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Abstract. We present a numerical study for the first Dirichlet eigenvalue
of certain classes of planar regions. Based on this, we propose new types
of bounds and establish several conjectures regarding the dependence of this
eigenvalue on the perimeter and the area.

1. Introduction

The well–known Faber–Krahn inequality states that of all sufficiently regular
bounded domains with the same volume, the ball has the smallest first Dirichlet
eigenvalue. In the case of a planar domain Ω with area A, this can be stated as

(1.1) λ1(Ω) ≥
πj2

0,1

A
,

where j0,1 is the first positive zero of the Bessel function J0, and equality holds for
the disk.

If we now restrict the class of domains under consideration, it is possible to
improve the above result. This can be done in several different ways, of which we
shall now discuss some examples.

One possibility is to consider the class of n−polygons, for which Pólya and Szegö
proposed the following in [Pólya and Szegö 51].

Conjecture 1. Of all n−polygons with the same area, the regular n−polygon has
the smallest first Dirichlet eigenvalue.

Using Steiner symmetrization, Pólya and Szegö proved the conjecture for the
case of triangles and quadrilaterals in [Pólya and Szegö 51] and, as far as we are
aware, no progress whatsoever has been made on this problem over the last forty
years.

If we denote by P reg
n the regular n−polygon of unit area, Pólya and Szegö’s

conjecture may be stated in the same fashion as (1.1) as the following inequality
for the first Dirichlet eigenvalue of an n−polygon of area A

(1.2) λ1(Pn) ≥ 1

A
λ1(P

reg
n ),
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with equality if and only if Pn is the regular n−polygon. For the case of triangles
and quadrilaterals this yields

λ1(P3) ≥ 4
√

3π2

3A and λ1(P4) ≥ 2π2

A .

These bounds are isoperimetric inequalities of the same type as the Faber–Krahn
bound and indeed, if the Pölya–Szegö conjecture holds, the Faber–Krahn inequality
can be seen as the limit of (1.2) as n goes to infinity. Their limitation is that since
the estimate is based only on the area of the domain under consideration, they do
not take into account any measure of the deviation from the optimizer. In order
to do this, one normally needs to restrict more the class of domains for which the
inequality will be applicable. If we consider, for instance the class of convex planar
domains K, we have that for all K ∈ K

(1.3)
π2L2

16A2 ≤ λ1(K) ≤ π2L2

4A2 ,

where A and L denote the area and boundary length of K, respectively. The left–
hand inequality is due to Makai [Makai 62], while the right–hand inequality was
proven by Pólya in [Pólya 60] and, as was pointed out in [Osserman 77], it actually
holds for arbitrary doubly–connected domains – see the examples regarding this
issue given in the last section. Note also that, as has been pointed out in [Freitas 04],
it is possible to improve upon the lower bound in (1.3). This is done by using the
bound of Protter’s [Protter 81]

λ1(K) ≥ π2

4

[

1

ρ2 +
1

d2

]

,

where ρ and d denote the inradius and the diameter of K, respectively. Following
Makai’s argument one is then led to

λ1(K) ≥ π2

4

[

L2

4A2 +
1

d2

]

.

All this suggests that one might try looking for improved bounds of the same
form as (1.3) under the restriction that K is now an n−polygon, which, in the
case of lower bounds, will be assumed to be convex. However, since the right–
and left–hand side inequalities in (1.3) are attained in the limiting case of a long
thin rectangle and a narrow circular sector, respectively, this will not be possible
in general, and one has thus to look for bounds which include the quantities L and
A in a more involved way – see, however, Conjecture 3 and [Freitas 04].

Since, as illustrated by the Pólya and Szegö conjecture, these problems are noto-
riously difficult, we set out to obtain numerical data that would allow us to uncover
any underlying structure of the dependence of the first eigenvalue on L and A. For
instance, as there is clearly a relation between geometric and spectral isoperimetric
inequalities, an obvious question is whether there are any conditions under which
the first eigenvalue is a monotone function of the length of the boundary. That this
cannot be true for general convex domains may be seen by considering an isosceles
right triangle T with area 1/2, and a rectangle R of sides 5/4 and 2/5, for which
we have

L(R) =
33

10
< 2 +

√
2 = L(T ),
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while

λ1(R) =
689

100
π2 > 5π2 = λ1(T ).

We will see that even when we consider this issue in more restricted classes such as
triangles, there exists no direct relation between the monotonicity of the perimeter
and that of the first Dirichlet eigenvalue.

The other point we address is the existence of more precise bounds for the first
eigenvalue, and what quantities should be involved here. It is our belief that, at
the present stage, it would be useful to obtain some insight into how the different
quantities should be related, and that this is best done numerically. Indeed, the
data gathered suggests some new and, we hope, fruitful research directions in this
area. As an example, we single out the new type of bounds which take on the form
of the functions Fn defined below, and the fact that, depending on the choice of
parameters, one may obtain both upper and lower bounds.

The main purpose of this paper is thus to investigate numerically new types of
bounds for the first Dirichlet eigenvalue of polygons based on the considerations
made above. We will explore two different variations on this. The first is to look for
bounds which add a term that will take into account the length of the boundary.
A natural way of doing this is to consider expressions of the form

(1.4)
c1

A
+ c2

L2 − κnA

A2 ,

where c1 and c2 are constants to be determined, and

κn = 4n tan
(π

n

)

is the corresponding isoperimetric constant, that is, κn is such that for any n−polygon
one has L2 − κnA ≥ 0, with equality if and only if the polygon is regular. In
this way, one is including a correction due to what might be called the isoperi-
metric defect of the polygon. Such an idea is not new and was already used
in [Payne and Weiberger 61] where it was shown that for a bounded simply con-
nected domain Ω in R

2 one has that

(1.5) λ1(Ω) ≤
πj2

0,1

A

[

1 +

(

1

J2
1 (j0,1)

− 1

)(

L2

4πA
− 1

)]

.

Here J1 is the Bessel function of the first kind of order 1. What is new in our
approach is that we study the possibility of extending bounds of the above type to
polygons with n sides, and not only as upper bounds, but also as lower bounds.
Besides, the limitting case we obtain for the upper bounds as we let the number
of sides go to infinity suggests an upper bound for simply–connected domains that
improves upon (1.5) and which is in agreement with the numerical studies that
were carried out – see Conjecture 7.

Rewriting the terms in (1.4) in a more convenient way, we shall thus look for
bounds of the form

Fn(L, A, α, β) = π2 L2 − αA

βA2 ,

where α and β are constants to be determined for each n. We point out that if one
writes down an explicit expression for the first eigenvalue of a rectangle in terms of
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its area and perimeter, one is led to the expression

λ1(R) = F4(L, A, 8, 4) = π2 L2 − 8A

4A2 .

An interesting feature of these expressions is that, as was mentioned above,
depending on the values of the parameters α and β, the numerical data gathered
indicate that there exist both lower and upper bounds which are of this form. In
the case of the lower bound, we shall present a conjecture which, if true, implies
Pólya and Szegö’s conjecture in the convex case – see Conjecture 4.

Another set of bounds which we shall explore in the paper are related to the
bounds given by (1.3). Namely, we shall now consider the way in which the ex-
ponents in those expressions are allowed to vary. To this end, we shall consider
functions of the form

Gn(L, A, α, q) = α
L2(q−1)

Aq .

As with the case of the bounds given by Fn, this will allow us to obtain both upper
and lower bounds for the first eigenvalue of n−polygons.

The organization of the paper is as follows. We begin by describing the numerical
method used. In Section 3 we investigate the behaviour of the first eigenvalue of
convex polygons of fixed area and show that, even in the case of triangles, λ1 does
not behave monotonically with respect to the perimeter.

Then, in Sections 4 and 5, we present numerical data obtained for one– and
two–term bounds, of the form Gn and Fn, respectively, and, based on the results
obtained, present a series of conjectures. In the last section we discuss the results
obtained.

2. The numerical method

Let Ω ⊂ R
2 be a bounded domain. We will consider the 2D - Dirichlet eigenvalue

problem for the Laplace operator. This is equivalent to determining the resonance
frequencies κ that verify the Dirichlet problem for the Helmholtz equation

(2.1)

{

∆u + κ2u = 0 in Ω,
u = 0 on ∂Ω,

for a non null function u.
We will describe the approach of this problem with a meshfree method, the

Method of Fundamental Solutions (MFS). For the details, see [Alves and Antunes 05].
A fundamental solution Φκ of the Helmholtz equation verifies

(∆ + κ2)Φκ = −δ

where δ is the Dirac delta distribution. In the 2D case, we take

(2.2) Φκ(x) =
i

4
H

(1)
0 (κ |x|)

where H
(1)
0 is the first Hänkel function.

Let Γ̂ be for instance the boundary of a bounded open set Ω̂ ⊃ Ω̄, considering Γ̂
surrounding ∂Ω. A density result obtained in 2000 by Alves (cf. [Alves 00]) states
that if κ is not an eigenfrequency then

(2.3) span
{

Φκ(x − y)|x∈∂Ω : y ∈ Γ̂
}

= L2(∂Ω),
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This result allows us to approximate a L2 function defined on ∂Ω, with complex
values, using a sequence of functions

(2.4) um(x) =

m
∑

j=1

αm,jΦκ(x − ym,j)

that converges to u|Γ in L2(∂Ω). Every function of the form (2.4) satisfy the
Helmholtz equation in the domain Ω because

⋃m
j=1 {ym,j} ⊂ Ω̄C .

We will define m collocation points xi ∈ ∂Ω and m source points ym,j ∈ Γ̂, to
obtain the system

(2.5)

m
∑

j=1

αm,jΦκ(xi − ym,j) = 0, (xi ∈ ∂Ω).

This allows us to aproximate the boundary condition of problem (2.1). Therefore
the numerical algorithm to calculate the eigenfrequencies is to find the values κ for
which the m × m matrix

(2.6) A(κ) = [Φκ(xi − yj)]m×m

has a null determinant. We consider a particular choice of the points x1, ...., xm ∈
∂Ω and y1, ...., ym ∈ Γ̂ described in [Alves and Antunes 05].

The components of the matrix A(κ) are complex numbers, so the determinant
is also a complex number. We consider the real function g(κ) = |Det[A(κ)]| . If κ
is an eigenfrequency, κ is a point of minimum where g(κ) = 0. To approximate
the eigenfrequencies we calculate the points where the local minimums are attained
using an algorithm based on the golden ratio search method.

Once we have an eigenfrequency determined, we may get the eigenvalue just by
calculating λ = κ2.

To obtain an eigenfunction associated to the eigenfrequencies κ1, κ2,. . . we use a
collocation method on m+1 points, with x1, · · · , xm on ∂Ω and a point xm+1 ∈ Ω.
Then, the approximated eigenfunction is given by

ũ(x) =

m+1
∑

k=1

αkΦki
(x − yk)(2.7)

and, to exclude the solution ũ(x) ≡ 0, the coefficients αk are determinated by the
resolution of the system

{

ũ(xi) = 0 i = 1, . . . , m
ũ(xm+1) = 1

(2.8)

3. Results for λ1 on polygons

As a first approach we considered a series of polygons with the number of sides
varying between three and eight, and plotted the first Dirichlet eigenvalue as a
function of the perimeter – see Figure 1.

The results obtained show that, in general, λ1 is not necessarily increasing with
the length of the boundary. An example of this can be seen by considering the two
triangles T1 and T2 with unit area which are shown in Figure 2.
We believe that all the digits presented for the values of λ1 are correct. The trian-
gle T2 has a smaller perimeter than T1, and we shall prove numerically that T2 has a
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Figure 1. Plots of λ1(L) for convex n-polygons of unit area with
n = 3, 4, 5, 6, 7, 8.

-0.75 -0.5 -0.25 0.25 0.5 0.75

0.2
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0.6

0.8

1

1.2

Figure 2. Plot of the triangles T1 (thin line) and T2 (bold line).

larger value of λ1. In order to do this, we will use a result from [Fox, Henrici and Moler 67]
which was simplified and extended in [Moler and Payne 68].
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T1 T2

59.05014828 60.49209561
angles (in degrees) 57.74089539 56.97940476

63.20895633 62.52849962
L 4.56271413 4.56271232
λ1 22.81833704 22.81835620

Table 1. perimeter and λ1 for the triangles T1 and T2.

Let λ and u be an eigenvalue and eigenfunction satisfying the Dirichlet problem

(3.1)

{

−∆u = λu in Ω
u = 0 on ∂Ω.

In general, the numerical method which is used allows us to obtain λ̃ and ũ, an
approximate eigenvalue and eigenfunction satisfying, not problem (3.1), but

(3.2)

{

−∆ũ = λ̃ũ in Ω
ũ = ε(x) on ∂Ω

where ε(x) is a function which is ”small” on ∂Ω.

Theorem 1. If λ̃ and ũ satisfy equation (3.2), there exists an (exact) eigenvalue
λk of equation (3.1) such that

∣

∣

∣
λk − λ̃

∣

∣

∣

λk

≤ θ,(3.3)

where

θ =

√
A supx∈∂Ω |ε(x)|

‖ũ‖L2(Ω)

.(3.4)

If in addition ‖ũ‖L2(Ω) = 1, and uk is the normalized orthogonal projection of u

onto the eigenspace of λk, then

‖uk − ũ‖L2(Ω) ≤
θ

ρk

(

1 +
θ2

ρ2
k

)

1

2

(3.5)

where

ρk := minλn 6=λk

∣

∣

∣
λn − λ̃

∣

∣

∣

λn

.(3.6)

Using inequality (3.3) we obtain that
(

1

1 + θ

)

λ̃ ≤ λk ≤
(

1

1 − θ

)

λ̃(3.7)

yielding the results for the triangles T1 and T2 shown in Table 2.
where the eigenfunction was obtained with the procedure described in section 2
and the integral was calculated numerically. To obtain an approximation for
supx∈∂Ω |ε(x)| we calculate maxi |ũ(zi)|, where zi are 1001 points on ∂Ω.

Applying bounds (3.7) we obtain that

22.81835437 < λ1(T2) < 22.81835803
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T1 T2

supx∈∂Ωε(x) 4.077068× 10−8 8.0378213× 10−8

‖ũ‖L2(Ω) 0.637602 0.620147

Table 2. Results for the approximations of the eigenfunctions of
T1 and T2.

Q1 Q2 P reg
4

L 4.00219305 4.00221975 4
λ1 19.782509 19.752103 19.739208

Table 3. perimeter and λ1 for the quadrilaterals Q1, Q2 and P reg
4 .

and

22.81833558 < λ1(T1) < 22.81833850

so

λ1(T1) < λ1(T2).

The lack of general monotonicity on the perimeter for the case of convex quadri-
laterals is easier to observe. Let Q1 and Q2 be the quadrilaterals with unit area
shown in Figure 3. Here Q1 is a rectangle with sides length 3101/3000 and 3000/3101,
and Q2 has vertices

(

−1

2
,−1

2

)

,

(

1

2
,−1

2

)

,

(

1

2
,

7

15

)

and

(

−1

2
,

8

15

)

.

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

Figure 3. Plot of the boundary of the polygons Q1 (bold line), Q2

(thin line) and the square (dashed line).

We obtain the results shown in Table 3.
All the digits presented for the values of P reg

4 and Q1 are correct, since we have an
explicit expression for the eigenvalues of rectangles. We believe that all the digits
presented for Q2 are correct.
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Figure 4. λ1(n) for the polygons P reg
n with unit area, 3 ≤ n ≤ 9.

Figure 5. qn for the polygons P reg
n with unit area, 3 ≤ n ≤ 8.

In Figure 4 we represent the value of the first eigenvalue λ1 for the first seven
regular polygons P reg

n with unit area. The dotted line denotes the limitting case of
the first eigenvalue of the disc. In Figure 5 we represent the quocients

qn =
λ1 (P reg

n )

λ1

(

P reg
n+1

) .

These results suggest the following conjecture

Conjecture 2.

λ1 (P reg
3 ) > λ1 (P reg

4 ) > ... > λ1 (B)

where B is the disc. Moreover we have

q3 > q4 > q5 > ...

Remark 3.1. Note that Conjecture 1 trivially implies the first part of Conjecture 2.
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4. One–term bounds

In the Introduction we recalled some known estimates involving the terms 1/A
and L2/A2. These are particular instances of more general terms of the type

L2(q−1)

Aq
, q ≥ 1

We shall now consider bounds based on

Gn(L, A, α, q) = α
L2(q−1)

Aq
, q ≥ 1(4.1)

Consider first the case of triangles, for which we shall determine the value of α as
a function of the exponent q, so that equality holds for the case of the equilateral
triangle. This yields

α = 3(1− 3q

2 )4(2−q)π2.

Then we choose the values of q giving lower and upper bounds for all the triangles
considered. Proceeding in this way, we are led to the following estimates

(4.2)

{

λ1(L, A) ≤ G3(L, A, α0, q) , q ≥ q0

λ1(L, A) ≥ G3(L, A, α0, q) , q ≤ q1

with q0 ≈ 1.74 and q1 ≈ 1.68.
In Figure 6 we show the plots of λ1(L) together with the corresponding lower

and upper bounds for the case of triangles of unit area.

4.9 5.2 5.5 5.8
L

26

28

30

32

λ1

4.5 5 5.5 6
L

40

60

80

100

120

λ1

Figure 6. Plots of λ1(L) and the corresponding lower and upper
bounds for triangles and quadrilaterals of unit area.

For the case of quadrilaterals we observed numerically that the best lower bound
gives equality in the case of both the square and the equilateral triangle. We obtain
α = 2(5−4q)π2, q0 ≈ 2.96 and q1 ≈ 1.54. The corresponding results are shown in
Figure 6.

For the remaining n-polygons we followed the same procedure to determine the
two constants q0 and q1 giving lower and upper bounds, respectively. We observed
numerically that choosing the value of the parameters α and q such that equality
holds in the case of regular polygons P reg

n and P reg
n−1 yields lower bounds. In this

case the system to obtain the parameters is non linear, but it can easily be solved
with Newton’s method for systems, for instance.
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5. Two–term bounds

5.1. Triangles. We shall now present our results for bounds of the type (1.4). As
before we begin with the case of triangles for which we look for bounds of the type

(5.1) E3(L, A, θ) := F3

(

L, A, 12
√

3 − 4π2

√
3θ

,
π2

θ

)

=
4π2

√
3A

+ θ
L2 − 12

√
3A

A2

From the values obtained for the triangles considered, we conjecture that

(5.2)

{

λ1(L, A) ≤ E3(L, A, θ) , θ ≥ θ0

λ1(L, A) ≥ E3(L, A, θ) , θ ≤ θ1

with θ0 ≈ 0.77 and θ1 ≈ 0.7 (see Figure 7). In particular, we conjecture that for
triangles there is a simple upper bound that is better than the more general bound
of Pólya’s given in (1.3):

Conjecture 3. For any triangle T we have

λ1(T ) ≤ π2L2

9A2 .

In this respect, we remark that for a triangle T with sides of lengths `1 ≤ `2 ≤ `3,
it has recently been proven in [Freitas 04] that

(5.3) π2

(

4

`2
3

+
`2
3

4A2

)

≤ λ1(T ) ≤ π2

3A2

(

`2
1 + `2

2 + `2
3

)

.

In the first plot of Figure 7 we present the values of λ1(L) for the unit area trian-
gles considered. We plot the lower and upper bounds that we obtained (bounds (5.2));
we also show (with dashed line) the bound in Conjecture 3.

5.2. Quadrilaterals. A similar analysis may be carried out for quadrilaterals and,
with the values obtained, we conjecture that we now have

π2 (2
√

3 − 3)L2 + 4
√

3A

6(3
√

3 − 4)A2
≤ λ1(Q) ≤ π2 L2 − 8A

4A2
(5.4)

4.6 4.9 5.2 5.5 5.8
L

24
26
28
30
32
34
36
38

λ1

4.5 5 5.5 6
L

30

40

50

60

70

80
λ1

Figure 7. Plots of λ1(L) and the corresponding bounds for trian-
gles and quadrilaterals.

The numerical evidence gathered seems to indicate that these will be the best

estimates involving the terms 1
A

and L2

A2 . Equality for the lower bound is again
attained in the case of both the square and the equilateral triangle. Equality holds
in the upper bound for rectangles. Note that now, unlike in the case of triangles, it is
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not possible to have an upper bound of the form c(L/A)2 which would improve upon
that of Pólya’s in equation (1.3), as this latter bound is attained asymptotically for
long thin rectangles – we can also see that the value of θ for which we only have the
(L/A)2 term is not within the range giving upper bounds now. Based on the upper
bound for triangles in (5.3), we will, however, be able to suggest another class of
bounds of that type for general polygons – see Section 5.3 below. In the case of a
quadrilateral of side lenghts `i, i = 1, . . . , 4, this reduces to

λ1(Q) ≤ π2

2A2

4
∑

i=1

`2
i ,

which is known to hold in the case of parallelograms [Hersch 66].
The results for quadrilaterals (bounds (5.4)) are shown in the second plot in

Figure 7.

5.2.1. Rhombic membranes. The special case of the rhombus received a lot of at-
tention in the 1960s, not just theoretically but also from a numerical perspec-
tive [Hooker and Protter 60/61, Moler 69, Stadter 66]. The reasons for this were
twofold. One the one hand, and as was stated in [Hooker and Protter 60/61], “it
is a remarkable fact that the exact value is unknown in analytic form except in the
case of a square (and the degenerate case of a slit or a strip).” On the other hand,
the rhombus turns up naturally in the process of applying Steiner symmetrization
to quadrilaterals.

In this section we compare our results for λ1/π2 to those given in [Moler 69,
Stadter 66] for skew angles φ, as shown in Figure 8.

Figure 8. Rhombical Domain.

Our bounds are obtained using Theorem 1 and so their accuracy depends on the
approximation of the eigenfunction on the boundary of the domain. We are not able
to obtain bounds better than Stadter’s bounds for large φ, since the approximations
for the eigenfunctions are too large on the boundary. However, for small φ our
results are better than those of either Stadter’s or Moler’s.

5.3. General polygons. For other n-polygons the situation is similar and we
looked for bounds of the type

(5.5) En(L, A, θ) := Fn

(

L, A, κn − λ1(P
reg
n )

θ
,
π2

θ

)

=
λ1(P

reg
n )

A
+ θ

L2 − κnA

A2
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φ = 15o

Stadter’s bounds Moler’s bounds Our bounds
2.1137 2.1163 2.1138 2.1150 2.1143 2.1145

φ = 30o

Stadter’s bounds Moler’s bounds Our bounds
2.5210 2.5307 2.5192 2.5261 2.5219 2.5269

φ = 45o

Stadter’s bounds Our bounds
3.5170 3.5491 3.5167 3.5346

Table 4. Comparison of Stadter, Moler and our bounds for λ1/π2

on rhombical domains.

For each value of n, we obtained that

(5.6)

{

λ1(L, A) ≤ En(L, A, θ) , θ ≥ θ0

λ1(L, A) ≥ En(L, A, θ) , θ ≤ θ1

for certain positive constants θ0 and θ1. In the case of pentagons we get θ0 ≈
2.467401 and θ1 ≈ 0.558268. Note that the constant θ1 is chosen such that equality
is attained not only for P reg

n but also in the case of the regular n − 1–polygon.
Based on this, we conjecture that for n-polygons it will be possible to obtain a
bound of the form

λ1 ≥ α
1

A
+ β

L2

A2
,(5.7)

where α and β are such that we have equality in the cases of the regular polygons
P reg

n and P reg
n−1. More precisely, we have

Conjecture 4. For convex n-polygons Pn we have

λ1(Pn) ≥ κn−1λ1(P
reg
n ) − κnλ1(P

reg
n−1)

(κn−1 − κn) A
+

[

λ1(P
reg
n−1) − λ1(P

reg
n )

]

L2

(κn−1 − κn) A2

=
λ1(P

reg
n )

A +
λ1(P

reg
n−1) − λ1(P

reg
n )

κn−1 − κn

(

L2 − κnA
A2

)

.

Remark 5.1. Note that Conjecture 4 implies Conjecture 1 and the first part of
Conjecture 2 in the convex case.

We remark that we do not expect to obtain a new type of bound in the limit
case as n goes to infinity. In fact, we conjecture that we have

lim
n→∞

λ1(P
reg
n−1) − λ1(P

reg
n )

κn−1 − κn

= 0,

thus recovering the Faber–Krahn inequality.
In the case of upper bounds, and although it is possible to obtain the values of

θ1 numerically, an explicit conjecture is not obvious, as it is not clear for which
case other than the regular polygon one should force identity to hold. One possi-
bility is to take into account the bound (5.4) for quadrilaterals, and, in the case of
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general polygons, look for bounds that would give identity not only for the regular
n−polygon but also for asymptotically long thin rectangles. Proceeding in this way,
we are led to a bound of the form given by (5.5) with θ = π2/4.

Conjecture 5. For n-polygons Pn we have

λ1(Pn) ≤ λ1(P
reg
n )

A
+

π2

4

L2 − κnA

A2
.

An alternative type of upper bounds was already mentioned in the section on
quadrilaterals, and is inspired in the upper bound for triangles obtained in [Freitas 04].
More precisely, based on this and on the numerical data available, we present the
following

Conjecture 6. For n-polygons Pn with side lengths `i, i = 1, . . . , n, we have

λ1(Pn) ≤
(

n

κnA2

n
∑

i=1

`2
i

)

λ1(P
reg
n ),

with equality only for the regular n−polygon.

6. Discussion

As was mentioned in the Introduction, our numerical studies point to the fact
that the upper bound given by (5.5) remains bounded as n goes to infinity, sug-
gesting a possible upper bound for more general domains which is clear from Con-
jecture 5. Based on further numerical results we conjecture that it will in fact hold
for simply connected domains.

Conjecture 7. For any planar simply connected domain Ω we have

(6.1) λ1(Ω) ≤ πj2
01

A
+

π2

4

L2 − 4πA

A2 .

In this case, equality holds if Ω is either a disk or, asymptotically, for a rec-
tangle with one side length going to infinity. If true, the above conjecture would
provide an improvement upon the Pólya bound given by (1.3), in the case of simply
connected domains, and also of the Payne and Weinberger bound (1.5). In fact,
Conjecture 7 states that the sharp constant in bounds of the form of that of Payne
and Weinberger’s is actually that which gives identity asymptotically for rectangles
where the length of one side goes to infinity.

We also remark that the conjecture is false in case doubly connected domains
are allowed. To see this, we considered the domain H1 = D1\D2 where D1 and D2

are concentric balls with radius (resp.) 4 and 1.3 which is shown in Figure 9. The
value of λ1(H1) together with the corresponding values given by (6.1) and Pólya’s
bound are shown in Table 5. We also considered a domain with three holes, H3

which is the ball with center at the origin and radius 5, with three circular holes
with radius 0.4 each one and centers at the points

(

−1,
√

3
)

,
(

−1,−
√

3
)

and (2, 0),
for which the value provided by Pólya’s expression no longer gives an upper bound,
but were unable to find a similar example with only two holes. From the numerical
point of view, as it was proven in [Chen, Chen and Lee 05], the MFS needs a special
treatment when dealing with multiply connected domains, since then there might
exist spurious eigenvalues. However, this problem never occurs when calculating
the first eigenvalue.
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Figure 9. The domains H1 and H3.

H1 H3

λ1 1.31398304 0.68710829
Conj. 7 1.06829136 0.46436210

PÛlya 1.35385519 0.63101864

Table 5. Values for λ1, (6.1), and Pólya’s bound for domains H1

and H3.

H1 H3

supx∈∂Ωε(x) 4.91215× 10−9 2.03185× 10−12

‖ũ‖L2(Ω) 5.30986 5.02033

Table 6. Results for the approximations of the eigenfunctions of
H1 and H3

We proceeded as in the case of triangles to show that these domains provide
counterexamples to Conjecture 7 and the upper bound (1.3). The results obtained
for the domains H1 and H3 are shown in Table 6

Applying the bounds (3.7) it follows that

1.31398303186 < λ1(H1) < 1.31398304814

and
0.68710829922007 < λ1(H3) < 0.68710829922495,

showing that these domains provide the desired counterexamples.
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