NEW BOUNDS FOR THE PRINCIPAL DIRICHLET EIGENVALUE OF PLANAR REGIONS

PEDRO ANTUNES AND PEDRO FREITAS

Abstract

We present a numerical study for the first Dirichlet eigenvalue of certain classes of planar regions. Based on this, we propose new types of bounds and establish several conjectures regarding the dependence of this eigenvalue on the perimeter and the area.

1. Introduction

The well-known Faber-Krahn inequality states that of all sufficiently regular bounded domains with the same volume, the ball has the smallest first Dirichlet eigenvalue. In the case of a planar domain Ω with area A, this can be stated as

$$
\begin{equation*}
\lambda_{1}(\Omega) \geq \frac{\pi j_{0,1}^{2}}{A} \tag{1.1}
\end{equation*}
$$

where $j_{0,1}$ is the first positive zero of the Bessel function J_{0}, and equality holds for the disk.

If we now restrict the class of domains under consideration, it is possible to improve the above result. This can be done in several different ways, of which we shall now discuss some examples.

One possibility is to consider the class of n-polygons, for which Pólya and Szegö proposed the following in [Pólya and Szegö 51].

Conjecture 1. Of all n-polygons with the same area, the regular n-polygon has the smallest first Dirichlet eigenvalue.

Using Steiner symmetrization, Pólya and Szegö proved the conjecture for the case of triangles and quadrilaterals in [Pólya and Szegö 51] and, as far as we are aware, no progress whatsoever has been made on this problem over the last forty years.

If we denote by $P_{n}^{\text {reg }}$ the regular n-polygon of unit area, Pólya and Szegö's conjecture may be stated in the same fashion as (1.1) as the following inequality for the first Dirichlet eigenvalue of an n-polygon of area A

$$
\begin{equation*}
\lambda_{1}\left(P_{n}\right) \geq \frac{1}{A} \lambda_{1}\left(P_{n}^{r e g}\right), \tag{1.2}
\end{equation*}
$$

[^0]with equality if and only if P_{n} is the regular n-polygon. For the case of triangles and quadrilaterals this yields
$$
\lambda_{1}\left(P_{3}\right) \geq \frac{4 \sqrt{3} \pi^{2}}{3 A} \quad \text { and } \quad \lambda_{1}\left(P_{4}\right) \geq \frac{2 \pi^{2}}{A}
$$

These bounds are isoperimetric inequalities of the same type as the Faber-Krahn bound and indeed, if the Pölya-Szegö conjecture holds, the Faber-Krahn inequality can be seen as the limit of (1.2) as n goes to infinity. Their limitation is that since the estimate is based only on the area of the domain under consideration, they do not take into account any measure of the deviation from the optimizer. In order to do this, one normally needs to restrict more the class of domains for which the inequality will be applicable. If we consider, for instance the class of convex planar domains \mathcal{K}, we have that for all $K \in \mathcal{K}$

$$
\begin{equation*}
\frac{\pi^{2} L^{2}}{16 A^{2}} \leq \lambda_{1}(K) \leq \frac{\pi^{2} L^{2}}{4 A^{2}} \tag{1.3}
\end{equation*}
$$

where A and L denote the area and boundary length of K, respectively. The lefthand inequality is due to Makai [Makai 62], while the right-hand inequality was proven by Pólya in [Pólya 60] and, as was pointed out in [Osserman 77], it actually holds for arbitrary doubly-connected domains - see the examples regarding this issue given in the last section. Note also that, as has been pointed out in [Freitas 04], it is possible to improve upon the lower bound in (1.3). This is done by using the bound of Protter's [Protter 81]

$$
\lambda_{1}(K) \geq \frac{\pi^{2}}{4}\left[\frac{1}{\rho^{2}}+\frac{1}{d^{2}}\right]
$$

where ρ and d denote the inradius and the diameter of K, respectively. Following Makai's argument one is then led to

$$
\lambda_{1}(K) \geq \frac{\pi^{2}}{4}\left[\frac{L^{2}}{4 A^{2}}+\frac{1}{d^{2}}\right]
$$

All this suggests that one might try looking for improved bounds of the same form as (1.3) under the restriction that K is now an n-polygon, which, in the case of lower bounds, will be assumed to be convex. However, since the rightand left-hand side inequalities in (1.3) are attained in the limiting case of a long thin rectangle and a narrow circular sector, respectively, this will not be possible in general, and one has thus to look for bounds which include the quantities L and A in a more involved way - see, however, Conjecture 3 and [Freitas 04].

Since, as illustrated by the Pólya and Szegö conjecture, these problems are notoriously difficult, we set out to obtain numerical data that would allow us to uncover any underlying structure of the dependence of the first eigenvalue on L and A. For instance, as there is clearly a relation between geometric and spectral isoperimetric inequalities, an obvious question is whether there are any conditions under which the first eigenvalue is a monotone function of the length of the boundary. That this cannot be true for general convex domains may be seen by considering an isosceles right triangle T with area $1 / 2$, and a rectangle R of sides $5 / 4$ and $2 / 5$, for which we have

$$
L(R)=\frac{33}{10}<2+\sqrt{2}=L(T)
$$

while

$$
\lambda_{1}(R)=\frac{689}{100} \pi^{2}>5 \pi^{2}=\lambda_{1}(T)
$$

We will see that even when we consider this issue in more restricted classes such as triangles, there exists no direct relation between the monotonicity of the perimeter and that of the first Dirichlet eigenvalue.

The other point we address is the existence of more precise bounds for the first eigenvalue, and what quantities should be involved here. It is our belief that, at the present stage, it would be useful to obtain some insight into how the different quantities should be related, and that this is best done numerically. Indeed, the data gathered suggests some new and, we hope, fruitful research directions in this area. As an example, we single out the new type of bounds which take on the form of the functions F_{n} defined below, and the fact that, depending on the choice of parameters, one may obtain both upper and lower bounds.

The main purpose of this paper is thus to investigate numerically new types of bounds for the first Dirichlet eigenvalue of polygons based on the considerations made above. We will explore two different variations on this. The first is to look for bounds which add a term that will take into account the length of the boundary. A natural way of doing this is to consider expressions of the form

$$
\begin{equation*}
\frac{c_{1}}{A}+c_{2} \frac{L^{2}-\kappa_{n} A}{A^{2}} \tag{1.4}
\end{equation*}
$$

where c_{1} and c_{2} are constants to be determined, and

$$
\kappa_{n}=4 n \tan \left(\frac{\pi}{n}\right)
$$

is the corresponding isoperimetric constant, that is, κ_{n} is such that for any n-polygon one has $L^{2}-\kappa_{n} A \geq 0$, with equality if and only if the polygon is regular. In this way, one is including a correction due to what might be called the isoperimetric defect of the polygon. Such an idea is not new and was already used in [Payne and Weiberger 61] where it was shown that for a bounded simply connected domain Ω in \mathbb{R}^{2} one has that

$$
\begin{equation*}
\lambda_{1}(\Omega) \leq \frac{\pi j_{0,1}^{2}}{A}\left[1+\left(\frac{1}{J_{1}^{2}\left(j_{0,1}\right)}-1\right)\left(\frac{L^{2}}{4 \pi A}-1\right)\right] \tag{1.5}
\end{equation*}
$$

Here J_{1} is the Bessel function of the first kind of order 1 . What is new in our approach is that we study the possibility of extending bounds of the above type to polygons with n sides, and not only as upper bounds, but also as lower bounds. Besides, the limitting case we obtain for the upper bounds as we let the number of sides go to infinity suggests an upper bound for simply-connected domains that improves upon (1.5) and which is in agreement with the numerical studies that were carried out - see Conjecture 7.

Rewriting the terms in (1.4) in a more convenient way, we shall thus look for bounds of the form

$$
F_{n}(L, A, \alpha, \beta)=\pi^{2} \frac{L^{2}-\alpha A}{\beta A^{2}}
$$

where α and β are constants to be determined for each n. We point out that if one writes down an explicit expression for the first eigenvalue of a rectangle in terms of
its area and perimeter, one is led to the expression

$$
\lambda_{1}(R)=F_{4}(L, A, 8,4)=\pi^{2} \frac{L^{2}-8 A}{4 A^{2}} .
$$

An interesting feature of these expressions is that, as was mentioned above, depending on the values of the parameters α and β, the numerical data gathered indicate that there exist both lower and upper bounds which are of this form. In the case of the lower bound, we shall present a conjecture which, if true, implies Pólya and Szegö's conjecture in the convex case - see Conjecture 4.

Another set of bounds which we shall explore in the paper are related to the bounds given by (1.3). Namely, we shall now consider the way in which the exponents in those expressions are allowed to vary. To this end, we shall consider functions of the form

$$
G_{n}(L, A, \alpha, q)=\alpha \frac{L^{2(q-1)}}{A^{q}}
$$

As with the case of the bounds given by F_{n}, this will allow us to obtain both upper and lower bounds for the first eigenvalue of n-polygons.

The organization of the paper is as follows. We begin by describing the numerical method used. In Section 3 we investigate the behaviour of the first eigenvalue of convex polygons of fixed area and show that, even in the case of triangles, λ_{1} does not behave monotonically with respect to the perimeter.

Then, in Sections 4 and 5 , we present numerical data obtained for one- and two-term bounds, of the form G_{n} and F_{n}, respectively, and, based on the results obtained, present a series of conjectures. In the last section we discuss the results obtained.

2. The numerical method

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain. We will consider the 2 D - Dirichlet eigenvalue problem for the Laplace operator. This is equivalent to determining the resonance frequencies κ that verify the Dirichlet problem for the Helmholtz equation

$$
\left\{\begin{array}{cl}
\Delta u+\kappa^{2} u=0 & \text { in } \Omega \tag{2.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

for a non null function u.
We will describe the approach of this problem with a meshfree method, the Method of Fundamental Solutions (MFS). For the details, see [Alves and Antunes 05].

A fundamental solution Φ_{κ} of the Helmholtz equation verifies

$$
\left(\Delta+\kappa^{2}\right) \Phi_{\kappa}=-\delta
$$

where δ is the Dirac delta distribution. In the 2D case, we take

$$
\begin{equation*}
\Phi_{\kappa}(x)=\frac{i}{4} H_{0}^{(1)}(\kappa|x|) \tag{2.2}
\end{equation*}
$$

where $H_{0}^{(1)}$ is the first Hänkel function.
Let $\hat{\Gamma}$ be for instance the boundary of a bounded open set $\hat{\Omega} \supset \bar{\Omega}$, considering $\hat{\Gamma}$ surrounding $\partial \Omega$. A density result obtained in 2000 by Alves (cf. [Alves 00]) states that if κ is not an eigenfrequency then

$$
\begin{equation*}
\overline{\operatorname{span}\left\{\left.\Phi_{\kappa}(x-y)\right|_{x \in \partial \Omega}: y \in \hat{\Gamma}\right\}}=L^{2}(\partial \Omega) \tag{2.3}
\end{equation*}
$$

This result allows us to approximate a L^{2} function defined on $\partial \Omega$, with complex values, using a sequence of functions

$$
\begin{equation*}
u_{m}(x)=\sum_{j=1}^{m} \alpha_{m, j} \Phi_{\kappa}\left(x-y_{m, j}\right) \tag{2.4}
\end{equation*}
$$

that converges to $\left.u\right|_{\Gamma}$ in $L^{2}(\partial \Omega)$. Every function of the form (2.4) satisfy the Helmholtz equation in the domain Ω because $\bigcup_{j=1}^{m}\left\{y_{m, j}\right\} \subset \bar{\Omega}^{C}$.

We will define m collocation points $x_{i} \in \partial \Omega$ and m source points $y_{m, j} \in \hat{\Gamma}$, to obtain the system

$$
\begin{equation*}
\sum_{j=1}^{m} \alpha_{m, j} \Phi_{\kappa}\left(x_{i}-y_{m, j}\right)=0, \quad\left(x_{i} \in \partial \Omega\right) \tag{2.5}
\end{equation*}
$$

This allows us to aproximate the boundary condition of problem (2.1). Therefore the numerical algorithm to calculate the eigenfrequencies is to find the values κ for which the $m \times m$ matrix

$$
\begin{equation*}
A(\kappa)=\left[\Phi_{\kappa}\left(x_{i}-y_{j}\right)\right]_{m \times m} \tag{2.6}
\end{equation*}
$$

has a null determinant. We consider a particular choice of the points $x_{1}, \ldots, x_{m} \in$ $\partial \Omega$ and $y_{1}, \ldots, y_{m} \in \hat{\Gamma}$ described in [Alves and Antunes 05].

The components of the matrix $A(\kappa)$ are complex numbers, so the determinant is also a complex number. We consider the real function $g(\kappa)=|\operatorname{Det}[A(\kappa)]|$. If κ is an eigenfrequency, κ is a point of minimum where $g(\kappa)=0$. To approximate the eigenfrequencies we calculate the points where the local minimums are attained using an algorithm based on the golden ratio search method.

Once we have an eigenfrequency determined, we may get the eigenvalue just by calculating $\lambda=\kappa^{2}$.

To obtain an eigenfunction associated to the eigenfrequencies $\kappa_{1}, \kappa_{2}, \ldots$ we use a collocation method on $m+1$ points, with x_{1}, \cdots, x_{m} on $\partial \Omega$ and a point $x_{m+1} \in \Omega$. Then, the approximated eigenfunction is given by

$$
\begin{equation*}
\tilde{u}(x)=\sum_{k=1}^{m+1} \alpha_{k} \Phi_{k_{i}}\left(x-y_{k}\right) \tag{2.7}
\end{equation*}
$$

and, to exclude the solution $\tilde{u}(x) \equiv 0$, the coefficients α_{k} are determinated by the resolution of the system

$$
\left\{\begin{array}{c}
\tilde{u}\left(x_{i}\right)=0 \quad i=1, \ldots, m \tag{2.8}\\
\tilde{u}\left(x_{m+1}\right)=1
\end{array}\right.
$$

3. Results for λ_{1} On POLYGONS

As a first approach we considered a series of polygons with the number of sides varying between three and eight, and plotted the first Dirichlet eigenvalue as a function of the perimeter - see Figure 1.

The results obtained show that, in general, λ_{1} is not necessarily increasing with the length of the boundary. An example of this can be seen by considering the two triangles T_{1} and T_{2} with unit area which are shown in Figure 2.
We believe that all the digits presented for the values of λ_{1} are correct. The triangle T_{2} has a smaller perimeter than T_{1}, and we shall prove numerically that T_{2} has a

Figure 1. Plots of $\lambda_{1}(L)$ for convex n-polygons of unit area with $n=3,4,5,6,7,8$.

Figure 2. Plot of the triangles T_{1} (thin line) and T_{2} (bold line).
larger value of λ_{1}. In order to do this, we will use a result from [Fox, Henrici and Moler 67] which was simplified and extended in [Moler and Payne 68].

	T_{1}	T_{2}
angles (in degrees)	59.05014828	60.49209561
	57.74089539	56.97940476
	4.56895633	62.52849962
λ_{1}	22.81833704	4.56271232

TABLE 1. perimeter and λ_{1} for the triangles T_{1} and T_{2}.

Let λ and u be an eigenvalue and eigenfunction satisfying the Dirichlet problem

$$
\left\{\begin{array}{cc}
-\Delta u=\lambda u & \text { in } \Omega \tag{3.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

In general, the numerical method which is used allows us to obtain $\tilde{\lambda}$ and \tilde{u}, an approximate eigenvalue and eigenfunction satisfying, not problem (3.1), but

$$
\left\{\begin{array}{cc}
-\Delta \tilde{u}=\tilde{\lambda} \tilde{u} & \text { in } \Omega \tag{3.2}\\
\tilde{u}=\epsilon(x) & \text { on } \partial \Omega
\end{array}\right.
$$

where $\epsilon(x)$ is a function which is "small" on $\partial \Omega$.
Theorem 1. If $\tilde{\lambda}$ and \tilde{u} satisfy equation (3.2), there exists an (exact) eigenvalue λ_{k} of equation (3.1) such that

$$
\begin{equation*}
\frac{\left|\lambda_{k}-\tilde{\lambda}\right|}{\lambda_{k}} \leq \theta \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\frac{\sqrt{A} \sup _{x \in \partial \Omega}|\epsilon(x)|}{\|\tilde{u}\|_{L^{2}(\Omega)}} . \tag{3.4}
\end{equation*}
$$

If in addition $\|\tilde{u}\|_{L^{2}(\Omega)}=1$, and u_{k} is the normalized orthogonal projection of u onto the eigenspace of λ_{k}, then

$$
\begin{equation*}
\left\|u_{k}-\tilde{u}\right\|_{L^{2}(\Omega)} \leq \frac{\theta}{\rho_{k}}\left(1+\frac{\theta^{2}}{\rho_{k}^{2}}\right)^{\frac{1}{2}} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{k}:=\min _{\lambda_{n} \neq \lambda_{k}} \frac{\left|\lambda_{n}-\tilde{\lambda}\right|}{\lambda_{n}} . \tag{3.6}
\end{equation*}
$$

Using inequality (3.3) we obtain that

$$
\begin{equation*}
\left(\frac{1}{1+\theta}\right) \tilde{\lambda} \leq \lambda_{k} \leq\left(\frac{1}{1-\theta}\right) \tilde{\lambda} \tag{3.7}
\end{equation*}
$$

yielding the results for the triangles T_{1} and T_{2} shown in Table 2 .
where the eigenfunction was obtained with the procedure described in section 2 and the integral was calculated numerically. To obtain an approximation for $\sup _{x \in \partial \Omega}|\epsilon(x)|$ we calculate $\max _{i}\left|\tilde{u}\left(z_{i}\right)\right|$, where z_{i} are 1001 points on $\partial \Omega$.

Applying bounds (3.7) we obtain that

$$
22.81835437<\lambda_{1}\left(T_{2}\right)<22.81835803
$$

	T_{1}	T_{2}		
$\sup _{x \in \partial \Omega} \epsilon(x)$	4.077068×10^{-8}	8.0378213×10^{-8}		
$\\|\tilde{u}\\|_{L^{2}(\Omega)}$	0.637602	0.620147		

TABLE 2. Results for the approximations of the eigenfunctions of T_{1} and T_{2}.

	Q_{1}	Q_{2}	$P_{4}^{\text {reg }}$
L	4.00219305	4.00221975	4
λ_{1}	19.782509	19.752103	19.739208

TABLE 3. perimeter and λ_{1} for the quadrilaterals Q_{1}, Q_{2} and $P_{4}^{\text {reg }}$.
and

$$
22.81833558<\lambda_{1}\left(T_{1}\right)<22.81833850
$$

SO

$$
\lambda_{1}\left(T_{1}\right)<\lambda_{1}\left(T_{2}\right)
$$

The lack of general monotonicity on the perimeter for the case of convex quadrilaterals is easier to observe. Let Q_{1} and Q_{2} be the quadrilaterals with unit area shown in Figure 3. Here Q_{1} is a rectangle with sides length $3101 / 3000$ and $3000 / 3101$, and Q_{2} has vertices

$$
\left(-\frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2}, \frac{7}{15}\right) \quad \text { and } \quad\left(-\frac{1}{2}, \frac{8}{15}\right) .
$$

Figure 3. Plot of the boundary of the polygons Q_{1} (bold line), Q_{2} (thin line) and the square (dashed line).

We obtain the results shown in Table 3.
All the digits presented for the values of $P_{4}^{r e g}$ and Q_{1} are correct, since we have an explicit expression for the eigenvalues of rectangles. We believe that all the digits presented for Q_{2} are correct.

Figure 4. $\lambda_{1}(n)$ for the polygons $P_{n}^{\text {reg }}$ with unit area, $3 \leq n \leq 9$.

Figure 5. q_{n} for the polygons $P_{n}^{\text {reg }}$ with unit area, $3 \leq n \leq 8$.

In Figure 4 we represent the value of the first eigenvalue λ_{1} for the first seven regular polygons $P_{n}^{r e g}$ with unit area. The dotted line denotes the limitting case of the first eigenvalue of the disc. In Figure 5 we represent the quocients

$$
q_{n}=\frac{\lambda_{1}\left(P_{n}^{r e g}\right)}{\lambda_{1}\left(P_{n+1}^{r e g}\right)} .
$$

These results suggest the following conjecture

Conjecture 2.

$$
\lambda_{1}\left(P_{3}^{r e g}\right)>\lambda_{1}\left(P_{4}^{r e g}\right)>\ldots>\lambda_{1}(B)
$$

where B is the disc. Moreover we have

$$
q_{3}>q_{4}>q_{5}>\ldots
$$

Remark 3.1. Note that Conjecture 1 trivially implies the first part of Conjecture 2.

4. One-TERM BOUndS

In the Introduction we recalled some known estimates involving the terms $1 / A$ and L^{2} / A^{2}. These are particular instances of more general terms of the type

$$
\frac{L^{2(q-1)}}{A^{q}}, q \geq 1
$$

We shall now consider bounds based on

$$
\begin{equation*}
G_{n}(L, A, \alpha, q)=\alpha \frac{L^{2(q-1)}}{A^{q}}, q \geq 1 \tag{4.1}
\end{equation*}
$$

Consider first the case of triangles, for which we shall determine the value of α as a function of the exponent q, so that equality holds for the case of the equilateral triangle. This yields

$$
\alpha=3^{\left(1-\frac{3 q}{2}\right)} 4^{(2-q)} \pi^{2} .
$$

Then we choose the values of q giving lower and upper bounds for all the triangles considered. Proceeding in this way, we are led to the following estimates

$$
\left\{\begin{array}{l}
\lambda_{1}(L, A) \leq G_{3}\left(L, A, \alpha_{0}, q\right), q \geq q_{0} \tag{4.2}\\
\lambda_{1}(L, A) \geq G_{3}\left(L, A, \alpha_{0}, q\right), q \leq q_{1}
\end{array}\right.
$$

with $q_{0} \approx 1.74$ and $q_{1} \approx 1.68$.
In Figure 6 we show the plots of $\lambda_{1}(L)$ together with the corresponding lower and upper bounds for the case of triangles of unit area.

Figure 6. Plots of $\lambda_{1}(L)$ and the corresponding lower and upper bounds for triangles and quadrilaterals of unit area.

For the case of quadrilaterals we observed numerically that the best lower bound gives equality in the case of both the square and the equilateral triangle. We obtain $\alpha=2^{(5-4 q)} \pi^{2}, q_{0} \approx 2.96$ and $q_{1} \approx 1.54$. The corresponding results are shown in Figure 6.

For the remaining n-polygons we followed the same procedure to determine the two constants q_{0} and q_{1} giving lower and upper bounds, respectively. We observed numerically that choosing the value of the parameters α and q such that equality holds in the case of regular polygons $P_{n}^{r e g}$ and $P_{n-1}^{r e g}$ yields lower bounds. In this case the system to obtain the parameters is non linear, but it can easily be solved with Newton's method for systems, for instance.

5. Two-TERM BOUNDS

5.1. Triangles. We shall now present our results for bounds of the type (1.4). As before we begin with the case of triangles for which we look for bounds of the type

$$
\begin{equation*}
E_{3}(L, A, \theta):=F_{3}\left(L, A, 12 \sqrt{3}-\frac{4 \pi^{2}}{\sqrt{3} \theta}, \frac{\pi^{2}}{\theta}\right)=\frac{4 \pi^{2}}{\sqrt{3} A}+\theta \frac{L^{2}-12 \sqrt{3} A}{A^{2}} \tag{5.1}
\end{equation*}
$$

From the values obtained for the triangles considered, we conjecture that

$$
\left\{\begin{array}{l}
\lambda_{1}(L, A) \leq E_{3}(L, A, \theta), \theta \geq \theta_{0} \tag{5.2}\\
\lambda_{1}(L, A) \geq E_{3}(L, A, \theta), \quad \theta \leq \theta_{1}
\end{array}\right.
$$

with $\theta_{0} \approx 0.77$ and $\theta_{1} \approx 0.7$ (see Figure 7). In particular, we conjecture that for triangles there is a simple upper bound that is better than the more general bound of Pólya's given in (1.3):

Conjecture 3. For any triangle T we have

$$
\lambda_{1}(T) \leq \frac{\pi^{2} L^{2}}{9 A^{2}}
$$

In this respect, we remark that for a triangle T with sides of lengths $\ell_{1} \leq \ell_{2} \leq \ell_{3}$, it has recently been proven in [Freitas 04] that

$$
\begin{equation*}
\pi^{2}\left(\frac{4}{\ell_{3}^{2}}+\frac{\ell_{3}^{2}}{4 A^{2}}\right) \leq \lambda_{1}(T) \leq \frac{\pi^{2}}{3 A^{2}}\left(\ell_{1}^{2}+\ell_{2}^{2}+\ell_{3}^{2}\right) \tag{5.3}
\end{equation*}
$$

In the first plot of Figure 7 we present the values of $\lambda_{1}(L)$ for the unit area triangles considered. We plot the lower and upper bounds that we obtained (bounds (5.2)); we also show (with dashed line) the bound in Conjecture 3.
5.2. Quadrilaterals. A similar analysis may be carried out for quadrilaterals and, with the values obtained, we conjecture that we now have

$$
\begin{equation*}
\pi^{2} \frac{(2 \sqrt{3}-3) L^{2}+4 \sqrt{3} A}{6(3 \sqrt{3}-4) A^{2}} \leq \lambda_{1}(Q) \leq \pi^{2} \frac{L^{2}-8 A}{4 A^{2}} \tag{5.4}
\end{equation*}
$$

Figure 7. Plots of $\lambda_{1}(L)$ and the corresponding bounds for triangles and quadrilaterals.

The numerical evidence gathered seems to indicate that these will be the best estimates involving the terms $\frac{1}{A}$ and $\frac{L^{2}}{A^{2}}$. Equality for the lower bound is again attained in the case of both the square and the equilateral triangle. Equality holds in the upper bound for rectangles. Note that now, unlike in the case of triangles, it is
not possible to have an upper bound of the form $c(L / A)^{2}$ which would improve upon that of Pólya's in equation (1.3), as this latter bound is attained asymptotically for long thin rectangles - we can also see that the value of θ for which we only have the $(L / A)^{2}$ term is not within the range giving upper bounds now. Based on the upper bound for triangles in (5.3), we will, however, be able to suggest another class of bounds of that type for general polygons - see Section 5.3 below. In the case of a quadrilateral of side lenghts $\ell_{i}, i=1, \ldots, 4$, this reduces to

$$
\lambda_{1}(Q) \leq \frac{\pi^{2}}{2 A^{2}} \sum_{i=1}^{4} \ell_{i}^{2}
$$

which is known to hold in the case of parallelograms [Hersch 66].
The results for quadrilaterals (bounds (5.4)) are shown in the second plot in Figure 7.
5.2.1. Rhombic membranes. The special case of the rhombus received a lot of attention in the 1960s, not just theoretically but also from a numerical perspective [Hooker and Protter 60/61, Moler 69, Stadter 66]. The reasons for this were twofold. One the one hand, and as was stated in [Hooker and Protter 60/61], "it is a remarkable fact that the exact value is unknown in analytic form except in the case of a square (and the degenerate case of a slit or a strip)." On the other hand, the rhombus turns up naturally in the process of applying Steiner symmetrization to quadrilaterals.

In this section we compare our results for λ_{1} / π^{2} to those given in [Moler 69, Stadter 66] for skew angles ϕ, as shown in Figure 8.

Figure 8. Rhombical Domain.
Our bounds are obtained using Theorem 1 and so their accuracy depends on the approximation of the eigenfunction on the boundary of the domain. We are not able to obtain bounds better than Stadter's bounds for large ϕ, since the approximations for the eigenfunctions are too large on the boundary. However, for small ϕ our results are better than those of either Stadter's or Moler's.
5.3. General polygons. For other n-polygons the situation is similar and we looked for bounds of the type

$$
\begin{equation*}
E_{n}(L, A, \theta):=F_{n}\left(L, A, \kappa_{n}-\frac{\lambda_{1}\left(P_{n}^{r e g}\right)}{\theta}, \frac{\pi^{2}}{\theta}\right)=\frac{\lambda_{1}\left(P_{n}^{r e g}\right)}{A}+\theta \frac{L^{2}-\kappa_{n} A}{A^{2}} \tag{5.5}
\end{equation*}
$$

$\phi=15^{\circ}$					
Stadter's bounds		Moler's bounds		Our bounds	
2.1137	2.1163	2.1138	2.1150	2.1143	2.1145
$\phi=30^{\circ}$					
Stadter's bounds		Moler's bounds		Our bounds	
2.5210	2.5307	2.5192	2.5261	2.5219	2.5269
$\phi=45^{\circ}$					
	Stadter's bounds		Our bounds		
	3.5170	3.5491	$3.5167 \quad \mathbf{3 . 5 3 4 6}$		

TABLE 4. Comparison of Stadter, Moler and our bounds for λ_{1} / π^{2} on rhombical domains.

For each value of n, we obtained that

$$
\left\{\begin{array}{l}
\lambda_{1}(L, A) \leq E_{n}(L, A, \theta), \theta \geq \theta_{0} \tag{5.6}\\
\lambda_{1}(L, A) \geq E_{n}(L, A, \theta), \theta \leq \theta_{1}
\end{array}\right.
$$

for certain positive constants θ_{0} and θ_{1}. In the case of pentagons we get $\theta_{0} \approx$ 2.467401 and $\theta_{1} \approx 0.558268$. Note that the constant θ_{1} is chosen such that equality is attained not only for $P_{n}^{r e g}$ but also in the case of the regular $n-1$-polygon. Based on this, we conjecture that for n-polygons it will be possible to obtain a bound of the form

$$
\begin{equation*}
\lambda_{1} \geq \alpha \frac{1}{A}+\beta \frac{L^{2}}{A^{2}} \tag{5.7}
\end{equation*}
$$

where α and β are such that we have equality in the cases of the regular polygons $P_{n}^{r e g}$ and $P_{n-1}^{r e g}$. More precisely, we have

Conjecture 4. For convex n-polygons P_{n} we have

$$
\begin{aligned}
\lambda_{1}\left(P_{n}\right) & \geq \frac{\kappa_{n-1} \lambda_{1}\left(P_{n}^{r e g}\right)-\kappa_{n} \lambda_{1}\left(P_{n-1}^{r e g}\right)}{\left(\kappa_{n-1}-\kappa_{n}\right) A}+\frac{\left[\lambda_{1}\left(P_{n-1}^{r e g}\right)-\lambda_{1}\left(P_{n}^{r e g}\right)\right] L^{2}}{\left(\kappa_{n-1}-\kappa_{n}\right) A^{2}} \\
& =\frac{\lambda_{1}\left(P_{n}^{r e g}\right)}{A}+\frac{\lambda_{1}\left(P_{n-1}^{r e g}\right)-\lambda_{1}\left(P_{n}^{r e g}\right)}{\kappa_{n-1}-\kappa_{n}}\left(\frac{L^{2}-\kappa_{n} A}{A^{2}}\right) .
\end{aligned}
$$

Remark 5.1. Note that Conjecture 4 implies Conjecture 1 and the first part of Conjecture 2 in the convex case.

We remark that we do not expect to obtain a new type of bound in the limit case as n goes to infinity. In fact, we conjecture that we have

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{1}\left(P_{n-1}^{r e g}\right)-\lambda_{1}\left(P_{n}^{r e g}\right)}{\kappa_{n-1}-\kappa_{n}}=0
$$

thus recovering the Faber-Krahn inequality.
In the case of upper bounds, and although it is possible to obtain the values of θ_{1} numerically, an explicit conjecture is not obvious, as it is not clear for which case other than the regular polygon one should force identity to hold. One possibility is to take into account the bound (5.4) for quadrilaterals, and, in the case of
general polygons, look for bounds that would give identity not only for the regular n-polygon but also for asymptotically long thin rectangles. Proceeding in this way, we are led to a bound of the form given by (5.5) with $\theta=\pi^{2} / 4$.
Conjecture 5. For n-polygons P_{n} we have

$$
\lambda_{1}\left(P_{n}\right) \leq \frac{\lambda_{1}\left(P_{n}^{r e g}\right)}{A}+\frac{\pi^{2}}{4} \frac{L^{2}-\kappa_{n} A}{A^{2}}
$$

An alternative type of upper bounds was already mentioned in the section on quadrilaterals, and is inspired in the upper bound for triangles obtained in [Freitas 04]. More precisely, based on this and on the numerical data available, we present the following

Conjecture 6. For n-polygons P_{n} with side lengths $\ell_{i}, i=1, \ldots, n$, we have

$$
\lambda_{1}\left(P_{n}\right) \leq\left(\frac{n}{\kappa_{n} A^{2}} \sum_{i=1}^{n} \ell_{i}^{2}\right) \lambda_{1}\left(P_{n}^{r e g}\right)
$$

with equality only for the regular $n-$ polygon.

6. DISCUSSION

As was mentioned in the Introduction, our numerical studies point to the fact that the upper bound given by (5.5) remains bounded as n goes to infinity, suggesting a possible upper bound for more general domains which is clear from Conjecture 5. Based on further numerical results we conjecture that it will in fact hold for simply connected domains.

Conjecture 7. For any planar simply connected domain Ω we have

$$
\begin{equation*}
\lambda_{1}(\Omega) \leq \frac{\pi j_{01}^{2}}{A}+\frac{\pi^{2}}{4} \frac{L^{2}-4 \pi A}{A^{2}} \tag{6.1}
\end{equation*}
$$

In this case, equality holds if Ω is either a disk or, asymptotically, for a rectangle with one side length going to infinity. If true, the above conjecture would provide an improvement upon the Pólya bound given by (1.3), in the case of simply connected domains, and also of the Payne and Weinberger bound (1.5). In fact, Conjecture 7 states that the sharp constant in bounds of the form of that of Payne and Weinberger's is actually that which gives identity asymptotically for rectangles where the length of one side goes to infinity.

We also remark that the conjecture is false in case doubly connected domains are allowed. To see this, we considered the domain $H_{1}=D_{1} \backslash D_{2}$ where D_{1} and D_{2} are concentric balls with radius (resp.) 4 and 1.3 which is shown in Figure 9. The value of $\lambda_{1}\left(H_{1}\right)$ together with the corresponding values given by (6.1) and Pólya's bound are shown in Table 5. We also considered a domain with three holes, H_{3} which is the ball with center at the origin and radius 5 , with three circular holes with radius 0.4 each one and centers at the points $(-1, \sqrt{3}),(-1,-\sqrt{3})$ and $(2,0)$, for which the value provided by Pólya's expression no longer gives an upper bound, but were unable to find a similar example with only two holes. From the numerical point of view, as it was proven in [Chen, Chen and Lee 05], the MFS needs a special treatment when dealing with multiply connected domains, since then there might exist spurious eigenvalues. However, this problem never occurs when calculating the first eigenvalue.

Figure 9. The domains H_{1} and H_{3}.

	H_{1}	H_{3}
λ_{1}	1.31398304	0.68710829
Conj. 7	1.06829136	0.46436210
PÛlya	1.35385519	0.63101864

Table 5. Values for λ_{1}, (6.1), and Pólya's bound for domains H_{1} and H_{3}.

	H_{1}	H_{3}		
$\sup _{x \in \partial \Omega} \epsilon(x)$	4.91215×10^{-9}	2.03185×10^{-12}		
$\\|\tilde{u}\\|_{L^{2}(\Omega)}$	5.30986	5.02033		

TABLE 6. Results for the approximations of the eigenfunctions of H_{1} and H_{3}

We proceeded as in the case of triangles to show that these domains provide counterexamples to Conjecture 7 and the upper bound (1.3). The results obtained for the domains H_{1} and H_{3} are shown in Table 6

Applying the bounds (3.7) it follows that

$$
1.31398303186<\lambda_{1}\left(H_{1}\right)<1.31398304814
$$

and

$$
0.68710829922007<\lambda_{1}\left(H_{3}\right)<0.68710829922495
$$

showing that these domains provide the desired counterexamples.
Acknowledgements. We would like to thank the anonymous referee for the several suggestions that helped improve the manuscript, and also for having pointed out many relevant references.

References

[Alves 00] C.J.S. Alves, Density results for the Helmholtz equation and the method of fundamental solutions, Advances in Computational Engineering \& Sciences, Volume I, (Editors: S. N. Atluri and F. W. Brust). Tech Sc. Press (2000), pp.45-50.
[Alves and Antunes 05] C.J.S. Alves and P.R.S. Antunes, The Method of Fundamental Solutions applied to the calculation of eigenfrequencies and eigenmodes of 2 D simply connected shapes, (accepted to Computers, Materials \& Continua).
[Brooks and Waksman 87] R. Brooks and P. Waksman, The first eigenvalue of a scalene triangle, Proc. Amer. Math. Soc. 100 (1987), 175-182.
[Chen, Chen and Lee 05] J.T.Chen, I.L.Chen and Y.T. Lee, Eigensolutions of multiply connected membranes using the method of fundamental solutions, Engineering Analysis with Boundary Elements 29, 2, 166-174.
[Fox, Henrici and Moler 67] L. Fox, P. Henrici and C. B. Moler, Approximations and bounds for eigenvalues of elliptic operators, SIAM J. Numer. Anal. 4 (1967), 89-102.
[Freitas 04] P. Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle, to appear in Proc. Am. Math. Soc..
[Hersch 66] J. Hersch, Contraintes rectilignes parallèles et valeurs propres de membranes vibrantes, Z. Angew. Math. Phys. 17 (1966), 457-460.
[Hooker and Protter 60/61] W. Hooker and M. H. Protter, Bounds for the first eigenvalue of a rhombic membrane, J. Math. and Phys. 39 (1960/1961), 18-34.
[Makai 62] E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, pp. 227-231 in Studies in mathematical analysis and related topics, Essays in honor of George Pólya, Stanford Univ. Press, Stanford 1962.
[Makai 59] E. Makai, Bounds for the principal frequency of a membrane and the torsional rigidity of a beam, Acta Sci. Math. Szeged 20 (1959), 33-35.
[Moler 69] C. B. Moler, Accurate bounds for the eigenvalues of the Laplacian and applications to rhombical domains, Stanford Technical Report CS 69-121, Stanford Univ., Stanford, CA, February 1969.
[Moler and Payne 68] C. B. Moler and L. E. Payne, Bounds for eigenvalues and eigenfunctions of symmetric operators, SIAM J. Numer. Anal. 5 (1968), 64-70.
[Osserman 77] R. Osserman, A note on Hayman's theorem on the bass note of a drum, Comment. Math. Helvetici 52 (1977), 545-555.
[Payne and Weiberger 61] L. E. Payne and H. F. Weinberger Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl. 2 (1961), 210-216.
[Pólya 60] G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc. (N.S.) 24 (1960), 413-419.
[Pólya and Szegö 51] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Annals of Mathematical Studies 27, Princeton University Press, Princeton, 1951.
[Protter 81] M. H. Protter, A lower bound for the fundamental frequency of a convex region, Proc. Amer. Math. Soc. 81 (1981), 65-70.
[Ramm and Shivakumar 98] A. G. Ramm and P. N. Shivakumar, Math. Inequal. Appl., 1, N4 (1998), 559-563.
[Stadter 66] J. T. Stadter, Bounds to eigenvalues of rhombical membranes, SIAM J. Appl. Math. 14 (1966), 324-341.

Departamento de Matemática, Instituto Superior Técnico, Av.Rovisco Pais, 1049-001 Lisboa, Portugal.

E-mail address: pant@math.ist.utl.pt,pfreitas@math.ist.utl.pt

[^0]: Date: July 25, 2005.
 1991 Mathematics Subject Classification. Primary ; Secondary .
 Key words and phrases. Dirichlet eigenvalues, Pólya-Szegö conjectures.
 Partially supported by FCT, Portugal, through program POCTI.

