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1. INTRODUCTION

The phase space densityf of a dilute gas evolves according to the Boltz-
mann equation. In the physically relevant case, the gas would be confined to
a subsetΩ ⊂ R3, and thenf(x, v, t) : Ω×R3×R+ → R+, wherex denotes
a position in space,v ∈ R3 is a velocity, andt denotes the time. From a
mathematical point of view, it is equally natural to consider the Boltzmann
equation in any spatial dimension, and in some cases becauseof symmetries
of Ω, it is also relevant to considerΩ ⊂ Rd1 andv ∈ Rd2 with d1 < d2.

By a dilute gas we mean one where the particles interact with each other
essentially only bypairwise interactions. Moreover, the Boltzmann equa-
tion assumes that the particles are so small compared to other distances, that
they can be considered to be points.

Under these hypothesis, one can formally derive the Boltzmann equa-
tion (see [7])

∂tf(x, v, t) + v · ∇xf(x, v, t) = Q(f, f)(x, v, t) .(1)

The left hand side describes the evolution of the density by free transport,
and the right hand side describes the impact of collisions. Per definition, a
collision is a pairwise interaction that takes place instantaneously and at one
single point in space. Hencex andt appear only as parameters inQ(f, f),
and we can write

Q(f, f)(v) =

∫

Rd

∫

Sd−1

(f(v′)f(v′
∗) − f(v)f(v∗)) q(|w|, cos θ) dS(u)dv∗ ,

(2)

where the velocities “before and after a collision” are related by

v′ = 1
2
(v + v∗) + |w|u

v′
∗ = 1

2
(v + v∗) − |w|u ,

(3)
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with w = (v∗ − v)/2, and withcos θ = u·w
|w|

; dv∗ is the Lebesgue measure

in Rd, anddS(u) is the surface measure onSd−1. Note that the pair of
velocities before a collision,v andv∗, and the pair of velocities after the
collision,v′ andv′

∗, are the endpoints of a diameter on the sphere which has
its centre atv+v∗

2
and diameter|v∗−v|. This is exactly the condition needed

in order that the collisions preserve the momentum and energy of the pair
of particles. Ford = 2, the sphere becomes a circle, and this motivates the
title of the paper.

In a discrete velocity model (DVM), the velocities are concentrated on a
(usually finite) set of pointsvj ∈ Rd in the velocity space:

f(x, v, t) =
∑

j

fj(x, t)δv=vj
.

The Boltzmann equation (1) is then changed into a nonlinear system of
conservation laws,

∂tfj + vj · ∇xfj =
∑

k,k′,j′

Γj′,k′

j,k (fj′fk′ − fjfk) ,(4)

where the constantsΓj′,k′

j,k ≥ 0 must be chosen so that (4) makes sense from
a physical point of view. In particular we require that(vj, vk) and(vj′ , vk′)
define two diameters on the same sphere, just as for the usual Boltzmann
equation.

The first example of a discrete velocity model is that of Carleman ([4]),
which has two velocities inR. Many other models have been proposed,
and there is a large literature on how to construct and analyse physically
realistic models (i.e., that satisfy the right conservation laws and an entropy
principle), see eg.[3].

Besides offering many interesting mathematical challenges (for exam-
ple, there is no general theory of global existence of solutions to systems
like (4)) the DVM:s are also candidates for the numerical approximation
of the real Boltzmann equation (1). This leads naturally to the following
question, which is the subject matter of the paper:

Suppose that we choose the discrete set of velocities to behZd, i.e. the
integer lattice inRd, scaled by a factorh, and that we take

fh(v) =
∑

ξ∈Zd

fξ,hδv=hξ ,

so thatfh → f , in some suitable sense, wheref ∈ L1(Rd). Is it then true
thatQ(fh, fh)(v) → Q(f, f)(v) for all v ∈ hZd whenh → 0?

This property, which is calledconsistency, together withstability are
main ingredients when proving that a numerical method converges.
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The answer is yes. This was proven by Bobylev, Palczewski andSchnei-
der ([2]) for dimensionsd ≥ 3. In this paper, we prove that it is also true
for d = 2, and hence for all relevant cases.

Results of this kind are interesting, because they provide examples that
are relevant to previous results of Desvillettes and Mischler ([9]), who proved
that solutions to families of DVM:s can converge to DiPerna-Lions’ solu-
tions to (1) if certain conditions are satisfied.

Our result should not, however, be considered as relevant for numerical
analysis, because the rate of convergence is so slow that a numerical method
based on the theory presented here would hardly ever become useful.

The family of models considered here can be seen as coming from a
rather straightforward discretization of the collision integral (2). This inte-
gral should be interpreted as an average over the2d− 1-dimensional mani-
fold defined by

Mv =
{

(v∗, v
′, v′

∗) ∈ R3d s.t. v′ + v′
∗ − v∗ = v(5)

|v′|2 + |v′
∗|2 − |v∗|2 = |v|2

}

,

and (2) is an iterated integral over this manifold. For a fixedv, we write
w = (v∗ − v)/2, and then (3) becomes

v′ = v + w + |w|u
v′
∗ = v + w − |w|u

and alsov∗ = v + 2w. We then write

gv(w, u) = (f(v′)f(v′
∗) − f(v)f(v∗)) q(|w|, cos θ) ,(6)

and so (after changing variables in the integral),

Q(f, f)(v) = 2d

∫

Rd

(∫

Sd−1

gv(w, u) dS(u)

)

dw.

If g is sufficiently regular (continuous), and decays sufficiently rapidly for
largew, then the Riemann sum for the outer integral converges:

(2h)d
∑

ζ∈Zd

∫

Sd−1

gv(hζ, u) dS(u)

−→ 2d

∫

RN

(∫

Sd−1

gv(w, u) dS(u)

)

dw(7)

whenh → 0. In order to construct a consistent DVM, it is then sufficient
to evaluate the inner integral in terms of the values ofg on the lattice points
hZd, in such a way that the result converges to

∫

Sd−1 g(w, u) dS(u). While
with the formula (3), the collision integral should be takenover all u ∈
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Sd−1, we have here only access to thoseu for which v′ andv′
∗ belong to

hZd. But this is automatically achieved ifζ ∈ Zd, and ifu = ζ ′/|ζ ′|, where
ζ ′ ∈ Zd and|ζ ′| = |ζ|; then for allv ∈ hZd,

v + hζ ± h|ζ|u ∈ hZd .

However, note that with this construction, the center of thesphere is re-
stricted to lie on a lattice point, and so it excludes cases like v = (0, 0),
v∗ = (h, h).

Giving all points on the sphere equal weight, one arrives at the expression

1

rd(|ζ|2)
∑

ζ′∈Z
d

|ζ′|=|ζ|

(f(v′)f(v′
∗) − f(v)f(v∗)) q(|hζ|, cos θ) ,(8)

for approximating the inner integral in (7). The functionrd(n) denotes the
number of points with integer coordinates on a sphere inRd with center at
the origin and radius

√
n, i.e. the number of integer solutions tox2

1 + · · · +
x2

d = n.
We write, for allv ∈ hZd.

Qh(f, f)(v) =

(2h)d
∑

ζ∈Zd

1

rd(|ζ|2)
∑

ζ′∈Z
d

|ζ′|=|ζ|

(f(v′)f(v′
∗) − f(v)f(v∗)) q(|hζ|, cos θ) .(9)

In the two-dimensional case, all the terms in the sum are2π-periodic
functions ofθ, and assuming sufficient regularity, they can be expressed as
a convergent Fourier series. It is then natural to introducethe exponential
sum

S(n, k) =
∑

u∈Z2:|u|2=n

eikθu(10)

whereθu is defined byu = |u| · (sin θu, cos θu). We will see in Section 4
that to prove that (8) converges to the angular integral in (7), it is enough to
prove that fork 6= 0, the termsS(n, k) converge to zero sufficiently fast as
n → ∞. Similar exponential sums are relevant for any dimension, and the
work of Bobylev et al. also involves such estimates.

Here the needed estimate is given as Proposition 6 in Section3. Then in
Section 4 we put the estimates togheter to a proof of the main result:

Theorem 1. Consider the Boltzmann equation in two dimensions. Assume
that f and q are so smooth that the functiongv(w, u) defined in (6) is a
C2-function. Then for allv ∈ hZ2

∣

∣Q(f, f)(v) − Qh(f, f)(v)
∣

∣→ 0
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whenh → 0.

Section 5, finally, contains a numerical illustration on thedistribution
terms where the circles contain many points, and we indicatehow the com-
putational cost could be reduced without loosing accuracy (still without the
intention of actually giving an effective algorithm).

A more general construction of discrete velocity models on scaled inte-
ger latticeshZ2 consists in finding sets of integer points on the manifold
M defined in (5). In this way, mass and energy conservation are automati-
cally satisfied, but one also needs to verify that these are theonlyconserved
quantities. And finally, in order that the models converge tothe continuous
model whenh → 0, it is necessary that the integer points are more or less
uniformly distributed onM.

The models studied here are constructed by discretizing, one at a time,
the iterated integrals (2). An alternative way of writing this integral was
introduced by Carleman [4]. Using thatv′ − v andv′

∗ − v are orthogonal,
one can write (here we specialize tod = 3)

Q(f, f)(v) =
∫

R3

∫

Ev,v′

(f(v′)f(v′
∗) − f(v)f(v∗)) q(w, cos θ)

1

|v − v′|2 dE(v′
∗) dv′ ,

whereEv,v′ is the plane that containsv and is orthogonal tov′−v, and where
dE(v′

∗) is the Euclidean measure on this plane. Heintz and Panferov [18]
have analysed a DVM based on this interated integral, and proved that the
method is consistent with the continuous model. This is somehow easier,
because onall planes, the integer points are uniformly distributed, and they
are all found by solving linear Diophantine equations. However, the density
of points depends strongly onv′ − v, and so it is far from trival to prove the
consistency. And again, the two-dimensional situation is more difficult, and
has not yet been studied.

Yet another approach was introduced by Rogier and Schneider[24], who
used the theory of Farey series to discretize the angular variable in the col-
lision integral.

2. NUMBER THEORETIC BACKGROUND

2.1. Points on spheres; Asymptotics. To prove that (8) converges to the
correct limit whenh → 0, one has to study the set

{ζ/|ζ| : ζ ∈ Zd, |ζ|2 = n}
and to show that the points of this set are sufficiently well distributed on
Sd−1 whenn is large; it is here that the number theoretical issues enterthe
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game. Indeed, we can view the set of points with integer coordinates on a
sphere of squared radiusn centered at the origin,

{(x1, . . . xd) ∈ Zd,
d
∑

i=1

x2
i = n} ,

as the solution set for a quadratic form, and use the theory ofintegral qua-
dratic forms to get estimates on the number of points (see forinstance [13]).
The expected number of points with integer coordinates on a sphere clearly
depends on the dimensiond. The naive approach to find the order of mag-
nitude for a given dimension is to use the volume of a ball, divided by
the number of spheres contained in the ball. The volume of a ball of ra-
dius

√
n grows asnd/2 whilst the number of spheres isn. For d = 2, this

leads us to expect a constant number of lattice points on circles, ford = 3
a growth proportional to

√
n, etc. However, for smalld this approach is

misleading; the growth is quite irregular, and depends on the divisor struc-
ture ofn. For d = 2, we will see below that only values ofn of the form
n = 2sq2pα1

1 . . . pαr
r , whereq is a product of primes of the form4k + 3 and

thepi’s are primes of the form4k + 1 (see below), yield circles with lattice
points, and thus most circles have no points at all. In fact, Landau proved
in 1908 that the number of circles with at least one lattice point, of integer
squared radius smaller thanx, grows asCx/

√
log x. Moreover, there are

also infinite families of circles with very few lattice points; radii that are a
power of 2 yield 4 points for instance, and radii that are the square root of
a prime of the formp = 4k + 1 yield exactly 8 points. On the other hand,
the number of lattice points on a circle is not bounded, for instance a circle
with n = p1 . . . pr as above where all thepi are distinct from each other has
4 · 2r points.

In dimension 3, all values ofn not of the formn = 4s(8k + 7) yield
spheres containing points with integer coordinates. This still leave a fairly
large number of spheres with no points on, but for our purposes this does
not really matter, as such spheres do not appear in the summation formulas
(there is no relevant value forζ.) Among the spheres with lattice points,
multiplying the radius by a power of 2 does not increase the number of
points, but if we correct for this fact, the ratio between thenumber of points
and the naive estimate is bounded, up to constants only depending on ǫ,
from above bynǫ, and below byn−ǫ for all ǫ > 0 (see [13] Ch. 4 for exact
formulas involving class numbers orL-series.)

The higher-dimensional cases behave in a somewhat more regular fash-
ion. Lagrange proved that every positive integer can be written as the sum
of four squares, and thus for dimensiond ≥ 4, every sphere whose squared
radius is an integer, has lattice points. Ford = 4 the number of points still
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oscillates rather wildly, with spheres with radius a power of 2 having just
24 points, but for greater dimensions, the naive estimate gives the correct
asymptotic growth of the number of points.

Getting circles (or spheres) with “sufficiently many” lattice points, how-
ever, is not quite enough for our purposes: we also need that the lattice
points are sufficiently uniformly distributed when projected on the unit
sphere. In dimensions3 and higher, this follows from estimates on Fourier
coefficients of modular forms. The cased ≥ 4, with some restrictions
on the set of numbers in whichn tends to infinity whend = 4, is due
to Pommerenke [23]. Ford = 3, Duke [11] and Golubeva-Fomenko [14]
used Iwaniec’s [19] estimates on Fourier coefficients of half integral weight
forms to obtain uniform distribution. Unfortunately, these techniques do
not apply in dimension2. Moreover, there are circles with large number of
lattice points that are poorly distributed:

Theorem 2. (Cilleruelo [6]) For any ǫ > 0 and for any integerk, there
exists a circlex2 + y2 = n with more thank lattice points such that all the
lattice points are on the arcs

√
ne(π/2)(t+θ)i with |θ| < ǫ, t ∈ {0, 1, 2, 3}.

On the other hand, we may use some other techniques from analytic num-
ber theory to show that lattice points on circles are equidistributedon aver-
age, and this is good enough for our purpose.

2.2. From points on circles to Gaussian integers. In the plane, we can
view lattice points on a circle of radius

√
n, centered at the origin, as com-

plex numbers with integer real and imaginary parts, and squared modulusn.
It might seem as a trivial restatement, but doing so allows usto use use some
techniques from algebraic number theory. TheGaussian integers, i.e., the
set

Z[i] = {x + iy ∈ C, (x, y) ∈ Z2},
is the ring of integers of the fieldQ(i). It shares an important property
with the ordinary integers, namely unique factorization1, i.e., just as every
integer inZ factors into prime numbers, and the factorization is uniqueup
to ordering the primes and multiplying by−1, Gaussian integers factor into
Gaussian primes, uniquely up to ordering and multiplication by −1, i,−i
(these and1 are the units, i.e. the elements having a multiplicative inverse
in Z[i]). For a more thorough introduction to primes in quadratic number
fields, see for instance [17], Ch. XV.

The Gaussian primes (i.e. the elements ofZ[i] that cannot be written as a
product of Gaussian integers with smaller modulus), are of three types:

1This is rather unusual, the ring of integers in most number fields will not have this
property.
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• the prime numbersq ∈ Z such thatq ≡ 3 mod 4 remain prime in
Z[i] (e.g. 3, 7, 11, 19,...);

• for prime numbersp ∈ Z such thatp ≡ 1 mod 4, there exists
x, y ∈ Z s.t. p = x2 + y2. Hencep factors inZ[i] as a product of
two Gaussian primes

p = (x + iy)(x − iy)

(e.g.5 factors into(2 + i)(2 − i) in Z[i])
• last (and least!),1 + i is prime (note that(1 + i)(1− i) = 2 and that

1 − i = −i(1 + i) is merely “another form of the same prime” just
as3 and−3 represent the same prime).

If n is the sum of two squares, then it can be factored inZ[i]:

n = X2 + Y 2 = (X + iY )(X − iY ).

If z = x + iy is a prime factor ofX + iY , then z̄ = x − iy must be a
prime factor ofX − iY . It follows that prime factorsq ≡ 3 mod 4 of n
must appear in even powers. In addition, multiplyingn by an even power
of a primeq that is congruent with3 mod 4 changes neither the number of
solutions ton = X2 +Y 2 nor the distribution of arguments of the solutions.

Suppose now thatn contains a factorpα, wherep ≡ 1 mod 4. The num-
berp can be factored inZ[i] as(x + iy)(x− iy), and hence the multiplicity
of x+ iy as a factor ofn is α, and the same is true forx− iy. It follows that
the multiplicity ofx + iy in X + iY can be any integerj, with 0 ≤ j ≤ α,
and the multiplicty ofx − iy is thenα − j.

The same calculation can be done for powers of 2; however, thesolutions
given by different choices ofj in that case differ by a multiplication by a
power ofi, and so the power of 2 does not influence the number of solutions.

All solutions to n = X2 + Y 2 can now be expressed asX + iY =√
n exp(iθ), where all possible values of the argumentθ can be computed

as sums of terms deriving from the different factors ofn in the following
way:

(1) X + iY can be multiplied by any unit, i.e. by±1 or ±i. This gives
a termkπ/2 in the argument,k = 0, 1, 2, 3.

(2) If the multiplicity of 2 in n is odd, then the argument must contain
π/4, the argument of1+i; the number of solutions does not change.

(3) For each prime factorp ≡ 1 mod 4 in n, let αp be the multiplicity
of p in n, let p = x2

p + y2
p, and setθp = arg(xp + iyp). For a

particular choice ofj, 0 ≤ j ≤ αp, the argument added toX + iY
is jθp − (αp − j)θp = (2j − αp)θp.
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Since the choices ofk, and of the differentj′s are independent, the number
of different solutions is 4

∏

p≡1 mod 4

(αp + 1).

2.3. Results on the distribution of primes and on the angular distribu-
tion of points. We will need the following results:

Theorem 3 (Merten’s Theorem, see [17], Ch. 22.8).
∏

p≤x
p prime

(1 − 1/p) ∼ e−γ/ log x ,

whereγ ≃ 0.57 is Euler’s constant.

As for the angular distribution of Gaussian primes, a resultby Kubilyus
gives that the angles{θp}p≡1 mod 4 are equidistributed in[0, π/4] in the fol-
lowing sense:

Theorem 4 (Kubilyus, [21]). The number of Gaussian primesω in the sec-
tor 0 ≤ α ≤ arg(ω) ≤ β ≤ 2π, |ω|2 ≤ u is equal to

2

π
(β − α)

∫ u

2

dv

log v
+ O

(

u exp(−b
√

log u)
)

,

whereb is an absolute positive constant.

From Kubilyus’ Theorem, it is straightforward to deduce (see [12], p. 92):

Corollary 5. If k ∈ 4N andlog k ≤ b
√

log x, then

∑

p≤x
p≡1 mod 4

| cos(kθp)|
p

≤ 1

π
log log x + (1 − 2/π) log log k + O(1).

3. EQUIDISTRIBUTION OF LATTICE POINTS ON CIRCLES

What is needed for the proof of consistence of the discrete velocity model
are estimates on the equidistribution of lattice points on circles.

The aim of this section is to show that lattice points on circles are equidis-
tributedon averagein the sense that the exponential sumsS(m, k) converge
to zero whenm goes to infinity. We recall the definition ofS(m, k):

S(m, k) =
∑

|w′|2=m

eikθw′ .
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Proposition 6. If 4 ∤ k then|S(m, k)| = 0. If 4|k andk 6= 0, there existC
andb > 0 such that

log

(

1

X

∑

m≤X

|S(m, k)|
)

≤ C − (1 − 2/π) log

(

log X

(log |k|)2

)

for X sufficiently large andlog |k| ≤ b
√

log X.

Remark:The mean discrepancy of the angles of Gaussian integers were
studied by Ḱatai and K̈ornyei in [20], and by Erd̋os and Hall in [12]. Our
method is similar to theirs, except that they bound

1

X/
√

log X

∑

m≤X

|S(m, k)|
r(m)

instead of
1

X

∑

m≤X

|S(m, k)|.

The proof is based on the observation that|S(m, k)|/4 is amultiplicative
function, i.e. a functionf : N → C such thatf(mn) = f(m)f(n) for all
m,n such that(m,n) = 1. It turns out that the mean value of a multiplica-
tive function, under fairly general circumstances, can be bounded in terms
of an exponential of a sum over primes. To make the paper more self con-
tained, we include a weak form of theHalberstam-Richert inequality(cf.
[15]).

Theorem 7. Letf be a nonnegative multiplicative function such that

(11)
∑

n≤x

f(n) = O(x) ,

and f(pk) = O(k) for all primesp andk ≥ 1. Then there existsC > 0
such that

1

X

∑

m≤X

f(m) ≤ C · exp

(

∑

p≤X

f(p) − 1

p

)

+ O(
1

log X
)

for all sufficiently largeX.

Proof. Following Wirsing [25], let

F (t) =
∑

n≤t

f(n) .

Then
∫ X

1

F (t)

t
dt = F (X) log X + O(1) −

∑

n≤X

f(n) log n .
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On the other hand, by assumption, we haveF (t) = O(t), thus
∫ X

1

F (t)

t
dt = O(X) ,

and hence

F (X) log X ≤ O(1) + X +
∑

n≤X

f(n) log n .

Using log n =
∑

d|n Λ(d), whereΛ is the von Mangoldt function2 we have
∑

n≤X

f(n) log n =
∑

n≤X

f(n)
∑

d|n

Λ(d) =
∑

d≤X

Λ(d)
∑

m≤X/d

f(dm)

(12) =
∑

d≤X

Λ(d)
∑

m≤X/d,
(m,d)=1

f(dm) +
∑

d≤X

Λ(d)
∑

m≤X/d,
(m,d)>1

f(dm) .

Now, sinceΛ(d) = 0 unlessd is a prime power, we have

(13)
∑

d≤X

Λ(d)
∑

m≤X/d,
(m,d)>1

f(dm) =
∑

pk+l≤X
k,l≥1

log(p)
∑

m≤X/pk+l

(p,m)=1

f(pk+lm)

=
∑

pk+l≤X
k,l≥1

log(p)f(pk+l)
∑

m≤X/pk+l

(p,m)=1

f(m) .

By the assumptions onf ,

f(pk+l)
∑

m≤X/pk+l

(p,m)=1

f(m) ≤ O(k + l)
∑

m≤X/pk+l

f(m) = O

(

(k + l)
X

pk+l

)

,

and thus the second term in (12) is

= O







∑

pn≤X
n≥2

log(p)n2 X

pn






= O(X) ,

since
∑

p

∑

n≥2

log(p)n2p−n ≤
∑

p

log(p)

p2

∑

m≥0

(2 + m)22−m < ∞ .

2That is,Λ(d) = log p if d = pk andk ≥ 1, otherwiseΛ(d) = 0.



12 LAURA FAINSILBER, PÄR KURLBERG, AND BERNT WENNBERG

As for the first term in (12), we have (recall thatf is multiplicative and
nonnegative)

∑

d≤X

Λ(d)
∑

m≤X/d,
(m,d)=1

f(dm) =
∑

d≤X

Λ(d)f(d)
∑

m≤X/d,
(m,d)=1

f(m)

≤
∑

m≤X

f(m)
∑

d≤X/m

Λ(d)f(d) .

Now,
∑

d≤X/m

Λ(d)f(d) =
∑

pk≤X/m
k≥1

log(p)f(pk) ≤
∑

pk≤X/m
k≥1

log(p)O(k) = O(X/m)

since
∑

p≤X/m

log(p) = O(X/m)

by the Prime number theorem, and
∑

pk≤X/m
k≥2

k log(p) = O
(

(X/m)1/2 log3(X/m)
)

= O(X/m) .

Thus,
∑

m≤X

f(m)
∑

d≤X/m

Λ(d)f(d) = O

(

∑

m≤X

f(m)
X

m

)

.

But sincef is nonnegative and multiplicative, we have
∑

m≤X

f(m)

m
≤
∏

p≤X

(

1 + f(p)/p + f(p2)/p2 + . . .
)

≤
∏

p≤X

(

(1 + f(p)/p) ·
(

1 + f(p2)/p2 + f(p3)/p3 + . . .
))

,

and since
∑

p≤X

(

f(p2)/p2 + f(p3)/p3 + . . .
)

≤
∑

p

∑

k≥2

O(k)

pk
< ∞ ,

we find that
∑

m≤X

f(m)

m
= O

(

∏

p≤X

(1 + f(p)/p)

)

.

Thus,

F (X) log X = O

(

X + X ·
∏

p≤X

(1 + f(p)/p)

)

,



LATTICE POINTS ON CIRCLES AND THE BOLTZMANN EQUATION 13

hence
F (X)

X
= O

(

1

log X
+

∏

p≤X (1 + f(p)/p)

log X

)

.

Now, by Merten’s theorem, we have
∏

p≤X

(1 − 1/p) ∼ e−γ

log X
,

and thus

F (X)

X
= O

(

1

log X
+
∏

p≤X

(

1 +
f(p) − 1

p
− f(p)

p2

)

)

= O

(

1

log X
+ exp

(

∑

p≤X

f(p) − 1

p

))

.

�

Proof of Proposition 6.To see that|S(m, k)/4| is a multiplicative function,
it is enough to recall the factorization ofm into Gaussian primes. Namely,
if pα1

1 , ...pαJ

J are all prime factors ofm with p ≡ 1 mod 4,

S(m, k) =
3
∑

ℓ=0

ikℓ

α1
∑

j1=1

· · ·
αJ
∑

jJ=1

eik(θ0+(α1−2j1)θp1
+...+(αJ−2jJ )θpJ

) .

Here θ0 is a multiple ofπ/4 which comes from powers of2 in m, and
the θpj

can be computed from the Gaussian factorization as described in
Section 2.2. Also, because

∑3
ℓ=0 ikℓ = 4 if 4 | k and zero otherwise,

|S(m, k)|
4

=

∣

∣

∣

∣

∣

α1
∑

j1=1

· · ·
αJ
∑

jJ=1

eik((α1−2j1)θp1
+...+(αJ−2jJ )θpJ

)

∣

∣

∣

∣

∣

,

and this sum clearly factorizes, each factor containing a sum of terms cor-
responding to one of the prime factorsp. Hence

fk(m) =
|S(m, k)|

4
is a nonnegative multiplicative function, as stated. In addition it satisfies
fk(m) ≤ r(m)/4 for all m. Thus, since

∑

n≤T

r(n) = |{x, y ∈ Z : x2 + y2 ≤ T}| ∼ π
(√

T
)2

= πT

we have
∑

n≤T

fk(n) = O(T ).
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Moreover, ifp ≡ 3 mod 4 then

(14) fk(p
l) =

{

1 if l is even,

0 if l is odd,

and ifp ≡ 1 mod 4 then

(15) fk(p
l) =

∣

∣

∣

∣

∣

l
∑

j=0

eik(l−2j)θp

∣

∣

∣

∣

∣

,

and thusfk(p
l) ≤ l + 1 for all prime p andl ≥ 1. The assumptions in in

Theorem 7 are thus satisfied, and we obtain

1

X

∑

m≤X

|S(m, k)| =
4

X

∑

m≤X

fk(m) ≤ C exp

(

∑

p≤X

fk(p) − 1

p

)

+O

(

1

log X

)

.

Now, by (14) and (15), we have

fk(p) =

{

2| cos(kθp)| if p ≡ 1 mod 4,

0 if p ≡ 3 mod 4 .

Hence
∑

p≤X

fk(p) − 1

p
=

∑

p≤X
p≡1 mod 4

2| cos(kθp)|
p

−
∑

p≤X

1

p
.

By Corollary 5,

∑

p≤X
p≡1 mod 4

2| cos(kθp)|
p

≤ 2

π
log log X + 2(1 − 2/π) log log k + O(1).

if log k ≤ b
√

log X. By Merten’s theorem,

∑

p≤X

1

p
= log log X + O(1) ,

and thus

∑

p≤X

fk(p) − 1

p
≤ (2/π − 1) log log x + 2(1 − 2/π) log log k + O(1) .

�
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4. PROOF OFTHEOREM 1

Here we carry out the steps of the proof as indicated in the introduction.
First recall that the collision operator can be written

Q(f, f)(v) = 4

∫

R2

(∫ π

−π

gv(w, θ) dθ

)

dw,(16)

where, if we identifyu ∈ S1 with θ ∈ [−π, π[,

gv(w, θ) = q(|w|, cos(θ)) (f(v′)f(v′
∗) − f(v)f(v∗)) ,

and

v′ = v + w + Rθw

v′
∗ = v + w − Rθw ;

as before,w = (v∗−v)/2, andRθ denotes a rotation by an angleθ. Writing
the Boltzmann equation for two-dimensional velocities, ofcourse we have
already stepped away from the physically realistic case, but disregarding
this, a common assumption onq is that

q(|w|, cos(θ)) = q1(|w|)q2(θ) ,

whereq1(|w|) ∼ |w|α for someα ∈ [0, 1], and whereq2(θ) ∼ |θ|−γ for
someγ ∈]1, 3[. This corresponds to a molecular interaction by hard in-
verse power law forces. With the stronger assumption thatq1 is smooth
and strictly positive, it is possible to prove that there is asmooth solution
f(v, t) to the Boltzmann equation (see [10]), and then this also gives some
regularity tog(w, θ), in spite of the singularity ofq2.

However, much work on the Boltzmann equation has been done with the
hypothesis thatq is bounded or continuous with respect toθ. With that
assumption, the solutionf(v, t) keeps exactly the regularity of the initial
data.

Because of this, it is relevant to assume whatever regularity of the so-
lutions that is needed for the computations. With the aim of making the
calculations easy, Theorem 1 has been written with unnecessarily strong
hypothesis.

To simplify notation a little, let

Gv(w) =

∫ π

−π

gv(w, θ) dθ ,

in the continuous case, and for the discrete case (then we assume, of course,
thatv ∈ hZ2)

Gh
v(hζ) =

1

r(|ζ|2)
∑

ζ′∈Z
d

|ζ′|=|ζ|

gv(hζ, θ) ,
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whereθ is the angle betweenζ ′ andζ. As before,r(|ζ|2) denotes the number
of integer points on a sphere with radius|ζ|.

Let

(17) Zh,R = {z ∈ Z2 s.t. |z| ≤ R/h}
for someR > 0 (this is the most natural example, but other choices might
be more efficient, as we shall see later). We want to prove that

Q(f, f)(v) − (2h)2
∑

ζ∈Zh,R

Gh
v(hζ) → 0(18)

whenh → 0, and also make as precise a statement as possible about the
rate of convergence.

Theorem 8. Suppose thatgv(w, θ) in (16) satisfies
(1) gv(w, θ) is aC1-function w.r.t.w
(2) gv(w, θ) is aC2-function w.r.t.θ
(3) ‖gv(·, θ)(1 + | · |2)‖L1(dw) ≤ C

(This holds e.g. if the functionf and the crossectionq are C2.) For given
R > 0 andh > 0, let Zh,R be as in (17). Then givenε > 0 there are reals
R > 0 andh > 0 such that

∣

∣

∣

∣

∣

∣

Q(f, f)(v) − (2h)2
∑

ζ∈Zh,R

Gh
v(hζ)

∣

∣

∣

∣

∣

∣

≤ ε .

Proof. We still considerQ(f, f) as an iterated integral, and write (forv ∈
hZ2)

Q(f, f)(v) − (2h)2
∑

ζ∈Zh,R

Gh
v(hζ)

=

∫

R2

Gv(w) dw − (2h)2
∑

ζ∈Zh,R

Gv(hζ)

+(2h)2
∑

ζ∈Zh,R

(

Gv(hζ) − Gh
v(hζ)

)

.(19)

From the third part of the hypothesis ong (which is implied by a decay
of f(v) for large velocities), it follows that for allR > 0,

∫

|w|≥R

Gv(w) dw ≤ C1

R2
.(20)

Continuity ofGv(w) would be enough to conclude that
∣

∣

∣

∣

∣

∣

∫

|w|<R

Gv(w) dw − (2h)2
∑

ζ∈Zh,R

Gv(hζ)

∣

∣

∣

∣

∣

∣

→ 0
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whenh → 0. The hypothesis ongv(w, θ) implies that actuallyGv(·) ∈ C1,
and there is a constantC2 such that the difference is smaller than

C2R
2h = C max

w,j
|∂wj

Gv(w)| R2h .(21)

Next we turn to the differenceGv(hζ) − Gh
v(hζ), i.e. of

1

2π

∫ π

−π

gv(hζ, θ) dθ − 1

r(|ζ|2)
∑

ζ′∈Z
2

|ζ′|=|ζ|

gv(hζ, θ) ,(22)

(recall that in the second term,θ is the angle betweenζ ′ andζ). We first
write the periodic functiongv(hζ, θ) as a Fourier series,

gv(hζ, θ) =
∑

k∈Z

ĝv(ζ, k)eikθ ,

where

ĝv(ζ, k) =
1

2π

∫ π

−π

gv(hζ, θ)e−ikθ dθ .

The assumptions ong imply the existence of a constantC3 so that

|ĝv(ζ, k)| ≤ C3

1 + k2
.(23)

Then (22) becomes

ĝv(ζ, 0) − 1

r(|ζ|2)
∑

ζ′∈Z
2

|ζ′|=|ζ|

ĝv(ζ, 0) +
1

r(|ζ|2)
∑

ζ′∈Z
2

|ζ′|=|ζ|

∑

k 6=0

ĝv(ζ, k)eikθ ,

where the first terms cancel out, and only last sum remains. Wenext split
that sum into a part with|k| ≤ M , and a remainder, which can be made
small by choosingM large, if g is sufficiently smooth with respect toθ.
Using (23),

∣

∣

∣

∣

∣

1

r(|ζ|2)
∑

ζ′∈Z
2

|ζ′|=|ζ|

∑

|k|≥M

ĝv(ζ, k)eikθ

∣

∣

∣

∣

∣

≤ 2
C3

M
.

To find the contribution of this term to (19), we multiply by(2h)2 and sum
overζ ∈ Zh,R to find a bound of the form

R2C4

M
.(24)
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For the remaining part, using (23) again, we find a bound of theform
∣

∣

∣

∣

∣

∑

0<|k|<M

C3

1 + k2

1

r(|ζ|2)
∑

ζ′∈Z
2

|ζ′|=|ζ|

eikθ

∣

∣

∣

∣

∣

≤ max
0<|k|<M

∣

∣

∣

∣

S(|ζ|2, k)

r(|ζ|2)

∣

∣

∣

∣

·
∑

0<|k|<M

C3

1 + k2

(25)

Adding the error terms (20), (21), (24) and (25) gives

|Q(f, f)(v) − Qh(fh, fh)(v)|

≤ C1

R2
+ C2R

2h +
R2C4

M
+ C3(2h)2 max

0<|k|<M

∑

ζ∈Zh,R

∣

∣

S(|ζ|2, k)

r(|ζ|2)
∣

∣

(26)

In the sum on the right hand side,
∑

ζ∈Zh,R

∣

∣

∣

∣

S(|ζ|2, k)

r(|ζ|2)

∣

∣

∣

∣

=
∑

n<(R/h)2

∣

∣S(n, k)
∣

∣ ,

and this can be estimated by using Proposition 6 withX = (R/h)2. To do
this, we must require that

(27) R/h > exp
(

log(M)2/b
)

for some positive constantb. Then there is a constantC5 such that

∑

n<(R/h)2

∣

∣S(n, k)
∣

∣ ≤ C5(

(

R

h

)2

exp

(

−
(

1 − 2

π
)
log ((R/h)2)

(log M)2

)

.

The last term in (26) will always be the dominating one, and atthis point,
it does not give much to try to optimise the choices ofR, M andh. Hence
to achieve an error of magnitudeε we

(1) takeR =
√

4C1/ε,
(2) observe that we must haveh < ε/(4R2C2) = ε2/(4C1C2),
(3) chooseM = 4R2C4/ε = 64C1C4/ε

2.

With these choises ofR andM , the last term can then be bounded by

4C3C5
4C1

ε
exp

(

−
(

1 − 2

π
) log

log(4C1/(εh
2))

(log(64C1C4/ε2))2

)

,(28)

which converges to zero whenh → 0, and so there is anh so small that also
the last term in (26) is smaller thanε/4. We see that in order to achieve an

error of maginitudeε, one must takeh very small:h = o
(

exp(−2 (log ε)2 ε−2/(1− 2

π
))
)

(note that (27) is then satisfied).
�
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5. SOME EXAMPLES AND REMARKS

From a numerical point of view, the discretization discussed above would
be far too costly: a discrete velocity model withN velocities would at least
correspond to a computational cost ofO(N) per time step, because one
needs to compute a value for each velocity. When the collisionterm is
computed by the sum (18), the cost isO(N2) times some logarithmic factor
of N (which comes from the summation over the points on the circles).
And the calculation above showed thatN grows exponentially in terms of
the accuracy,N ∼ 1

h
>> exp(ε−c) for some positive constantc.

However, rather than estimating the computational cost in terms of the
number of discretization points used, it is more relevant togive the cost in
terms of the desired accuracy, given that the discretization points are used
in an optimal way. The discussion around (18) suggests that one can reduce
the computational cost considerably without compromisingthe order of ac-
curacy. The poor rate of convergence is due to the approximation of Gv(w).
Generalizing the formula (18) slightly, we can write

∫

R2

Gv(w) dw ∼ 1

ρh

∑

ζ∈Zh

Gv(hζ)(29)

whereρh is the local density ofZh. For Zh = {ζ ∈ Z2 s.t. |hζ| ≤ R},
one hasρh = h−2. Of course, even more generally one could take a local
density which is not constant.

The procedure for constructing a DVM would then be
• Choose a densityρh so that the sum (29) is approximated to the

desired order.
• Chooseh so small that there exist a setZh with this density so that

for all ζ ∈ Zh the angular integral is well approximated by the sum.
For such a model, the computational cost for each velocity would be

of the orderε−3 (this estimate is based on the assumption that the cost of
evalutating the angular integral isε−1, and that the number of velocities
is O(ε−2); lower cost can be acheived if higher order formulas are used
for approximating the integrals). The problem remains, that a very large
number of velocities are needed, and hence the total computational cost is
still excessive. A more challenging task would be to dilute not only the set
Zh, but to choose in a systematic way subsetsUh ⊂ hZ2 for the discrete
velocity model, so thatQ(f, f)(v) would be well approximated for allv ∈
Uh, and to do this in a way that does not require too large tables for storing
all possible collisions.

In the last part of this paper, we wish to illustrate the distribution of good
radii. We then considerζ = (ζ1, ζ2) ∈ Z2 s.t. 0 ≤ ζi (i = 1, 2) |ζ| <
20000}. This is an extremely large set of points, which correspondsto a
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huge number of velocities (theO(N2) factor would in this case be of the
order1017, which is of course absurd)

Among the circles with radii|ζ| in this set, the largest number of points on
one circle, is 384. In Fig. 1, we show all pointsζ = (ζ1, ζ2) with 0 < ζi <
2000, such that the circle passing throughζ has more than 72 points. There
are 36163 points in this set. This is a small fraction of the total number
of integer points, but they are seemingly well distributed,except near the
origin.

Figure 2 shows points in the range10000 ≤ ζi ≤ 12000. Here the small
dots denote points on circles having at least 72 points, and the larger dots
denote points on circles with at least 192 points (there are 141562 and 1120
points respectively in these sets).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000
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1800

2000

FIGURE 1. Lattice points such that circles containing these
points, contain at least 72 lattice points
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FIGURE 2. Lattice points such that circles containing these
points, contain at least 72 lattice points (small dots), or at
least 192 points (the larger dots)
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