Krzysztof Burdzy

Open problems: Suppose that D is a bounded open set in R^{n} and $k>0$ is a fixed integer. Consider partitions $\left\{D_{j}\right\}_{1 \leq j \leq k}$ of D, i.e., families of disjoint open sets $D_{j} \subset D$ such that $D \backslash \bigcup_{1 \leq j \leq k} D_{j}$ has an empty interior. Let $\lambda_{j}>0$ denote the first eigenvalue for the Laplacian with Dirichlet boundary conditions in D_{j}. A particle model considered in mathematical physics literature ([BHIM] K. Burdzy, R. Hołyst, D. Ingerman and P. March "Configurational transition in a Fleming-Viot-type model and probabilistic interpretation of Laplacian eigenfunctions" J. Phys. A 29, 1996, 2633-2642; [CBH] O. Cybulski, V. Babin and R. Hołyst "Minimization of the Renyi entropy production in the space-partitioning process" Phys. Rev. E 71, 046130, 2005) gives rise to the following problems.
(i) Does there exist a partition which minimizes $\sum_{1 \leq j \leq k} \lambda_{j}$? The answer is positive this follows from the results of D. Bucur, G. Buttazzo and A. Henrot "Existence results for some optimal partition problems" Adv. Math. Sci. Appl. 8 (1998), no. 2, 571-579.
(ii) The partition that minimizes $\sum_{1 \leq j \leq k} \lambda_{j}$ is not always unique, for example, if D is a ball. Characterize domains using geometric conditions where the partition minimizing $\sum_{1 \leq j \leq k} \lambda_{j}$ is unique.
(iii) Characterize pairs (D, k) such that the partition that minimizes $\sum_{1 \leq j \leq k} \lambda_{j}$ forms the nodal domains of an eigenfunction of the Laplacian. See [BHIM] and $[\mathrm{CBH}]$ for specific conjectures when D is a rectangle.
(iv) Is it true that for a fixed D and k sufficiently large, the partition that minimizes $\sum_{1 \leq j \leq k} \lambda_{j}$ looks like honeycomb, i.e., most of the sets D_{j} have an approximately hexagonal shape?

