutions wy, = wg,y, for Jr, in a
similar way as in Example 1.5.

We take 0 < r < 2Nm/M. It then follows from Proposition 1.7 that if the largest minimizer vg
vanishes somewhere then there is some 0 < p < /2 such that vg = 0 on Ep, vg > 0in B,y \ By.
Therefore it is enough to compare weak solutions w of the corresponding form, i.e. satisfying as
functions of radius |z| (cf. (1.7)—(1.9)),

w(lz]) =0 0 < |z < p,
w'(p+0)=m
(|lz|V ') = —2N M p < x| <r/2,
w(r/2) =B.

Note that by the third equation w’ changes sign at most once. Therefore it is easy to see that
the above system has at most three solutions, call them wo, w1 and we (wpn = wy, g). wo is the one
corresponding to the largest value po of p, with w((|z|) > 0 for po < |z| < r/2. w1 is the solution
obtained if w’ changes sign. Thus 0 < p1 < po and wi(|z|) < 0 for |z| close to r/2. Finally wa is
the uniquely determined weak solution which does not vanish at all.

Now consider what happens when 8 ~\, 0. Clearly wg g — wo,0 = 0, e.g. in H! (By/2) and
po — r/2 (since w’(p + 0) = m) so that

lim J. = Jr(0) = 0.
ﬂlglo r(wo,ﬂ) r(0)
w1 g exists if and only if M > 0 and then w1 g — wi1,0 # 0 and

lim Jy(w1,6) > Jr(w1,0) > 0
B—0
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where the last inequality follows from the fact that v = 0 is the unique minimizer when 8 = 0 (by
Proposition 1.6).
For the same reason we have ws g — w2 ¢ and

lim Jy(w2,6) > Jr(w2,0) > 0
B—0

when M > 0. When M = 0 then ws,0 = 0 so that jr(wz,o) = 0, but then wy g = 8 so that

lim Jy(ws,5) > m?| By 2| > 0.
B—0

From the above limits we conclude that J(wg g) is smaller than both J(wy ) and J(ws g) if
B is small enough. Since clearly wg g vanishes on B, /4 if B is small this proves our claim: the
largest minimizer vg(= wo,g) of Jy vanishes on B4 if 0 <7 <2Nm/M and, say, 0 < 8 < Bo.

Now Bo depends on r,m and M. Indeed, it is easily seen (cf. Remark 2.7) that if r is scaled to
tr (t > 0) then the minimizer v(x) of J, will be scaled to tv(z/t) provided m, M and f, are scaled
to, respectively, m, M/t and t83. In other words, Bo(tr,m, M/t) = tBo(r, m, M) for t > 0 or, with
t=1/r,

(2.13) Bo(r,m, M) = rBo(1, m,rM).

For M = 0 estimates for 89 were computed in [AC, 2.6]. One has that Bo(1, m,0) > 0 for
m > 0 and is an increasing function of m. Moreover, 8o(1, m, M) is decreasing as a function of M
and can be taken to depend continuously on (m, M) in a neighbourhood of M = 0.

It follows from (2.11) and (2.13) that we can achieve

(2.14) u < B < Bo(r,m, M)

on 9B, /3 by letting
1
C1— ][ u+ CorM < Bo(1,m,rM).
T JoB,

Since Bo(1,m,0) > 0 this shows that (2.14) holds if an estimate of the form (2.10) holds.

Now it only remains to show that (2.14) implies that « = 0 in B, /4. Let w denote the function
which equals min(u, v) in B, /o and equals u outside B,./5. When (2.14) holds then w € K, and if
r > 0 is small enough then w will be so close to « in the metric (2.1) that Jr(u) < Jr(w), u being
a local minimizer of .J. We also have Ji.(v) < Jr(max(u,v)). But these two inequalities contradict
(2.12) unless we have equality everywhere. Since v was the largest minimizer of J;. it follows that
v = max(u, v), i.e. that v < v. Hence u vanishes in B, /4. O

Corollary 2.9. If g > const. > 0 in a neighbourhood of a point xo € 02 then
u(z) > Cé(x)

near xo.

Proof. With C; the constant in (2.10) we have by a) of Lemma 2.4 and (2.10) (for z € Q close to
Lo, T = 5(',1))7 By = Br(.’E,T)),

u(z) > ][ u— Cor? > Cir — Cor? > Cr. O
OB,

Lemma 2.10. Let u be a local minimum, Q = {u > 0} and assume that g > const. >0 in a
neighbourhood of a point xg € Q2. Then there are constants c1 and c2 such that
|Br N Q|

| Br|

0<ec L <e2<1

for small r > 0 (B, = B(zo,T)).



EXISTENCE AND GEOMETRIC PROPERTIES OF SOLUTIONS OF A FREE BOUNDARY PROBLEM IN P(

For a proof see [AC, 2.7].

Remark 2.11. In addition to Lemma 2.8 the following lemma, due to Caffarelli, is useful:
Assume 0 < u € HY(B(0,R)), Au>c>0in Q = {u > 0}, 0 € Q. Then, for any 0 < r < R

2
sup u > oa.
oB.(0) — 2N

(See [Caffl] for the simple proof). If u is a local minimum (or weak solution) for our problem,
then this lemma shows that
2

(2.15) sup

w> — inf f_
9B, () 2N B (z)

for any z € Q.
Proposition 2.12. Any local minimizer u of J has compact support.

Proof. By Lemma 2.2 u is subharmonic outside supp f4. Therefore

1 1 2
u

w(w) < — w< / 2] <

B @) 5, () B, @)] ( B (2) ) /1B

for £ a distance r away from supp f4+. Thus
(2.16) u(z) < Clz|~N/?

for |z| large.

By Condition A either g > ¢ > 0 or f— > ¢ > 0 (or both) far away. In the first case we
conclude that u(z) = 0 for large |z| by combining (2.16) with Lemma 2.8. In the second case the
same conclusion follows from (2.16) combined with (2.15). O

In order to prepare for the main result in this section we need to recall a few facts about
functions of bounded variation and sets of finite perimeter.[Gi],[EG, ch. 5] are good references for
this.

Let E C RY be a Lebesgue measurable set. The measure theoretic boundary OmesE of E is
defined to be the set of points z € RN such that E and E° have positive density at x. Thus
OmesE C OF (the topological boundary). E is said to have locally finite perimeter if Vxg is a
vector-valued Radon measure. This means that there exists a positive Radon measure y = ug
in RN and a p-measurable function vy : RY — S¥=1 U {0} (the direction factor) such that
—Vxg = plve, ie. [pdivede = [ ¢-vgdpy for all € CF (RN ,RY) (the left member being equal
to (—=VxE, ¢)). The measure p will occasionally be denoted |Vxg|- It can be shown [EG, 5.11]
that a measurable set E has locally finite perimeter if and only if ’HN_l(K N OmesE) < oo, for
each compact set K C RV,

Assuming that E has locally finite perimeter the reduced boundary O,eqE of E can be defined
as the set of points z € RY for which the density lim,_q m fB(m’r) vpdy exists and has
modulus one. It is convinient to work with that representative of vy which equals this limit on
OreqE and is zero elsewhere and vg then is the measure theoretic outward unit normal vector of
E on 0,.¢qE. Clearly 8,¢4E C OmesE and it is not hard to show that HY 1 (OmesE \ Ored E) = 0,
([EG, ch. 5.8]). A basic structure theorem says that y = |Vxg| actually agrees with (N — 1)-
dimensional Hausdorff measure restricted to OyeqE: |Vxg| = HY 1| 0reqE. Thus also Vxg =
_VEHN_I I_aredE-

All the above definitions and results carry over to the case with an open subset G C RY in
place of RN . One then speaks of sets having locally finite perimeter in G etc.

Theorem 2.13. Assume that f,g satisfy Condition A, that g is continuous and set G = {z €
RN : g(z) > 0}. If G # 0 assume moreover that for some 0 < a < 1 g is a-Hélder continuous
near 8G and that HN ~1+%(8G) = 0. Then, if u is a local minimizer of J = Jf g, then Q = {u >
0} has locally finite perimeter in G,

HN_l((aQ \ Orea2) NG) =0,
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and
(2.17) Au+ fLV|Q = gHN 1100 = gHV 718,049 = g|Vxal-

Here the right members shall be interpreted as zero outside G.

Remark 2.14. 2 need not have locally finite perimeter outside G. To see this, take e.g. g = 0,
f =axp — 1 where D is a bounded domain such that D has positive N-dimensional Lebesgue

measure |[0D|,and 1 < a < 1+ lfrl))“

D C Q. Also, D C Q. Next (2.17) yields Au = (1 —axp)xq = X — axp, by which |Q| = a|D|.
Thus

is a parameter. By (2.4), Au < 1—axp < 0in D showing that

Q] < |D| +[0D| = [D| < [Q] = 2] + |09,
i.e. 9 has even positive N-dimensional Lebesgue measure.

Corollary 2.15. (to Lemma 2.10) With assumptions as in Theorem 2.13

ONNG =Omes2NG.

Remark. OmesS? may be strictly smaller than €2 outside G. Indeed, in the case g = 0 there are
examples with 09 having singular points (e.g. inward cusps and double points, when N = 2) at
which © has density one.

For the proof of Theorem 2.13 we need the following observation.

Lemma 2.16. Assume u > 0 is a continuous function such that Au is a signed Radon measure.
Then Au > 0 on {u = 0}.

The proof of Lemma 2.16 is quite straightforward and therefore omitted (cf. [AC, 4.2]).

Proof. (of Theorem 2.13) (2.2) shows that Awu is a Radon measure and (2.3) and Lemma 2.16
then show that Au + fxao = A, where )\ is a positive Radon measure on 0f2.
For any z € RY | |Vu| is integrable on OB, (x) for almost every r > 0 and for these r

(2.18) | Auy| S/ |VuldiN "t < orV¥=1 sup |Vl
Br(z) 9By (z) 9By (z)

But |Vu| < C by (2.9), hence (2.18) shows that Awu, and also A, is absolutely continuous with
respect to HV 1,

If z € 90\ G then (2.9), (2.18) even yield that |fBT(m) Au| < CrN=1+a for > 0 small, hence
that Au and X are absolutely continuous with respect to HN ~1+2 on 90\ G. From this it follows
that A = 0 on 902\ G. Indeed, on 92 N G we have A = 0 since by assumption HN~1+2(5G) = 0.
Outside G we have Au € L>® by Lemma 2.2, and then standard arguments [Ki-St, II, Lemma
A.4] show that A = Au = 0 a.e. on 9Q \ G.

By the above we see that Au + fxq = hHN =199 for some Borel function A > 0 on 92N G.
It just remains to identify h with g i.e. to prove that

(2.19) hiz) = g(z) for HVN "lae. z € 0QNG.

We shall merely give an outline of the proof of (2.19). The details are virtually the same as in
[AC, 4.7-5.5].
It is enough to prove (2.19) for those z € 9Q N G which satisfy = € 0,42,

— HN"Y(B(z,r) N oN)
(2.20) b = N <1

(2.21) lim |h — h(z)|dHN 1 =0
r=0J50nB(z,r)

since the remaining set has #™¥ ~! measure zero (see [EG, Theorem 2, 2.3] for (2.20)). So fix such
an ¢ € OQNG. For simplicity of notation we assume that z = 0 and that vo(0) = ey = (0, ...,0,1).
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Define the blow-up sequences un (z) = nu(), fn(z) = %f(%), gn(z) = g(%), hn(z) = h(3),
Qn = {un > 0}. Note that u, f and g are scaled in the right way according to Remark 2.7 (with
a = —1). Let B = B(0,1), By = B(0,r), H = {zx < 0}.

By general properties of the reduced boundary [EG, 5.7.2]

(2.22) |(QnAH)N B| — 0,

where A means the symmetric difference between the sets, and by our assumptions f, — 0
uniformly, and

/ 19(2) = g(0)ldz 0, / (") = h(O)|dHN 1 = 0
B n n

nN

as n — 0o.

As to upn we know (Corollary 2.6 and 2.9) that |Vu| < C and u(z) > Cd(z). Thus |[Vun| < C,
un(z) > Con(z) where d,(z) = dist(z, QS) = nd(z/n). It follows that there exists a Lipschitz
continuous limit function uo > 0 such that, for a subsequence,

Up — UO uniformly in B,
Vun = Vug w* — L*®(B).

Setting Q¢ = {up > 0} it also follows, using nondegeneracy (un > Cdy) and that |Auyn| = |fn] <
C/n in Qy, that ug is harmonic in Qg, that Q, N B — Q¢ N B in Hausdorff distance and in
measure. By the last property combined with (2.22) [QoAH| = 0 and hence (since Q¢ is open)
Qo C H, |H\ Q| =0.

Next one proves, and this is more technical [AC, 4.8], that actually Qo = H (for this (2.20)
has to be used) and that, due to (2.21),

(2.23) uo(z) = h(0)(—zN)+.

The final step consists of proving that ug is (global) minimum of
Jo@) = [ (199 +9(0 x50

among all 0 < v € HY(B) with v = ug on 9B ([AC, 5.4]). This is intuitively reasonable since by
scaling (Remark 2.7) uy, is seen to be a minimum of

Tn(v) = /B (IV0[2 = 2fnv + e X (v50})

(among 0 < v € HY(B) with v = uy, on 9B) if n is large (recall also that f, — 0, gn — g(0)).
Now it follows from Theorem 2.3 (adapted to the unit ball B) that the function (2.23) can be a
minimizer of Jy only if A(0) = g(0). This was the desired conclusion and the proof is finished. O

As to regularity of the free boundary 9Q we have

Theorem 2.17. [AC], [Caff80] Assume that f and g satisfy Condition A and that u is o local
minimum of J. Let By = By(zo) be a small ball.
a) If g is Holder continuous and satisfies g > const. > 0 in By then for some a > 0 Opeqf2
is a C1® surface locally in By. If N = 2 then this even holds for O (i.e. Opeqf2 = OQ in By).
b) If g = 0, f is Holder continuous and < 0 in By and if moreover Q¢ satisfies the minimal
thickness condition of Caffarelli at zo (see [Caff80], [F]) then O is a C surface near zo. This
thickness condition is satisfied e.g. if Q2¢ contains a nondegenerate cone in B, with vertex at xg.
¢) Ifg=0 and f > 0 in By then QN B, = 0.

Proof. a) is proved in [AC, 6-8] in the case f = 0. When f # 0 basically the same proof works.
The modifications needed are listed in Appendix, section 5.

b) is proved in [Caff80].

As to ¢), (2.4) shows that Au < 0 in By, hence either v > 0 in By or 4 =0 in B,. O
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Note. This theorem covers all cases except some limiting ones. However, in these limiting cases
not much can be said in general. See e.g. Remark 2.14, where g = 0 and for any zog € 0D N 0O f
takes both positive and negative values in every neighbourhood of zg. We may even redefine g to
be any positive function outside © (e.g. g(z) = dist(z, ), which is Lipschitz continuous) and we
will still have the same irregular solution. See Remark 3.6.

As to higher regularity we just mention that if f and g are real analytic in B, then, in Theorem
2.17, the conclusions C1*® (in a)) and C! (in b)) can both be replaced by “real analytic” (see
again [AC], [Caff80]). If f and g are real analytic and moreover N = 2 the regularity theory seems
infact to be almost complete: If g > 0 in B, then 9 is real analytic by the above and if g = 0
and f < 0 in By then it is shown in [Sak91], [Sak94], that 0f2 is analytic in B; except possibly
for a few types of singular points which may occur [Schal,[F]. These are certain types of inwards
cusps, double points (including the case of a real analytic arc with € on both sides) and isolated
points of 9.

3. Geometry of local minima and weak solutions

In this section we derive some results on the geometry of @ = {¥ > 0} when u is a local
minimum. In some cases we really do not need the full strenght of u being a local minimum, just
that u satisfies equation (2.17) in Theorem 2.13. We call such a function a weak solution. Our
notion of weak solution is weaker than that of [AC].

Defintion 3.1. Assume that f and g satisfy Condition A and that g moreover is continuous.
Then by a weak solution for Jg , we mean a continuous function u > 0 with compact support
satisfying

(3.1) Au+ fLV Q= gV 180

where Q = {u > 0}.

Remark 3.2.

a) u = 0 is always a weak solution.

b) A priori, gHN 1|09 is a (positive) Borel measure whereas the left member of (3.1) is
a distribution. The equation (3.1) is to be interpreted as saying, first of all, that gH~ 1[99
also is a distribution, hence a Radon measure, and, secondly, that equality holds in the sense of
distributions. Thus it is a consequence of (3.1) that Awu is a (signed) Radon measure and also that
Q has locally finite perimeter in G = {g > 0}.

c¢) It follows, as in [AC, 4.2], that any weak solution « is in K Indeed, this readily follows from

the estimate
/ |Vu|2:/Vu-V(u—e)+:—/Au(u—e)+=
u>e

[rw=-es=[ru<cs.

Also, by Theorem 2.13, if g satisfies the Holder condition there (or g > 0 everywhere), any local
minimum is a weak solution.

d) If some portion I' C G of 92 bounds €2 from two sides (which is impossible for local minima
by Lemma 2.10) then (3.1) is perhaps not the most natural definition: either u should be forced
to have the normal derivative g in both directions from I" (which would give 2gH~~1[0Q on T in
(8.1)) or T" should be neglected, which is accomplished by replacing the right member of (3.1) by
GHY 71 OmesQ or gHN 71| 0,.0a92. However, for simplicity we shall stick to (3.1).

We begin with some miscellaneous comparison results for minima and local minima.

Proposition 3.3. (Cf. [F-P]) Assume f1 < f2, g1 > g2, let u; € K be a minimizer of J; = Jf;.9;
and let Q; = {u; >0} (j=1,2).
a) In each component D1 of Q1 one of the following holds:

(1) u1 < u2 in D1;

(2) w1 =wu2 and f1 = f2 in Di;

(8) w1 > w2 and f1 = f2 in D1.
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b) If f1 <0 in Q1N Q2 then J1 > 0 and 21 N Q2 = 0.
¢) If f1 <0 in a component D1 of Q1 then D1 N Q2 = 0.
d) If f1 <0 in a component D2 of Q2 then Q1 N Dy = 0.

Proof. Let v = min(u1,u2) and w = max(u1,u2). Then, by Lemma 1.1, v minimizes J1 and w
minimizes Jo.

Next, to prove a), Aw = —fz in {w > 0} = Q1 U Q3 by Lemma 2.2. Thus A(w — u1) =
—fe+ f1 <0in Q3 and A(w — u2) = —f2 + f2 = 0 in Q2. Moreover w —u; > 0 (j = 1,2).

Let D1 be a connected component of €21. By the maximum principle, either w —u1 = 0 in D1,
in which case f1 = f2 there, or w — w1 > 0 in Dj. In the latter case u1 < u2 in D1, which is case
(1) in the proposition. In the first case u1 > u2 in D1, and it just remains to prove that either
U1 > ug or u1 = us holds in all D;.

Since u1 —u2 = w — uz > 0 is harmonic in 22 we have, in each component of D1 N Qs2, either
u1 > u2 or u1 = us. Assume that u; = u2 holds in one component D of D1 N Q2. Then u; = us
also on dD. It follows that 8D N D1 = @ (because if z € 8D N Dy then ua(z) = ui(z) > 0 so that
z € D1 N Q2, contradicting z € D). Since D C D; and D; is connected this shows that D = D;
i.e. u1 = uz in all Dy (case (2)).

If w3 = u2 on no component of D N Q2 then w1 > u2 in each component, and since trivially
u1 > uz in D1\ Q2 we get u1 > w2 in all D1 (case (3)). This completes the proof of a).

Since v minimizes J1 we have Av + (f1)+ > 0 in RN by (2.2). Thus if D is an open set such
that f1 <0in D and v =0 on 0D then v =0 in D by the maximum principle.

In b) the above is assumed to hold for D = Q1 N Q2 = {v > 0}. Thus v =0 in D, hence v =0
everywhere, Q1 N Q2 =0 and J; > J1(v) = 0.

In ¢) we choose D = D1 (v = 0 on &D1 since u1 = 0 on 8D1 C 9Q1) and we conclude that
v =0in D1, i.e. D1 N Q2 = §. d) is proved similarly. O

Corollary 3.4. Let u € K be a minimizer of Jf 4 and let f1 = (1 —xq)f+ — f- where Q = {u >
0}. Then Jg, g > 0 and Q1 N Q = 0 where Q1 = {u1 > 0} for any minimizer uy of J¢, 4 (u1 =0
s a minimizer).

Proof. Apply b) of Proposition 3.3 with fo = f and f1 as in the statement. Note that f1 < 0 in
Q(Q=02). O

Corollary 3.5. Let u € K be a minimzer of J¢ 4, let Q1 be a component of Q@ = {u > 0} and
set f1 = xq, f+ — -, v1 = uxn,, Q2 = Q\ Q1. Then w1 minimizes J1 = Jyf, 4 and for any
minimizer v of J1 we have {v >0} N Q2 = 0.

Proof. Apply d) of Proposition 3.3 with fo = f and f1 as in the statement (of the corollary). Note
that Q2 is a union of components of  and that fi1 < 0 in Qa. It follows that {v > 0} N Q2 =0
for any minimizer v of J1, and hence also that w1 minimizes J; (for otherwise Ji could be made
smaler by changing v in Q1 to a minimizer of J1). O

Note that if f > 0 then Corollary 3.4 roughly says that if minimization of J does not produce a
domain €2 covering f then another minimization, for the uncovered part, does not help. Similarly,
Corollary 3.5 says (when f > 0) that if Q turns out to be disconnected, then separate minimizations
for the parts of f in each component of €2 always produces domains which do not meet each other.

Remark 3.6. Assume that v € K is a (local) minimizer of J = Jf 4 and let f=Ff3<gin
Q={u>0}, f<f,§> goutside Q. Then v is a (local) minimum also for J = J§ 5 Indeed, one
immediately finds that J(u) — J(u) < J(v) — J(v), and hence J(u) < J(v), for every v € K (close
to ).

One conclusion from this observation is that if g is not continuous then a local minimizer u
cannot be expected to satisfy the equation (3.1) for a weak solution (because g can be replaced
by any larger function on 9Q (or on RY \ Q) and w will still be a local minimizer). Cf. [AC, 5.9].

Theorem 3.7. Assume that u; > 0 (j = 1,2) are weak solutions for J¢ 4, Q; = {u; > 0} and
that f < 0 outside Q2 (or simply that f91\92 f <0). Then

/ gdHN 1 g/ gdHN L,
B(Qlqu) (2197
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Proof. We have
8(91 @] 92) = (an \Qg) U (892 \61), 0y = (392 n ﬁl) U (892 \ﬁl),

where the unions are disjoint. Thus it is enough (and necessary) to prove that

/ gdHN 1 g/ gdHN 1L,
a0 \ Qs 90N,

Set u = inf(u1,u2). Then u > 0, u is continuous and Q1 N Q2 = {u > 0}. Since u; € H}(RY)
(Remark 3.2) also u € HY(RY). Since —Au,; = f in Q; we have

(3.9) —Au>f  inQ;NQ.

In particular, Awu is a Radon measure in Q1 N Q.
Now we claim that Awu actually is a Radon measure in all RV . It is not hard to show (cf. [AC,
4.2]) that this is the case if and only if Au has finite total mass in 1 N Q2, i.e.

(3.10) —/ Au< C < oo,
u>e

for all € > 0. Here the left member can also be written

— u>€A(u—€)+ ZASEA(U—6)+.

Since A(u—€)+ is a Radon measure with compact support in 21 NQ2 Lemma 2.16 can be applied
to (v —€)+ and (uj — €)+ — (u — €)4 showing that

0<A(u—e)r <Auj —e)+ in {u; <e€}.

From this (3.10) easily follows using the fact that Au; have finite total masses.
Next we apply Lemma 2.16 to u, u1 — u and u2 — u. This gives

0 < Au< Aui on 994, and 0 < Au < Auz on 99s.

Combining with (3.9) we obtain

/ fg—/ Au:/ Au:/ Ay <
Q1NNo Q1NNo (Qlﬂﬂg)c 6(91092)

/ Au+/ Auf/ Aul—l-/ Ausg
021Ny NN, 801Ny 02N

and hence

/ gdH N1 :/ Aug 2/ f —/ Aug =

05N NN Q11N> 01 NNy

[ R e N A B e
Q1NN2 391\92 Q1 Q21 NNs 691\92

fe= [ g [t [ e
Q1 Q21\Q2 021\ Q2 0021\ Q2

as required. [

Corollary 3.8. Assume uj >0 (j =1,2) are weak solutions with g = const. > 0, that f <0
outside Q22 and that Q2 is convex. Then Q1 C Q2 (0 = {u; > 0}).

Proof. Let P : RN — Qs be the projection, taking z € RN onto the closest point P(x) on the
compact convex set ﬁg. Then

(3.11) |P(z) — P(y)| < |z —yl,

(3.12) P(a(Ql U Qz)) = 009,
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as is easily seen. But (3.11) implies [E-G,Theorem 1, p. 75] that P shrinks Hausdorff measure, in
particular
HY=H(P(O(21 U Q2))) < HYNHO(01 U Q2)).

Thus, by (3.12)
(3.13) HY=1(8Q2) < HV7HO(021 U Q).

If Q1 ¢ Q2 then Q3 \52 # 0 (since Qg is convex), and it is easy to see that the inequality
(8.13) must be strict in this case. But this contradicts Theorem 3.7. Thus Q1 C Q2. O

Corollary 3.8 partly generalizes [Shahl, Theorem 2.6], where the same conclusion was obtained
assuming some regularity of 9Q but without any positivity assumption on u. Other results related
to convexity can be found in [Beur], [Acker81] and [Kaw].

Next we shall use some reflection methods to obtain a result on monotonicity or convexity along
lines. The method is related to the ”"moving plane method” which has previously been used in
similar problems in [Serrin], [GNN], [B-N], [Shah94b], [Gu-Sa]. Important points in our approach
are that we do not require any regularity of the solutions v and that we are able to work with
local minima (not only global minima).

For a fixed unit vector a € RY and for A € R set

T\ =Ty :={z-a=2A} Ty :={z-a <A}, T;\"::{w-a>)\}.

For z € RY let z* denote the reflected point with respect to T and for ¢ a function set
Mz) = (). If @ C RN we define

Qy=0n T)‘\*' = the cap cut off by T},
Q) = {alcA :z € Q) } = the reflection of Q) in T).

Theorem 3.9. Assume that f and g satisfy Condition A and moreover that for some unit vector
a €RY and some Ao € RN we have

(3.14) fF<f,  g>gt inTt

for all X > Ao. Then for any local minimum u of J the following hold.

(8.15) u < u in Q) for all A > Xo,
(3.16) QyCQ for all A > Ao,
(3.17) a-Vu<0 in Qy,-

Note. (3.14) holding for all A > A is equivalent to that

f< o, a-Vf<0,
9> g, a-Vg>0

hold on T;\; (in the sense of distributions).
Proof. Define

A

{ min(u, u) in T;\",
[ —

max(u, u) in Ty,
1) = [ (V6> =270+ g*x(p50))da.
A

In(p) = /T+(|V<,0|2 — 2120 + (90 x{p>0})dz.
A
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Then Lemma 1.1 (with RV replaced by T ) shows that

J(*) = I(min(u, u?)) 4 Iy (max(u, u))

3.18
(318 < I(w) + In(w?) = J(u)

for all A > Ao.
On the other hand J(v*) > J(u) whenever v? is close enough to u in the metric (2.1), since u
is a local minimum. Thus

(3.19) J@) = J(u)

for all values of A > Ag such that v is close to wu.
Now for A > Ao so large that Q2 C T we have

(3.20) v = u,
ie u<wutin T;. Note that (3.20) implies
(3.21) Qx C Q.

We shall prove that (3.20) holds for all A > Ag. For this it is enough to prove that if for some
A1 > Ao (3.20) holds for all A > A; then it also hold for all A in a full neighbourhood of A;. Note
that the set of values of A for which (3.20) holds is a closed set.
By Lemma 1.1
J(min(u,v*)) + J(max(u,v*)) < J(u) + J(v)

and if v is close to u then also min(u,v*) and max(u,v?) are close to u. Thus by (3.19) also
min(u, v*) and max(u, v*) are local minima when v* is close to u. In particular, by Lemma 2.2

(3.22) —A max(u,v*) = f in

(note that max(u,v*) > 0 in Q).
Set

0 in TS UTy,
(u™ —u)y4 in Ty .
Then (3.20) is equivalent to ¢ = 0 in RY. Clearly we have
(3.23) e=0 nRV\Q,
and, when (3.22) holds,
(3.24) Ap=0 in Q.

Thus by the maximum principle (3.21) implies ¢ = 0, i.e. (3.20) (when (3.22) holds).

If Q is connected then the above readily shows what we want, namely that (3.20) holds for all
A > Xo. Indeed assume that (3.20), and hence (3.21), holds for all A > A1 > Ag. Then, for any A
in some small neighbourhood of A1 we have (3.22) and hence (3.24). If Q C Ty (for such X) then
obviously (3.21), and hence (3.20), holds. If Q NT) # @ then (3.23) implies that ¢ = 0 in an open
subset of Q. Therefore, by (3.24) ¢ = 0 in all Q and hence (3.20), (3.21) hold. Finally note that,
by (3.21), |2y, < %|Q| Therefore, the remaining case, namely that Q C T;' cannot occur for A
close to A1.

Thus (3.20), (3.21) hold for all A > X\g provided Q is connected. If € is not connected a similar
reasoning can be applied to each component (we omit the details) and the same conclusion is
obtained.

We have now proved (3.16) and that u < u? in T;\" for all A > Ao. This readily implies that
a-Vu <0in Qy, (note that u € C1(2)).

Next A(u* —u) = f— f2 < 0in Q). On 0 NTY, u* —u = u* > 0 and on IQ, N Ty we have

A A

u” —u = 0. Moreover, when A > Ag then u* must be strictly positive somewhere on 92y N T;’
(or even on 8D N T;\" for any component D of Q) because A can be decreased further with (3.21)
still holding. Therefore it follows from the minimum principle for superharmonic functions that
uwd —u>0in Qy N T;\*’ when A > Ag. It also readily follows that a - Vu < 0 in Q.. The proof is

finished. O
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Corollary 3.10. Let u, f and g be as in Theorem 3.9 and assume moreover f and g are sym-
metric in Ty,. Then u is symmetric in T),.

Corollary 3.11. Assume that f and g satisfy Condition A and that moreover both f and g are
constant outside some compact convex set K (then necessarily supp f+ C K). Let Q = {u > 0}
where u s a local minimum for J. Then for any © € 9peqQ \ K the inward normal ray Ny =
{—tva(z) : t > 0} of O at x intersects K. Moreover, O\ K is Lipschitz.

Proof. If for £ € 8,049 \ K we have N; N K = ) then one can find a € RN and )y € R such
that K C Ta_>\0 , Nz C T;—Ao' The first inclusion implies that the assumption of Theorem 3.9 are
satisfied while the second inclusion implies that the conclusions do not hold (e.g. QN T:Ao is
not a graph near z). This contradiction proves the first statement of the corollary. The second
statement follows easily by varying a and Ag such that K C T, Ao O

Theorem 3.12. Assume that f,g satisfy Condition A and that u is a local minimizer of Jy 4.
Assume moreover that

f@/t) <tf(z)  and  g(x/t) > g(z)
for all0 <t < 1 (and all z € RN ). Then
tu(z/t) < u(z)
for all 0 < t < 1. In particular Q = {u > 0} is starshaped with respect to the origin.
More generally the same conclusion holds with the above tnequalities replaced by, respectively
Pf@/t) < f@),  tFlg(o/t) > g(z)  and  t*F2u(a/t) < u(a)
for any (fized) real number c.

Proof. Fix a € RY and set ¢t(z) = ¢(z/t) for any function ¢. It follows from Remark 2.7 that
t¥*T24;4 is a local minimizer of J; = Jya Fotatlg,-

Since t*f; < f, t*t1gs > g Lemma 1.1 therefore shows that wy = max(t®T2u,u) is a local
minimizer of J and that J(w¢) = J(u), provided t < 1 is close enough to 1. Clearly wy = u for
t = 1. Now similar arguments as those in the proof of Theorem 3.9 show that actually w; = u for
all 0 < t < 1. Thus t*t2u; < u (0 < t < 1), and this readily shows that € is starshaped. O

Theorem 3.13. Assume that f€, f, g%, g satisfy Condition A. Let u®, u be the largest minimizers
of J¢ = Jge ge and J = Jy 4 respectively, and let Q¢ = {u® > 0}, Q = {u > 0}. Assume also that

(3.25) f—+9g> const. >0
outside 2. Then if

fEN S and g g a.e.
(or in the sense of distributions) as € \ 0 we have
(3.26) u® N\ u uniformly and in w-HY(RY),
(3.27) Q°N\ Q with respect to Hausdorff distance.

Note. Condition (3.25) is needed only for (3.27)

Proof. By Lemma 1.1 u® decreases (pointwise) with €. Thus v = lime_, g u® = inf.s0u® exists.
As in the proof of Lemma 1.2 one has ||Vu¢|| < C < oo. Hence u¢ — v weakly in H'(RV) (and
strongly in L2(RY)). It is now easy to check that J(v) < lim J€(u€). Since J¢(u¢) < J¢(u) < J(u)
(also, lim J¢(u) = J(u)) it follows that v € K minimizes J. But v > u since u < u€ for € > 0. Thus
v = u since v was the largest minimizer. Thus u¢ \ u, and the convergence is uniform since u®
and u are continuous. This proves (3.26).

Clearly Q¢ decreases with € and © C Ne>0Q¢. In order to prove (3.27) it is enough to prove
the following: for any ball B, = Br(z) with B2, N Q = () we have B, N Q¢ = @) for € > 0 small
enough.

So assume Ba, N = @. Then u€ N\, 0 uniformly in Ba,. Assume now that B, N Q¢ # @ for
some € > 0. By combining Corollary 2.9 and Remark 2.11 we have, if (3.25) holds in Ba,,

sup u€ > sup u® > Cir + Car?

Bar 0B (y)NnQe

for y € B, N Q¢, where C1,Cs > 0, C1 + C2 > 0. This contradicts the uniform convergence of u*
if € is small enough, proving (3.27). O
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Theorem 3.14. Assume that f€, f, g%, g satisfy Condition A. Let u®, u be the smallest min-
imizers of J¢ = Jfe g and J = Jg 4 respectively, and let Q° = {u® > 0}, Q = {u > 0}. Then
if

fEAf and gc\v g a.e.

(or in the sense of distributions) as € \ 0 we have

u® S u uniformly and in w-H*(RN),
Q1 Q with respect to Hausdorff distance.

The proof is similar to (and somewhat simpler than) that of Theorem 3.13 and therefore
omitted.

Ezample 3.15. Take f = fo = axBgr — b, g = c as in Example 1.5, where now R > 0,5>0,c>0
are kept fixed and a > 0 is regarded as a parameter. Then, as we saw in Example 1.5, there is a
critical value ag with b+ N¢/R < ag < (b+ Nc¢/3R)3YN such that for a < ag u = ug = 0 is the
unique minimizer of Jo = Jy, 4, for a = ag there are two minimizers, uo = 0 and u1 # 0, say,
while for a > ag there is again a unique minimizer 1 # 0 (depending on a).

For a > ag the set Q4 = {u1 > 0} is a ball whose radius p = p(a) > R (given by equation
(1.17)) increases with a.

Thus we see that the largest solution is continuous from the left with respect to a (i.e. it
depends continuously on a, on the intervals 0 < a < ag and ap < a < oo) while the smallest
solution is continuous from the right. This is in accordance with Theorem 3.13 and 3.14, and it
also shows that one cannot expect to have more than the semicontinuities stated. See also Example
4.4.

4. Quadrature domains and balayage

Let 0 < g, h € L®(R") be given density functions. In this section we shall study the following
type of balayage problem. Given a positive Radon measure p with compact support find a bounded
open set () containing supp p such that p is ”graviequivalent” to the measure

(4.1) v=hLN [+ g1V 169,

in the sense that UY = U* in RN \ Q. Here, if ¢ is any (positive) Borel measure, U° denotes its
Newtonian potential, i.e.

U7 (z) = / B(w —y)do(y), (z€RY)

where E(z) = (wy/N)|z|?~N (N > 3), and E(z) = % log |z| (N = 2) so that —AU? =o.

When a measure y is graviequivalent to a measure v associated with a domain €, as in (4.1),
and Q contains supp p (or at least u(2¢) = 0) then the word ”quadrature domain” for Q is
sometimes used [Sak82], [Shap92]. The reason for this terminology is indicated after Remark 4.2
below. In this paper we shall use the following definition of a quadrature domain.

Definition 4.1. Let h,g and p be given as above. Then € is a quadrature domain for u (and for
the given densities g and h) if Q is a bounded open set in RY such that

(4.2) supp ¢ C €,

(4.3) UY=U* onRM\Q,
where

(4.4) v=hLN Q4+ gHV 100,

We then write
QeQ(u) or Q€ Quh,g)-

Remark 4.2.
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a) As in Remark 3.2 b) it follows that if Q € Q(u; h,g) then © has finite perimeter in any open
set in which g > const. > 0.

b) Suppose that (4.2) holds. Then, by definition, Q € Q(u; h, g) if and only if the ”quadrature
identity”

(4.5) /(pd,u:/(phd:c—k/ pgdHN 1
Q Q 80

holds for a certain class of harmonic functions ¢ in 2, namely for all linear combinations of the
functions ¢(z) = E(z —y), with y € Q°¢. By an approximation argument, (4.5) then also holds for
every harmonic ¢ in Q which can be extended to a smooth function in a neighbourhood of Q.

¢) Our definition of quadrature domain is quite weak e.g. in the sense that the identity (4.5)
is required to hold only for a rather small class of harmonic functions ¢. Indeed, as is explained
in Example 4.3 below, our definition allows for a large class of nonsmooth members in Q(u;h, g)
when g > 0. (When g = 0 the situation is much better.)

Therefore we wish to point out conceivable ways of strengthening the requirements. In addition
to (4.2), (4.3) one could ask e.g. to have

(4.6) Uv <yt in RN,
(4.7 [VU?| < const. < oo.

Since these inequalities look a little ad hoc we have preferred not to put them into the definitions,
but they do have some good properties: (4.7) rules out the type of nonsmooth domains occurring
in Example 4.3 (relevant when g > 0) and (4.6) implies uniqueness (up to nullsets) of quadrature
domains when g = 0 [Sak82], [ Gust90]. Moreover, both (4.6) and (4.7) hold for the quadrature
domains we construct in Theorem 4.7, 4.8.

Quadrature domains have been extensively studied in the case h = 1,g = 0 [Davis], [Ah-Sh],
[Sak82], [Gust90], [Shap92] and also (to a smaller extent) when h = 0,g = 1 [Shah94b] [Gust87],
[Henrot], [Sh-Ul], [Avci], [LV1], [LV2]. If e.g. h = 1,9 = 0 and p is a finite sum of point masses
then the identity (4.5) gives a very simple way of computing the integral [, pdz for ¢ harmonic
in . This explains the terminology. Let us now give a couple of examples, primarily for the case
h=0,g=1.

Exzample 4.3. Let yu = dp be the point mass at the origin and let h = b, g = ¢ be constant. Then
the ball © = B(0, R) with R > 0 chosen so that bwnyRY 4+ cNwyRN~1 =1 is in Q(do;b,c). If
b > 0, c = 0 this © is the unique element in Q(do;b,0) (see [Kuran], [ASZ], etc).

Ifb=0, c>0, Qis still unique among domains with smooth boundary [Shah92]. Indeed, it
is even shown in [LV2] that Q is unique among domains in Q(do; 0, ¢) satisfying in addition (4.7)
and HY (02 \ OmesQ) = 0 ((4.6) is automatically satisfied). However, without these additional
assumptions there turns out to exist also a quite large family of domains in Q(Jo;0, ¢) with rather
”pathological” boundaries. In two dimensions these are the famous non-Smirnov domains first
found by Keldysh and Lavrentiev and later (in a more constructive way) by Duren, Shapiro
and Shields [DSS], [Shap66] (see also [Duren]). In higher dimension such domains were recently
constructed by Lewis and Vogel [LV1].

It should be told that these non-smooth domains 2 are not extremely pathological. E.g. they
are images of the unit ball under Holder class homeomorphisms RN — RN (which when N = 2
even can be taken to be quasiconformal). They satisfy

(4.8) c/aﬂ @dHN 71 = »(0)

for every ¢ harmonic in € and continuous on Q. Also, it follows from our Corollary 3.8 that
Q C B(0, R) € Q(do;0,c).

Finally we mention that, when N = 2, we have uniqueness of finitely connected domains
satisfying (4.8) if the test class of functions ¢ is enlarged to the appropriate Hardy (or ”Smirnov”)
space. See [Avci, Theorem 2.1], [Gust87, Remark 3.4].

Ezample 4.4. We cite the following interesting example due to Henrot [Henrot]. Let N =2, g =1,
h =0, p=a(d_1,0) +d(1,0)) where a > 0.
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(i) If 0 < a < 27 then Qg = B((—1,0),a/27) U B((1,0),a/27) is a disconnected element in
Q(n)-

(ii) If 4.60... < a < 27 then there moreover exist two connected domains, Q1 and Q2, in Q(u).
We have Q¢ C Q1 C Q2, and for a = 4.60... Q1 = Q2.

(iii) As a increases towards 27 Qg expands and Q3 shrinks. For a = 27 Q¢ = Q1. For a > 27
Qp and Q37 do not exist.

(iv) As a > 4.60... increases towards +oo Q3 expands all the time, and from a = 5.65... on it
is convex.

The above is proved by conformal mapping. For more details, see [Henrot]. This example
illustrates in a beautiful way several of our (and also Henrot’s) results, e.g. Corollary 3.8 and
Theorems 3.13 and 3.14. As to the different behavior (shrinking, expanding etc) of ¢, 21, Q2 as
functions of the parameter a > 0, there is a classification of weak solutions (into ”hyperbolic”,
”elliptic” and ”parabolic”) based on such properties due to Beurling [Beur].

The existence of two different simply connected and smoothly bounded quadrature domains
for a measure as simple as the above pu is particularly interesting. In the case g = 0, h = 1 there
is no such example known for any u.

Ezample 4.5. Let N =2, g =1, h = 0 and let p = a#H! | where a > 0 and I is the closed
line segment from (—1,0) to (1,0). If @ € Q(x;0,1) then I C 2 by (4.2), which implies that
H1(69Q) > 4. On the other hand (4.3) implies [ dv = [ du and hence H1(0Q) = [ dv = 2a. Thus
we see that a necessary condition for the existence of a quadrature domain for yu is that a > 2.

Now to relate quadrature domains with our minimization problem, assume pu € L®(RY) (i.e.
1 is absolutely continuous with a bounded density function, also denoted u) and set f = u — h.
Let v > 0 be a weak solution for Jy 4 so that

Au+ fLV|Q = gHN 169,
where Q = {u > 0}. This identity can also be written
uw+ Au =v,

where

v=hLN|Q+ gHN 100 + u[QC.
Clearly, w = U¥ — U". Thus we see that

(4.9) Qe Q(u;h,g) S supp pu C Q.

When p is a more general measure (not in L), e.g. a sum of point masses, then our mini-
mization problem does not make sense, but one can still pass between quadrature domains and
the minimization problem by mollifying.

Lemma 4.6. Let 0 < ¢ € L®(RN) be radially symmetric, non-increasing as a function of
|z|, have compact support and satisfy fd)da: = 1. Then, for p a positive measure with compact
support,

Q€ Q(uxv;h,g) = Q€ Qush, g).

Moreover, if (4.6) holds for p * 1 it holds also for .
Proof. By the supermeanvalue property for superharmonic functions
UM < g+ everywhere
and by the ordinary meanvalue property (for harmonic functions)
UrY = g outside supp (u * ).

Note that supp p C supp (u*). Thus the assertions of the lemma, follows directly from Definition
4.1. 0O

From (4.9) and Lemma 4.6 it is clear that in order to construct quadrature domains for general
positive measures p using the minimization problem one just has to make sure that supp (u*1) C
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Q = {u > 0} for a suitable mollifier ¥, where u is a (local) minimizer. This is the way two of our
main results, Theorem 4.7 and 4.8 below, are proved. Since u > 0 and w is Lipschitz continuous
(Corollary 2.6) the quadrature domains constructed will automatically satisfy (4.6) and (4.7).

In these theorems b,c > 0 are constants with b+ ¢ > 0, g,h € L®(R") are density functions
satisfying

Moreover, at least one of h and g is assumed to be > const. > 0 outside a compact set, and g
is assumed to be continuous and to satisfy the Holder condition in Theorem 2.13 (unless g > 0
everywhere).

Theorem 4.7. Let u be a positive measure which is concentrated to a ball B = B(xo, R) to the
extent that

(4.10) W(B%) =0,
N

(4.11) wW(BR) > (b+ —c> 6V |Bg|.
3R

Then, for any h,g as above there exists 2 € Q(u; h, g), which moreover satisfies (4.6), (4.7) and

Bsr C .
Proof. For p > 0 set

1

(4.12) Yo = WXBP(O).

Then (4.10), (4.11) imply that

N _
N*¢2R>(b+3—}§)3N in Bg

puxtpap =0 outside B3R.

Setting f = px1hor —h (€ L>®(RN)) we may choose a > (b+ %)31\’ so that f > axBp — b. Note
that a satisfies (1.18) of Example 1.5.
Let w denote the largest and unique minimizer of J,, Bp—bc and % the largest minimizer of

J = Jj ,- Then 0 < w < @ by Proposition 3.3 and Bsr C {w > 0} by Example 1.5 (subcase

4c). Now denote Q = {@ > 0}. Then supp (u * 92r) C Bsr C {w > 0} C Q and it follows that
Q€ Q(u*vagr;h,g). Thus Q € Q(u; h,g) by Lemma 4.6. O

Theorem 4.8. With b,c, h,g as in Theorem 4.7 there exists a constant C = C(N,b,c) such that
if

B
(4.13) sup w >C for every x € supp u
r>0 T

(for u a positive measure with compact support) then there exists Q € Q(u; h, g), which moreover
satisfies (4.6), (4.7). If c = 0 the condition (4.13) can even be replaced by

B
(4.14) sup MJ\E:E)) >C for every x € supp u
r>0 r

(for another C = C(N,b)).
Proof. Take (if ¢ > 0) any

N
C> sup RN (b+ —c> 6"V |Br|.
0<R<1 3R
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Then, if (4.13) holds with this C there exists for each = € supp p a radius Rz > 0 such that
Nc N
(4.15) w(B(z,Rz)) > b+ 3R, 6" |B(z, Ra)|-
T

Since supp u is compact we can select finitely many x1,...,Zm € supp u such that
supp 4 C B(z1,R1) U ...U B(zm, Rm),
where R; = ij. Now we can choose € > 0 small enough so that

Nc

+—% )6N|Bg...
3(Rj+e)> | BRjtel

w(B(zj, Rj)) > (b

for j =1,...,m. With v, as in (4.12) this means that

Nc

——— ) 6" |BRr, 4l

(i ) (Blaj, By + ) > (b

Now minimize J¢ g with f = p* 1 — h and set Q@ = {u > 0} where u is a minimizer. Then as
in Theorem 4.7 B(zj,3(R; +€)) C Q, j = 1,...,m. In particular supp (u * %) C Q and it follows
that Q € Q(u * Pe; h,g) and Q € Q(u; h,g). This proves the theorem if ¢ > 0. If ¢ = 0 then one
also gets (4.15) if (4.14) holds with C' > b|Bi|, and the rest of the proof is unchanged. O

Comments. Clearly (4.13) is satisfied if y is a finite sum of point masses or if u is supported by a
finite system of manifolds of dimension < N — 1 and has a sufficiently high density on them (for
dimension s < N — 1 it is enough that the H*® density is bounded away from zero).

Moreover it is clear from Example 4.5 that an assumption of the sort (4.13) really is necessary
for the existence of a quadrature domain. However, the constant C' obtained in the proof is
probably far from the best possible. Indeed, Example 4.5 indicates that if N =2, h =0,g=1
then any C' > 1 should work in (4.13), whereas our proof needs C' > 247 in this case. If ¢ = 0
then, according to [Mar], [Sak, unpublished], Theorem 4.7 holds with 67 in (4.11) replaced by 2%V,
which is the best constant. This also gives the best constant in (4.14), namely C(N,b) > 2V | B |b.

Aside from interesting cases of nonuniqueness of quadrature domains, as in Example 4.4, there
is sometimes, for nonconstant g, a kind of trivial nonuniqueness: if y > 0 is any measure, take
h =0, g=|VU#| (outside supp u at least). Then Q = {x € RN : Ut (z) > t} is in Q(u; h, g) for
any t € R such that Q: contains supp p and is bounded. Cf. discussions in [Beur]. The function
u = UH* — UY in this case simply is (U# — t)+.

Finally note that when 2 is a quadrature domain obtained from a local minimizer of J then
the regularity results of section 2 and the geometric results of section 3 apply.

5. Appendix

In order to prove a) of Theorem 2.16 we need to reprove (modify) some of the lemmas and
theorems in [AC].

In the case of [AC] the weak solution u is harmonic in {u > 0} whereas in our case —Au = f.
However, when we ”"blow-up” the solution u (call it u,) then —Au, = pf and as p — 0 the
functions u, converge to a harmonic function.

In most cases the changes are just a remark. It is our objective here to provide the reader with
a step-to-step remark on necessary changes in the proofs of the results of [AC, 6-8].

We will adopt notations from [AC] and we only give changes in the proofs and not the state-
ments of the results.

Lemmas and theorems that need changes are as follows: 6.1-6.3, 7.2, 7.5, 7.6, 7.10. The
remaining results in [AC, 6-8] go through without changes.

6.1. The function v in the proof is v = v + z and in our case

r\2 K
Vol < Ono+ (=) Z1fI < 20w,
2K r
provided r < 4k6CnN /M. Here M = sup | f|. Hence we need to adjust r and the choice of r depends
on Cn, 6, Kk, and M.
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6.2. Here we get an additional term
/ |VuldHN—t < C dHN =+ MrN < orN 1,
BrNn{u=¢} 8B,

for r small. Here again C = C(N, M) and M = sup|f|-

6.3. Step 1,2,3 and 5 need no changes. In step 4 let he be defined as —Ah. = f in By \ A¢ and
he =0 on OBy U Ac. Then at the end of step 4 we’ll have

e — he < u < cr = crwe on OBy
and we get ue — he < crwe in By. Hence we arrive at
. c .
61{% sup Aw, (By/2) > - eli%sup Aue—he)(Brj2) 2
c c C n_ c _
“Xu(Byj2) = =Ap(Brj2) > —rV 7t — =N > pN =2
r r r r

for r small enough.

7.2. v should be such that —Av = M > f in D. Then the estimate 0_,v(z) < 14 Cno still holds
and we also have v < v. Hence we get 1 — 0 <1 < 14 Co as in [AC] and their proof works all
along. However, since our v is not harmonic but superharmonic we need to take a much smaller
ball Byr(¢) (r = 1/10 in [AC]) where r depends on M and should be smaller for larger M. We
need this in particular for the use of Harnack inequlity. Indeed we have

(v —u)(€) < C((v - u)(z¢) +1?) < C(eo + %) < Ono,

if 7 is small (r2 < o).

7.5. The inequality at the end of page 135 in [AC] involves an additional term in our case, namely

M
(5.1) ——{ug >0} N Z7F|
1—7
where Zt = Zt(01g). Observe that g here is not the same as our g.

We have to take into consideration that while ”blowing-up” our solution M will change and
we get |Aug| = |pr f| < px M. Hence in 5.1 we should replace M by Mp,. We will thus arrive, as
in [AC], at

Coi < i HYN M Z° N {ug > 0}) + prC(N, M) |{ug, >0} N ZH|.
If we assume 7y, pr = o(og) then this is a contradiction, as in [AC].

We should be careful here, since our f and g are different from those of [AC].

7.6. Again our solution will give an additional term and we obtain

QkGﬁg—/ wk-VGﬁ+pk/ MGF,
r BY/s

/Bf/2ﬁarsd{uk>0} B1/2

where we assume |Aug| < M in B, . Now the ”blow-up” solutions ug(pgz)/pr (which again is
called ug in [AC]) give |Aug| < pxM. This justifies the above inequlity.
Now proceeding as in the proof of [AC] we only have to prove that

pM

op(l —1g) Bf/2

el - 0,

which is true if pg = o(og).

7.10. Since in our case U = max(|Vu,| —Supp,,. Q,0) is, in general, not subharmonic but involves
a defect of magnitude p? M under the action of A, we have to take a superharmonic function V,
with V, = 7 on 8Bar,, V, = 0 on 8B and —AV,, = p?M in Bs,, \ B. This gives for p small
V < (1 —-C(N,p))r in By, . This is the only point that needs attention.
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