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1. Overview

Algebraic geometry can be viewed as the study of solutions of systems of polynomials in projective
space, i.e. the study of algebraic varieties. One of the guiding problems in algebraic geometry is
the classification of algebraic varieties. This is arduous task that will not be completed in the
foreseeable future, but working towards this goal leads to lots of new mathematics. I am most
interested in how notions of positivity (of divisors and more generally locally free sheaves) help in
the classification of varieties.

As a first step in the classification of algebraic varieties, one looks for discrete invariants of a
variety, for example, dimension, degree, genus, etc. The degree of a variety depends on how the
variety is embedded into projective space, and this gives us our first glimpse into why “positivity”
on a variety is important. Let X be a projective variety over the complex numbers and D a divisor
on X, that is a linear combination D =

∑
niDi where the ni are integers and the Di ⊂ X are

subschemes of codimension 1. We want to define what it means for D to be “positive.” Perhaps
the most appealing definition is to require that D be a hyperplane section under some projective
embedding of X, so in particular, D gives an embedding i : X ↪→ PN . If this is the case, we say
that D is very ample. In practice, however, it is much easier to work with ample divisors, that is for
some m > 0, mD is very ample. Analogously one can define amplitude for line bundles (rank one
locally free sheaves) on X. The theory of ample line bundles was worked out in the fifties and early
sixties and the fundamental conclusion is that ampleness can be characterized in three equivalent
ways:

(1) (Geometric description) L is ample.
(2) (Cohomological description) For every coherent sheaf F there exists an m0 such that

H i(X, L m ⊗ F ) = 0 for all m ≥ m0 and i > 0, equivalently for every coherent sheaf
F there exists an m1 such that L m ⊗F is generated by global sections for m ≥ m1.

(3) (Numerical description) For every positive dimensional subvariety V ⊆ X,
∫
V c1(L )dim V >

0.

If a variety X is given without additional information, it is really difficult to find non-trivial
ample line bundles, or for that matter, any non-trivial line bundles. The one we can expect to find
is the canonical line bundle ωX , the determinant of the cotangent bundle ΩX . Let us consider the
case of smooth algebraic curves, or compact Riemann surfaces, and let g be the genus. We have
three distinct types of behavior:

• g = 0: X = P1 and ωX ' OP1(−2) is anti-ample, i.e. the dual of ωX is ample
• g = 1: X is a plane cubic (an elliptic curve) and ωX = OX , so neither ωX nor its dual is

ample
• g ≥ 2: X is “of general type” and ωX is ample.

In higher dimensions the situation is more complicated and one considers weaker notions of
positivity, such as nef and big. Nefness is a numerical property which depends only on curves in
the variety: a line bundle L on X is nef if

∫
C c1(L ) ≥ 0 for every irreducible curve C ⊂ X. On the

other hand, big is essentially a birational version of ample: let X be a smooth projective variety
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and L a line bundle on X; then for m > 0, L m induces a rational map φm : X 99K PN (this map
is induced by a set of generators of the group of global sections of L m). If for all m > 0, L m has
no global sections, we say that L has Kodaira dimension −∞, else the Kodiara dimension of L ,
denoted κ(L ), is defined as κ(L ) := dim φm(X) for m � 0. We say L is big if κ(L ) = dim X.
Of particular interest is the Kodaira dimension of the canonical bundle, dentoted κ(X), and we
say X is of general type if κ(X) = dim X. Note that in the case of curves, the Kodaira dimension
gives the same trichotomy: if κ(X) < 0, then X is P1; if κ(X) = 0, then X is an elliptic curve; if
κ(X) = 1 then X is a curve of general type.

2. Main Results of Ph.D. Thesis

Beginning in the early 1960s many mathematicians worked to generalize the above introduced
notions of positivity to higher rank locally free sheaves (or vector bundles). Given a rank r vector
bundle E on X, where dim X = n, the idea is to pass to the associated projective bundle and reduce
to the rank one case. More specifically, one forms the projective space bundle π : P(E ) → X, where
dim P(E ) = n + r − 1, and P(E ) has a tautological line bundle OP(E )(1) such that π∗OP(E )(1) = E
and π∗E � OP(E )(1). A vector bundle E on X is ample, respectively nef, if the tautological line
bundle OP(E )(1) on P(E ) is ample, respectively nef. This definition of an ample vector bundle
captures many of the properties of an ample line bundle; for example, the amplitude of E can be
characterized cohomologically.

In my thesis [Jab07] (see also [Jab09]) I introduced a new notion of positivity for vector bundles,
which I call quasi-ample. A vector bundle E on X is quasi-ample if for every non-constant morphism
γ : C → X, where C is a complete nonsingular curve, γ∗E is ample on C. Clearly, one has the
implications

E is ample ⇒ E is quasi-ample ⇒ E is nef.
More generally, if U ⊆ X is an open subset, a vector bundle E on X is quasi-ample with respect
to U if for every non-constant morphism γ : C → X, where C is a complete nonsingular curve and
γ(C) ∩ U 6= ∅, γ∗E is ample on C. I prove that many desirable properties of ample vector bundles
carry over to quasi-ample vector bundles.

As seen in the previous section, the positivity of the canonical bundle of a smooth projective
variety is key in the classification of the variety. One can also try to classify the variety based
on the positivity of the tangent bundle TX or the cotangent bundle ΩX . First consider the case
where the tangent bundle is ample. As seen in the example of curves, P1 has an ample tangent
bundle, and in fact the tangent bundle of Pn for any n is ample. A fundamental theorem of Mori
states that Pn is the only smooth projective variety of dimension n with ample tangent bundle
[Mor79]. Furthermore, his argument shows that if the anti-canonical line bundle is big and the
tangent bundle is quasi-ample then it is indeed ample and hence X ' Pn.

If X is a smooth projective variety one can also study the positivity of the cotangent bundle
ΩX . When ΩX is ample, X has some very nice properties. Such varieties are hyperbolic1 and the
theme is that they exhibit strong forms of properties known or expected for hyperbolic varieties.
For example, Lang has conjectured that X is hyperbolic if and only if all subvarieties of X are on
general type – if we require the stronger condition that ΩX is ample then all subvarieties of X are
of general type. If we assume only that ΩX is quasi-ample, X still has some nice properties, namely
X does not contain rational or elliptic curves, and there do not exist non-constant maps f : A → X
from an abelian variety A. Requiring that the cotangent bundle be ample is certainly a very
strong property, and for a long time there were very few examples of such varieties, although they
were expected to be reasonably abundant. Schneider [Sch86] showed that certain Kodaira surfaces,

1Fix an ample class h, then X is (algebraically) hyperbolic if there exists an ε > 0 such that for every finite map
γ : C → X from a smooth curve C, 2g(C)− 2 ≥ ε(C · γ∗h)
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fibered by a smooth pencil S → C of curves have ample cotangent bundle. In my thesis I generalized
his result in two respects - I allowed singular fibers, and I considered towers of morphisms.

Theorem 2.1. Let

Xn
fn // Xn−1

fn−1 // Xn−2
fn−2 // · · · · · · f3 // X2

f2 // X1

where each Xi is a smooth projective variety over C of dimension i, and each fi : Xi → Xi−1 is a
smooth, projective morphism with Var(fi) = i− 1. Then, ΩXn is nef and quasi-ample with respect
to an open Un and OP(ΩXn )(1) is a big line bundle on P(ΩXn).

The above Ui are constructed by removing, at each step, the points where the Kodaira-Spencer
map αi : H0(Xi+1

p , f∗i+1TXi |Xi+1
p

) → H1(Xi+1
p , TXi+1

p
) is not injective. I also considered towers of

varieties

Xn
fn // Xn−1

fn−1 // Xn−2
fn−2 // · · · · · · f3 // X2

f2 // X1

where the fi are not necessarily smooth, and showed that the sheaf of differential forms with
logarithmic poles along D, Ω1

Xn(log D), is quasi-ample with respect to an open set, where D is
a suitable divisor taking in account the singularities of the given morphisms. One of the key
ingredients of these proofs is the positivity of (fi)∗(ωm

Xi/Xi−1) [Kol87].
Furthermore, I showed that such towers of varieties exist. The existence of a projective surface

mapping nonisotrivially to a curve (as in the hypothesis of Schneider’s theorem) comes from the
fact that moduli space of genus g curves, Mg, contains complete curves. Starting with a curve of
genus 2 and using a construction of Kodaira, I constructed a tower of varieties which satisfies the
hypotheses of Theorem 2.1.

3. Families over Special Varieties

I next describe work with Stefan Kebekus [JK10b] and [JK10a]. This work is related to gen-
eralizations of Shafarevich Hyperbolicity. The classical setting is as follows: let B be a smooth
projective curve of genus g, and ∆ a divisor on B. Consider families over B, i.e. flat projective
morphisms f : X → B with connected fibers, where X is a smooth projective variety. The family
is called isotrivial if Xa ' Xb for general a, b ∈ B, and is admissible if it is not isotrivial and
f : X \ f−1(∆) → B \∆ is smooth. In 1962, Shaferevich conjectured that for a fixed (B,∆) and
q ≥ 2, there exists only finitely many isomorphism classes of admissible families of curves of genus
q, and if 2g− 2+#∆ ≤ 0, then there exist no such families. The conjecture was proven by Parshin
[Par68] for ∆ = ∅ and by Arakelov [Ara71] in general. This conjecture has been generalized to
higher dimensions and consists of three parts: boundedness, rigidity and hyperbolicity.

We saw earlier that the Kodaira dimension of a variety is an important invariant in the clas-
sification of varieties; we now extend that notion to pairs (Y, D). Let Y be a smooth projective
variety and D a simple normal crossing divisor2 on Y. The pair (Y, D) is of log-general type if
κ(KY + D) = dim(Y ). Refining the distinction between “log-general type” and “other,” Campana
introduced the class of special varieties. For any 1 ≤ p ≤ dim Y and for any rank one subsheaf
A ⊆ Ωp

Y (log D), Bogomolov-Sommese vanishing states that the Kodaira dimension of A is at
most p, i.e. κ(A ) ≤ p. A pair (Y, D) is called special if strict inequality holds. Clearly, if (Y, D)
is a pair of log-general type, then (Y, D) is not special. As a less trivial example, Campana has
shown that if κ(Y ) = 0 or if Y is rationally connected, then (Y, D) for D = 0 is special [Cam04,
5.1, 2.28]. Conjecturally, special varieties have a number of good topological, geometrical and
arithmetic properties. In particular, Campana has made the following conjecture.

2Roughly this means that D is reduced, the components of D are smooth and intersect “as transversely as possible.”
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Conjecture 3.1. [Cam08, Conj. 12.19] Let Y be a smooth projective variety and D a simple
normal crossing divisor on Y . If f◦ : X◦ → Y ◦ := Y \D is a smooth family of canonically polarized
complex varieties, then Var(f◦) = 0.

The variation of f◦, Var(f◦), denotes the number of effective parameters of the birational equiva-
lence classes of the fibers. If Var(f0) = 0 then Xy ' Xt for general y, t ∈ Y ; if Var(f◦) = dim Y ◦, we
say that f has maximum variation. With f◦ : X◦ → Y ◦ as above, this conjecture is related to the
following conjectures, all of which can be seen as generalizations of the Shafarevich Hyperbolicity:

Conjecture 3.2. [Vie01] If Var(f◦) = dim Y 0, then κ(Y ◦) = dim Y ◦.

Conjecture 3.3. [KK08a] If κ(Y ◦) = 0, then f◦ is isotrivial.

Conjecture 3.4. [KK08a] If κ(Y ◦) = −∞, then Var(f◦) ≤ dim Y ◦ − 1.

Conjecture 3.1 been proven by Kovács in the case of dim Y ◦ = 1 [Kov96], [Kov00], and Conjec-
tures 3.2-3.4 have been solved by Kebekus and Kovács in the case of dim Y 0 ≤ 3 [KK08a, KK08b,
KK08c].

In [KK08a, KK08b, KK08c] an essential ingredient is the notion of a “Viehweg-Zuo” sheaf. Given
f◦ : X◦ → Y ◦ as above, Viehweg and Zuo show that for some m > 0, the sheaf Symm Ω1

Y (log D) con-
tains a line bundle A of Kodaira dimension at least the variation of the family, i.e. κ(A ) ≥ Var(f◦),
[VZ02, 1.4(i)]. The Viehweg-Zuo sheaf A was crucial in the study of hyperbolicity properties of
manifolds that appear as bases of families of maximal variation and has been used to show that
any minimal model program of the pair (Y, D) factors the moduli map, [KK08a, KK08b, KK08c].
In spite of its importance, little is known about further properties of the sheaf A . For example,
it is unclear how the Viehweg-Zuo construction of positive sheaves of differentials behaves under
base change. In [JK10b] we refine Veihweg and Zuo’s result and show that the Viehweg-Zuo sheaf
A comes from the coarse moduli space associated to f◦ : X◦ → Y ◦. As an immediate corollary we
prove Campana’s Conjecture 3.1 when Y ◦ is a surface.

In [JK10a] using a more advanced line of argumentation we show

Theorem 3.5. [JK10a] Conjecture 3.1 is true if dim Y 0 ≤ 3.

In addition to the Viehweg-Zuo sheaves, a second ingredient is the notion of a C-pair (also
called an orbifoldes géométriques by Campana). A C-pair is a pair (Z,∆) where Z is a normal
variety and ∆ is a Q−divisor of the form ∆ =

∑
i

ni−1
ni

∆i, where the ∆i are irreducible and
reduced Weil divisors on Z and ni ∈ N+ ∪ {∞}. Following [Cam08] we consider sheaves of C-
differentials, Sym[m]

C Ωp
Z(log ∆) ⊆ Sym[m] Ωp

Z(logd∆e). We show the existence of a slope filtration
for C-differentials and prove a variant of Bogomolov-Sommese Vanishing for C-pairs of dimension
less than or equal to three.

With these tools in place, the idea of the proof of Theorem 3.5 is as follows: If Var(f◦) > 0, we
reduce the problem to the case where we have a surjective morphism π : (Y, D) → (Z,∆), where
(Z,∆) is a C−pair of dimension equal to Var(f), and the divisor ∆ encodes information about D
and the singular fibers of π. We then show that the Viehweg-Zuo sheaf A ⊆ Symm Ω1

Y (log D)
induces a subsheaf AZ ⊆ Sym[m]

C (log ∆), whose C−Kodaira dimension equals the dimension of Z,
κC(AZ) = dim Z. Further analysis of this sheaf AZ yields a contradiction.

4. Positivity on Toric Varieties

I next describe ongoing work with Sandra Di Rocco and Greg Smith [DRJS10], in which we
investigate positivity of vector bundles on toric varieties. If X is a smooth toric variety and L is
a line bundle on X then it is a classical result that L is ample if and only if L |C is ample for
every invariant curve C on X. In particular, on smooth toric varieties, quasi-ample and ample
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are equivalent for line bundles, and more so, one must only check positivity on finitely many
curves. Moreover, the same statement is true for toric vector bundles. A toric (or equivariant)
vector bundle on a toric variety X is a locally free sheaf of finite rank on X with a T -action
on the corresponding geometric vector bundle V(E ) = Spec(Sym(E )) such that the projection
φ : V(E ) → X is equivariant and the torus T acts linearly on the fibers of φ. If E is a toric vector
bundle on a toric variety, then E is ample if and only if E |C is ample for every invariant curve C
on X [HMP10, 2.1]. Another classical result states that a line bundle on a smooth toric variety is
ample if and only if it is very ample and it is nef if and only if it is generated by global sections.
Hering, Mustaţă and Payne showed that a nef toric vector bundle on a smooth projective toric
variety is not necessarily globally generated [HMP10, 4.15], but asked the following questions:

Question 4.1. If X is a smooth projective toric variety and E is an ample toric vector bundle on
X, then is E generated by global sections?

Question 4.2. If X is a smooth projective toric variety and E is an ample toric vector bundle on
X, then is E very ample?

Using this description of global sections of a toric vector bundle given by Klyachko, [Kly89], we
conjecture that an ample toric vector bundle is both 1-jet spanned and 1-jet ample, as defined by
Beltrametti, Di Rocco and Sommese, [BDRS99]. Since a 1-jet ample vector bundle is very ample,
[BDRS99, 4.2], we then would arrive at an affirmative answer to both Questions 4.1 and 4.2.

Note that if X is a toric variety that is not smooth, there are ample equivariant vector bundles
that are not globally generated [HMP10, 4.16], and if X is a smooth projective toric variety, a very
ample vector bundle that is not toric, need not be 1-jet ample [BDRS99, 4.3].

5. Further Research

Concerning the positivity of vector bundles, I am interested in the following questions. Let X
be a smooth projective variety:

Question 5.1. If ωX is quasi-ample, then is ωX ample?

If one assumes ωX is big in addition to quasi-ample, then ωX is indeed ample. This conjecture
is one case of the following conjecture of Serrano [Ser95]: If L is a quasi-ample line bundle on X,
a smooth projective variety of dimension n, then ωX ⊗L m is ample for any m > n + 1. Serrano
[Ser95] solved the case where dim X = 2 and partly solved the case where dim X = 3. In [CCP05],
the case of dim X = 3 is settled with the possible exception of X being a Calabi-Yau with L ·c2 = 0,
as well as some partial results to higher dimensions.

Question 5.2. If X has a quasi-ample cotangent bundle ΩX , is ΩX ample?

This is the natural extension of Question 5.1, although less is known. In general a quasi-ample
vector bundle is not ample, as seen in an example of Mumford [Har70]. As noted earlier, if we
consider the dual case, then X having a quasi-ample tangent bundle TX implies that TX is indeed
ample, and so X ' Pn.

As a first step, one could consider the case where ΩX is quasi-ample and OP(ΩX)(1) is a big
line bundle on P(ΩX) (or even the stronger condition that ΩX is ample with respect to an open
[Vie83], [Jab09]). For a general vector bundle, quasi-ample and ample with respect to an open is
not enough to guarantee ampleness, as seen in Ramanujam’s example [Har70]. Schneider [Sch86]
shows, that if X a surface with quasi-ample cotangent bundle ΩX , and the Chern classes of ΩX

satisfy a certain positivity property, then ΩX is ample. This positivity of the Chern classes is
related to, but stronger than OP(ΩX)(1) is a big line bundle on P(ΩX), and it would be interesting
to extend his result to varieties of higher dimension.
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In a slightly different direction, one also can investigate positivity of vector bundles on a specific
class of varieties. As mentioned above if X is a smooth toric variety and E is an equivariant vector
bundle on X, then E is ample if and only if E |C is ample for every invariant curve C on X [HMP10,
2.1]. In their proof, Hering, Mustaţă and Payne show the following: Suppose X is a projective
variety with the property that and there exist finitely many curves C1, . . . , Cl ⊂ X such that a
vector bundle E is nef if and only E |Ci is nef for i = 1, . . . , l. Then E is ample if and only if all
E |Ci are ample.

Question 5.3. What other varieties satisfy this property?
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