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Abstract

The focus of this paper is on a thin obstacle problem where the obstacle is
defined on the intersection between a hyper-plane Γ in Rn and a periodic
perforation Tε of Rn, depending on a small parameter ε > 0. As ε → 0, it
is crucial to estimate the frequency of intersections and to determine this
number locally. This is done using strong tools from uniform distribution.
By employing classical estimates for the discrepancy of sequences of type
{kα}∞k=1, α ∈ R, we are able to extract rather precise information about the
set Γ ∩ Tε. As ε → 0, we determine the limit u of the solution uε to the
obstacle problem in the perforated domain, in terms of a limit equation
it solves. We obtain the typical ”strange term” behaviour for the limit
problem, but with a different constant taking into account the contribution
of all different intersections, that we call the averaged capacity. Our result
depends on the normal direction of the plane, but holds for a.e. normal on
the unit sphere in Rn.
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1. Introduction

1.1. Formulation of the problem
We consider the thin obstacle problem in a class of perforated domains.

For ε > 0 we construct a perforated domain Γε as follows. Let Qε =
(−ε/2, ε/2)n and let Qε(x) = x + (−ε/2, ε/2)n. Note that the cubes Qε(εk) for
k ∈ Zn are disjoint and ⋃

k∈Zn

Qε(εk) = Rn.

Next we perforate each cube by a small hole: Let T be compact subset of
the unit ball B1 with Lipschitz boundary ∂T, and for aε < ε/2 and k ∈ Zn,
define Tε = aεT and Tk

ε = aεT + εk. The set

Tε =
⋃
k∈Zn

Tk
ε

is to be thought of as a periodic background in the problem.
Let Ω be a domain in Rn, and let Γ = Γν be a hyper plane with surface

measure σ, defined by

Γν = {x ∈ Rn : x · ν = x0
· ν} (1)

for given ν ∈ Sn−1 and x0
∈ Rn.

The set

Γε = Γ ∩

⋃
k∈Zn

Tk
ε


describes the intersection between the hyper-plane and the periodic back-
ground. Then, for a given ψ ∈ L∞(Ω) ∩ H1(Ω) such that ψ ≤ 0 on ∂Ω, we
define the obstacle

ψε = ψχΓε =

{
ψ(x) if x ∈ Γε,
0 if x < Γε,

and the admissible set

Kψε = {v ∈ H1
0(Ω) : v ≥ ψε}. (2)
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The inequality in (2) is to be interpreted in the sense of trace, i.e. TraceΓε(uε−
ψ) ≥ 0 on Γε and uε ≥ 0 a.e. in Ω\Γε. We consider the following thin obstacle
problem, for f ∈ L2(Ω):

∫
Ω

∇uε · ∇(v − uε)dx ≥
∫

Ω

(v − uε) f dx, for all v ∈ Kψε ,

uε ∈ Kψε .
(3)

The variational inequality (3) has a unique solution uε ∈ Kψε which can
be obtained as the unique minimizer of the strictly convex and coercive
functional

J(v) :=
∫

Ω

1
2
|∇v|2 − f vdx, v ∈ Kψε .

We refer to Evans [6] for the definition of trace and for the above minimiza-
tion problem.

As ε→ 0,we are interested in the asymptotic behaviour of uε. We want
to determine u = limε→0 uε in terms of an effective equation that it solves.
The procedure of finding the effective equation, that does not depend on
any microstructure in Ω, is called homogenization.

1.2. Related Works
In [11], Lee and Shahgholian study the Diriclet problem in a domain

Ω with oscillating boundary data. The boundary data is the restriction to
∂Ω of a function gε that is ε - periodic in Rn. The common feature of that
problem and the present is that the asymptotic behaviour is very sensitive
with respect to the normal field of the boundary, or in this case, the normal
of the hyper-plane.

Obstacle problems in perforated domains, i.e. obstacle problems where
the obstacle is given by

ψε = ψχTε

for some given Tε, have been studied extensively. A common structure of
the set describing the perforations Tε is

Tε =
⋃
k∈Zn

Tk
ε

for some given set T and aε = o(ε), or a periodic distribution of holes on
a hyper-surface in Ω. The paper [5] by Cioranescu and Murat is a stan-
dard reference for these problems and the framework developed therein
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includes the hyper-surface case. Other interesting references for perforated
domains include [1], [2], [3].

The novelty of this paper is that the perforated surface Γε does not have
a lattice structure in the sense that the perforations are not evenly spaced,
and this introduces a substantial difficulty. The approach taken in this
paper is based on the energy method where the construction of correctors
is essential, see section 1.4. Our main reference for this is [5].

1.3. Main Theorem
To describe the effective equation for u = limε→0 uε, we introduce the

averaged capacity, depending on a direction ν. First we recall the usual
capacity of a subset of Rn, A ⊂ B1 in case n = 2.

Definition 1.3.1. If A is a compact subset of Rn, the capacity of A, denoted
cap(A), is

cap(A) = inf
{∫
Rn
|∇ϕ|2dx : ϕ ∈ C∞c (Rn), ϕ ≥ 1 on A

}
, if n ≥ 3,

and

cap(A) = inf
{∫

B1

|∇ϕ|2dx : ϕ ∈ C∞c (B1), ϕ ≥ 1 on A
}
, if n = 2.

There are several ways of extending the capacity to non-compact sets, see
for example [7].

Definition 1.3.2. [Averaged Capacity] Suppose Γ is a hyper plane in Rn with
normal ν ∈ Sn−1 and define the family of hyper planes

Γν(s) := Γ + sν, s ∈ R.

If T ⊂ Rn and
f (s) = cap(T ∩ Γν(s)) (4)

is integrable, we set

capν(T) :=
∫
∞

−∞

f (s)ds

and call this quantity the averaged capacity of T with respect to ν. The set T∩Γν(s)
is illustrated in Figure 1.
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Figure 1: The shape of T and T ∩ (Γ + sν).

Theorem 1.3.3. Assume n ≥ 3 and for a given ν ∈ Sn−1 and x0
∈ Rn, let Γ be the

hyper-plane defined in (1). Let uε be the solution to (3) and set aε = ε
n

n−1 . Then,
for a.e. ν ∈ Sn−1, uε ⇀ u in H1

0(Ω) where u is the unique minimizer of

Jν(v) :=
∫

Ω

1
2
|∇v|2 − f vdx +

1
2

capν(T)
∫

Γ

((ψ − v)+)2dσ, v ≥ 0. (5)

In particular, u is the solution of

−∆u = capν(T)(ψ − u)+dσ + fχ{u>0}. (6)

Remark 1.3.4. It is interesting to consider the case when Γ a more general hyper-
surface, for example a piece of a sphere or cone. In chapter 4, we prove Theorem
4.1.2 which is similar to Theorem 1.3.3 but only valid in dimension n ≥ 5 and
when Γ satisfies the condition 47. We are able to apply theorem 4.1.2 when Γ is a
cylinder, see example 4.1.3, but we cannot verify its hypothesis when Γ is a piece
of a sphere or a cone. This would require much more delicate error estimates of
discrepancy, and remains an interesting problem.

1.4. Outline of the paper
Our proof can be divided into two parts.
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• Local estimate of #(Γ ∩ Tε).

Since the sets Tk
ε are located close to points εk, k ∈ Zn, we need to

understand how often the hyper plane Γ intersects a certain neigh-
borhood of εk, for all εk ∈ Ω. To localize this, consider a set
E ⊂ projRn−1Ω ∩ Γ. Then Γ is close to a point εk = ε(k′, kn) above
E if the xn - coordinate in (εk′, xn) ∈ Γ is close to εkn. Thus we are
led to study the distribution of the xn - coordinates of Γ at points
εk′ ∈ εZn−1. This is done in Section 5 on uniform distribution, where
we recall some classical results and use them to prove the important
Lemma 5.2.2. We prove that for a.e. normal direction ν of the plane
Γ, this distribution is uniform, up to a small error.

• Construction of correctors.

Having control on the intersections we construct correctors wε that
satisfy some standard assumptions, see lemma 2.0.8. The energy of
the correctors, which is closely related to the capacity of the set Γε,
has to be finite and this determines the critical rate of aε. Below in
1.6 we give a heuristic explanation on how to determine aε using
uniform distribution. In Section 2 we develop further properties of
the correctors and prove 2.0.8.

We remark that the character of the problem may change drastically if
the normal of the plane is altered, or if the plane is translated. For example,
if 0 ∈ T, the plane Γ = {xn = 0} intersects every Tk

ε ⊂ Ω for k = (k′, 0), but any
small change in the normal will create completely different intersections.
Also, for Γ = {xn = c} the number of intersections may be zero or very large
depending on a choice of subsequence ε j → 0. However, our result is that
the character of the problem is the same for a.e. normal direction, and is
translation invariant.

1.5. List of Notations

Ω A bounded open subset of Rn, n ≥ 3.
| · | n - dimensional Lebesgue measure.
χE The characteristic function of the set E.
H1

0(Ω) the closure of C∞c (Ω) w.r.t. the norm

‖u‖H1
0(Ω) =

(∫
Ω
|∇u|2dx

) 1
2
.
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Qε(εk) = (−ε/2, ε/2)n + εk, k ∈ Zn.
aε = ε

n
n−1 .

T a compact subset of B1 such that int(T) = T and ∂T is Lipschitz.
Tε = aεT.
Tk
ε = aεT + εk, k ∈ Zn.
Tε =

⋃
k∈Zn Tk

ε.
Ωε Ω \ Tε.
Γ = Γν a hypersurface in Rn with normal ν.
σ surface measure on Γ.
Γε = Γ ∩ Tε.
γk
ε = Γ ∩ Tk

ε.
cap(A) the capacity of the set A, see Definition 1.3.1.
capν(T) the averaged capacity of the set T, see Definition 1.3.2.
Γ′

Ω
= projRn−1Ω ∩ Γ − the projection of Ω ∩ Γ on Rn−1.

Zε = ε−1Γ′
Ω
∩Zn−1.

#A = the number of elements of a finite set A.
N(ε) = #Zε = #

(
ε−1Γ′

Ω
∩Zn−1

)
.

A(εp, t) = #{k′ ∈ Zε : α · k′/Z ∈ (t, t + εp)/Z}.

1.6. Heuristic arguments and computation of the critical rate
The proof relies on the construction of correctors similar to those of

Cioranescu and Murat in [5]. We will prove the existence of a function wε,
called corrector, that satisfies the properties in lemma 2.0.8. Once this has
been established our main theorem follows in a rather standard way, see
Lemma 3.0.9 - 3.0.11. The function (ψ − uε)+ is used in place of zε, which
is bounded if ψ is.

FIGURE 2
We obtain such wε by defining wε locally near the intersection between

Γ and Tk
ε, a component of Tε. Suppose aε < ε/2 is a sequence whose decay

rate is to be determined. For

γk
ε := Γ ∩ Tk

ε,

we have diam(γk
ε) = o(aε) and

γk
ε = aε

(
a−1
ε Γ ∩ εa−1

ε k + T
)

:= aε(Γ ∩ (T + translation)).

We define
wε =

∑
k

wk
ε, (7)
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Figure 2:

where wk
ε is the restriction of wε to Qε(εk), given by

wk
ε = 1 on γk

ε

∆wk
ε = 0 in Bε/2 \ γk

ε

wk
ε = 0 in Qε \ Bε/2,

(8)

see Figure 2. The energy of the correctors, i.e. the quantity∫
Ω

|∇wε|
2dx

has to be uniformly bounded from above and below in order for lemma
2.0.8 to hold. We note that∫

Ω

|∇wε|
2dx =

∑
k

∫
Ω

|∇wk
ε|

2dx,

and ∫
Ω

|∇wk
ε|

2dx ≈ cap(γk
ε).
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Since

cap(γk
ε) = cap(aε(Γ ∩ (T + translation))) =

{
O(an−2

ε ) if n ≥ 3,
O((− log aε)−1) if n = 2,

we should have∫
Ω

|∇wε|
2dx ≈ C

∑
k

cap(γk
ε) =

{
CAε(aε)n−2, n ≥ 3,
CAε(− log aε)−1, n = 2, (9)

where Aε is the number of terms in the sum.
The above energy calculation tells us that the energy of wε is related

with the number of intersection points Aε between Tk
ε and Γ. So we need

to estimate the size of Aε. It is here that standard theory of uniform
distribution and discrepancy enters into the game.

To simplify the exposition we assume for the time being that

Ω = (0, 1)n and Γ = {x · ν = 0}.

Suppose also νn , 0 and that Γ may be represented as

Γ = {(x′, α · x′) : x′ ∈ (0, 1)n−1
}, α = (−ν1/νn, . . . ,−νn−1/νn).

To count the number of intersection points, we just need to consider k′ ∈
ε−1(0, 1)n−1

∩ Zn−1. Among those k′, whether Γ and Tk
ε intersect or not is

determined by the xn - coordinate of Γ at x′ = εk′. In fact, it is necessary
that

ε (α · k′ − kn) ∈ (cε, dε) = (aεc, aεd), for some kn ∈ Z,

where −1
2 < c < d < 1

2 as indicated in Figure 3. Note that for each k′ ∈
ε−1(0, 1)n−1

∩Zn−1 there is a unique kn ∈ Z such that α · k′ − kn ∈ (−1/2, 1/2],
or equivalently, α · k′/Z ∈ (−1/2, 1/2]/Z.

Actually, Γ will intersect some Tk
ε above εk′ if and only if

α · k′/Z ∈ (cε/ε, dε/ε)/Z. (10)

Hence
Aε = #{α · k′/Z ∈ (cε/ε, dε/ε)/Z : k′ ∈ Zε}. (11)

In equation (10) k′ ranges over the set

Zε := {k′ ∈ Zn−1 : εk′ ∈ (0, 1)n−1
},
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Figure 3:

which contains ε1−n + o(ε2−n) points. We see that the distribution (mod 1)
of the sequence

{α · k′}k′∈Zε

will determine the number of intersections. This distribution depends
strongly on the arithmetic properties of the components of α, and thus of
the normal ν. However, we prove later in Section 2 that for a.e. ν ∈ Sn−1 the
sequence is rather ”well” distributed. By this we mean that the fraction of
points in the sequence {α · k′}k′∈Zε that intersect Γε equals the fraction that
the interval (cε, dε) occupies in the ε cube, with some small error. This is
true as long as dε − cε is not ”too” small. That is, if we define

Nε = #Zε ≈ ε
1−n, (12)

then
Aε

Nε
=

dε − cε
ε

+ error, error = o
(

dε − cε
ε

)
= o

(aε
ε

)
, (13)

provided dε − cε is not too small. The error in (13) can be estimated by the
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discrepancy (Definition 5.1.4) of the sequence

{α · k′ : k′ ∈ Zε}.

The smallest distance hε in the normal direction between two parallel
translations of Γ that bound all intersections, see Figure 3, is related to
dε − cε as

(dε − cε)en · ν = hε ⇐⇒ (dε − cε) = hε/νn,

and hε = O(aε). Using this in equation (12) and (13) gives

Aε = O
(
Nε

aε
ε

)
. (14)

Plugging this into (9) and using (12) yields, for n ≥ 3,∫
Ω

|∇wε|
2dx ≤ CAεan−2

ε = Cε1−n aε
ε

an−2
ε =

an−1
ε

εn .

Also, a smaller fraction of the intersections γk
ε will satisfy cap(γk

ε) ≥ can−2
ε ,

so we get a lower bound

c
an−1
ε

εn ≤

∫
Ω

|∇wε|
2dx.

Thus, the choice
aε = ε

n
n−1 , n ≥ 3, (15)

gives uniform lower and upper bounds on the energy of the correctors.
If n = 2, the same argument as above, replacing an−2

ε by (− log aε)−1 and
recognizing that Nε = ε−1, gives the condition

lim
ε→0

−ε−3aε
− log aε

= constant, (16)

and this is true when
aε = −ε3 log ε. (17)

However, in this case dε − cε = O(aε) in (13) is too small, and this is why
Theorem 1.3.3 is not valid in dimension n = 2. Indeed, if the error in (13)
is estimated by discrepancy we get, using (61),

error ≤ εs, for any s ∈ (0, 1) and a.e. normal ν ∈ S1,

but this is not nearly enough since aε/ε = −ε2 log ε is much smaller.
The remaining properties in lemma 2.0.8 will be proven in Section 2 on

correctors.
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2. Correctors

We are going to construct the correctors wε by determining the restric-
tion of wε to each cell Qε(εk) ⊂ Ω, k ∈ Zn. Let

C
k
ε =

{
v ≥ 1 on γk

ε, v ∈ H1
0(Bε/2)

}
, (18)

for any γk
ε = Γ∩ Tk

ε such that γk
ε , ∅. The solution wk

ε of equation (8) can be
characterized as follows:

wk
ε ∈ C

k
ε,∫

Bε/2(εk)
|∇wk

ε|
2dx = inf

{∫
Bε/2(εk)

|∇v|2dx : v ∈ Ck
ε

}
.

(19)

This problem has a unique solution satisfying ∆wk
ε = 0 in Bε/2(εk) \ γk

ε and
wk
ε = 1 on γk

ε, and ∫
Bε/2(εk)

|∇wk
ε|

2dx

cap(γk
ε)

→ 1, ε→ 0. (20)

To see this we make a scaling and a translation x 7→ aεx + εk, w̃k
ε(x) =

wk
ε(aεx + εk). Then (20) becomes∫

Bε/2aε
|∇w̃k

ε|
2dx

cap(γ̃k)
, (21)

where γ̃k = a−1
ε (γk

ε − εk) is independent of ε and w̃k
ε satisfies∫

Bε/2aε

|∇w̃k
ε|

2dx

= inf
{∫

Bε/2aε

|∇v|2dx : v ∈ H1
0(Bε/2aε) and v ≥ 1 on γ̃k

}
,

(22)

which converges to cap(γ̃k).
We proceed with some proporties of averaged capacity, described in

Definition 1.3.2, and its relation to the correctors. First we would like to
point out that under the assumption that T ⊂⊂ B1 has Lipschitz boundary,
it is easy to check that the function f (s) = cap(T ∩ (Γ + sν)) is continuous.
Next we compute the averaged capacity for a ball.
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Example 2.0.1. When T is a ball we can compute the averaged capacity explicitly.
Say T = Br. It is clear that capν(Br) is independent of ν so we assume ν = xn and
Γ = {xn = 0}. Then

capν(Br) =

∫
∞

−∞

cap(Br ∩ (Γ + sxn))ds.

If 0 ≤ s ≤ r,

Br ∩ (Γ + sxn) = B′ρ(s) + sxn, ρ(s) =
√

r2 − s2,

and cap(B′ρ(s) + sxn) = cap(B′ρ(s)) from the translation invariance of capacity. We
recall from Maz’ya, [12], the capacity of the (n − 1)- dimensional ball B′ρ with
respect to Rn, n ≥ 3:

cap(B′ρ) =
ωn

cn
ρn−2,

where ωn is the surface measure of the unit sphere in Rn and
c3 =

π
2
, c4 = 1,

cn =
(n − 4)!!
(n − 3)!!

, if n ≥ 5 is odd,

cn =
π(n − 4)!!
2(n − 3)!!

, if n ≥ 6 is even.

Thus,

capν(Br) = 2
∫ r

0

ωn

cn
(r2
− s2)

n−2
2 ds = 2

ωn

cn
rn−1

∫ 1

0
(1 − s̃2)

n−2
2 ds̃ (s̃ = rs).

When n = 3, this becomes, setting s̃ = sin τ,

capν(Br) = 2
ω3

c3
r2

∫ π/2

0
cos2 τdτ = 2

ω3

c3
r2π

4
=
ω3

c3

π
2

r2 =
4π/3
π/2

π
2

r2 =
4π
3

r2.

Remark 2.0.2. If Tε = aεT, aε = ε
n

n−1 , then

ε−ncapν(Tε) = capν(T).

This follows from the scaling properties of the capacity:

fε(s) := cap(aεT ∩ Γν(s)) = (aε)n−2cap(T,Γν(s/aε)) = (aε)n−2 f (s/aε).
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Thus ∫
fε(s)dt = (aε)n−2

∫
f (s/aε)dt = (aε)n−1

∫
f (s)ds = εn

∫
f (s)ds.

Remark 2.0.3. If we set

gε(s) :=
∫

Bε/2

|∇ws
ε|

2dx,

where ws
ε solves (19) with γs

ε = Tε ∩ Γν(s), then it can be concluded in the same
way that

gε(s) = (aε)n−2Gε(s/aε),

where
Gε(s) :=

∫
Bε/2aε

|∇w̃s
ε|

2dx,

and w̃s
ε solves (22) with γs = T ∩ Γν(s). Moreover,

lim
ε→0

Gε(s) = f (s),

and according to the next lemma the convergence is uniform in s.

Lemma 2.0.4. Let γ ⊂ B1(0) be any compact set. Then,

cap(γ,BR) :=
∫

BR

|∇WR|
2dx→ cap(γ)

uniformly w.r.t. γ where WR is the function satisfying∫
BR

|∇WR|
2dx = inf

v∈KR

∫
BR

|∇v|2dx, KR = {v ∈ H1
0(BR); v = 1 on γ}.

Proof. Since capacity can be characterized by cap(γ) = infv∈K

∫
|∇v|2dx,

K = {v ∈ H1
0(Rn); v ≥ 1 on γ} and KR ⊂ K,

cap(γ) ≤ cap(γ,BR) (23)

holds from the definition for all R > 0.
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We can characterize the capacity by using the function v ∈ H1
0(Rn)

satisfying 
∆v = 0 in Rn

\ γ

v = 1 on γ
v = 0 at infinity.

From [8] page 27, we know that the capacity of γ is given by

cap(γ) =

∫
|Dv|2dx.

Let h(x) = min
{
1,

1
|x|n−2

}
. Then, since ∆h = 0 in Rn

\ B1(0) and h = 1 in B1,

v ≤ h on Rn
\ B1

And hence we have

v ≤
1

Rn−2 =: MR on Rn
\ BR.

Let vR(x) = max
{
0,

v −MR

1 −MR

}
. Then, vR is in KR and hence

cap(γ,BR) ≤
∫

BR\γ

|∇vR|
2dx

=
1

(1 −MR)2

∫
BR\γ

|∇v|2dx

≤
1

(1 −MR)2 cap(γ).

(24)

Finally, we get the conclusion by combining (23) and (24).

Lemma 2.0.5. If ν ∈ Sn−1 is such that νi/ν j
∈ A, for at least one pair (i, j),

i, j ∈ {1, . . . ,n}, then for any measurable subset E of Rn∫
E
|∇wε|

2dx→ σ(Γ ∩ E) capν(T).
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Proof. Without loss of generality we assume νn−1/νn ∈ A, i.e. αn−1 ∈

A, where α ∈ Rn−1 is given by (62). We may also assume c = 0 in the
representation Γ = {x · ν = c}, by Remark 5.2.1. Let

Γ′E = projRn−1(E ∩ Γ), Zε = ε−1Γ′E ∩Z
n−1.

Then
σ(Γ′E) = νnσ(E ∩ Γ). (25)

Note that (εk + Tε) ∩ Γ , ∅ (k = (k′, kn)) is equivalent to

αk′/Z ∈ (cε/ε, dε/ε)/Z⇐⇒ α · k′ − kn ∈ (cε/ε, dε/ε) (26)

for some constants cε = aεc and dε = aεd as described in Figure 3. If (26)
holds, let

t = t(k′) = ε(α · k′ − kn). (27)

Thus t(k′) = O(aε). Since

−εk + ((εk + Tε) ∩ Γ) = Tε ∩ (t(k′)en + Γ) , (28)

the shape of (εk + Tε) ∩ Γ is completely determined by t = t(k′). Let M be

large positive integer and let δ =
d − c

M
.

Define
I(i) = IM(i) = (c + (i − 1)δ,+iδ), i = 1, . . . ,M,

and let
Ai(ε) = #{t(k′)/aε ∈ I(i) : k′ ∈ Zε}, i = 1, . . . ,M.

Then, from lemma 5.2.2, we have

Ai(ε) = (1 + ρ(ε))N(ε)
aεδ
ε
, ρ(0+) = 0,

where N(ε) = #Zε.
Since ∪M

i=1I(i) = (c, d), we have∫
E
|∇wε|

2dx =

M∑
i=1

∑
t(k′)/aε∈I(i)

∫
Bε/2(εk)

|∇wk
ε|

2dx,
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where wk
ε is a solution satisfying (19). From (28), we see that the energy of

wk
ε is the same as that of wtνn

ε in Remark 2.0.3, since

Tε ∩ (t(k′)en + Γ) = Tε ∩ (νnt(k′)ν + Γ) .

That is, ∫
Bε/2(εk)

|∇wk
ε|

2dx =

∫
Bε/2

|∇wtνn
ε |

2dx = gε(tνn).

From this, we have the following:∫
E
|∇wε|

2dx =

M∑
i=1

∑
t(k′)/aε∈I(i)

∫
Bε/2(εk)

|∇wk
ε|

2dx

≤

M∑
i=1

Ai(ε) sup
t/aε∈I(i)

∫
Bε/2(εk)

|∇wνnt
ε |

2dx

=

M∑
i=1

Ai(ε) sup
t/aε∈I(i)

gε(tνn)

≤ (1 + ρ(ε))N(ε)
aεδ
ε

M∑
i=1

sup
t∈I(i)

gε(aεtνn)

≤ (1 + ρ̃(ε))
σ(Γ′E)
εn−1

aεδ
ε

M∑
i=1

an−2
ε sup

t∈I(i)
Gε(tνn),

where ρ̃(0+) = 0.
Taking limit superior on both sides we obtain, by the uniform conver-

gence of Gε,

lim sup
ε→0

∫
E
|∇wε|

2dx ≤ σ(Γ′E)
(d − c)

M

M∑
i=1

sup
t∈I(i)

f (νnt).

Then, passing to the limit M→∞ and using (25),

lim sup
ε→0

∫
E
|∇wε|

2dx ≤ σ(Γ′E)
∫

f (νnt)dt

=
σ(Γ′E)
νn

∫
f (s)ds = σ(Γ ∩ E)

∫
f (s)ds.
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In a completely analogous way we find

lim inf
ε→0

∫
E
|∇wε|

2dx ≥ σ(Γ ∩ E)
∫

f (s)ds.

Hence

lim inf
ε→0

∫
E
|∇wε|

2dx = σ(Γ ∩ E)
∫

f (s)ds,

as claimed.
We proceed with some lemmas that are needed later for the proof of

Lemma 2.0.8. Without loss of generality we may assume, by rotating the
coordinates, that Γ = {xn = 0} and thus dσ = dx′.

Lemma 2.0.6 (Compact embedding with o(ε) error). Suppose vε ⇀ v in H1
0(Ω).

Then
1
ε

∫ ε

0

∫
Γ

(vε(x′, xn) − v(x′, 0))dx′dxn → 0.

Proof. Since Γ is part of the boundary of the set Ω+ = Ω ∩ {xn > 0}, vε has a
trace on Γ. That is, there is a continuous mapping

H1(Ω) 7→ H1/2(Γ).

For a definition of H1/2(Γ) and its properties, see [4] p 51. By the fundamental
theorem of calculus, Hölder’s inequality and Young’s inequality:

1
ε

∫ ε

0

∫
Γ

(vε(x′, xn) − vε(x′, 0))dx′dxn

=
1
ε

∫ ε

0

∫
Γ∩Ω

∫ xn

0
∂ynvε(x′, yn)dyndx′dxn

≤
1
ε

∫ ε

0

∫
Γ∩Ω

(∫ xn

0
dyn

)1/2 (∫ xn

0
|vε(x′, yn)|2dyn

)1/2

dx′dxn

≤
1
ε

∫ ε

0

∫
Γ∩Ω

√
xn

(∫ xn

0
|∂ynvε(x′, yn)|2dyn

)1/2

dx′dxn

≤
1
ε

∫ ε

0

∫
Γ∩Ω

x1/4
n x1/4

n

(∫ xn

0
|∂ynvε(x′, yn)|2dyn

)1/2

dx′dxn

≤
1
ε

∫ ε

0

(1
2
√

xnσ(Γ) +
C
2
√

xn‖v‖2H1
0(Ω)

)
dxn

≤ C
√
ε.

18



Additionally,

1
ε

∫ ε

0

∫
Γ

(vε(x′, 0) − v(x′, 0))dx′dxn

=

∫
Γ∩Ω

(vε(x′, 0) − v(x′, 0))dx′ → 0 as ε→ 0,

since the inclusion H1/2(Γ ∩Ω) ⊂ L2(Γ) is compact.

Next we note that there exist measures µk
ε and νk

ε such that

∆wk
ε = µk

ε − ν
k
ε, suppµk

ε ⊂ ∂Bε(εk), supp νk
ε ⊂ γ

k
ε. (29)

We define
µε =

∑
k

µk
ε. (30)

Lemma 2.0.7. If νi/ν j ∈ A for some i, j ∈ {1, . . . ,n}, then

µε ⇀
∗ capν(T)σ, weakly star in the sense of measures.

That is,

〈µε, ϕ〉 → capν(T)
∫

Γ

ϕdσ, for all ϕ ∈ C∞c (Ω).

Proof. It is clear that∫
Ω

ϕdµε ≤ ‖ϕ‖L∞
∫

Ω

dµε, ϕ ∈ C∞c .

From (29) and the fact that (1 −wε) is zero on Γε = ∪kγk
ε and 1 on ∪k∂Bε(εk)

we get ∫
Ω

dµε =

∫
Ω

∆wε(1 − wε) =

∫
Ω

|∇wε|
2dx ≤ C.

Thus µε ⇀∗ µ for a subsequence, where µ is a finite measure. Since finite
measures on Rn are regular, it is enough to determine limε

∫
A

dµε for every
open and every closed set E ⊂ Ω. Moreover, it is clear that suppµ ⊂ Γ. By
Lemma 2.0.5,∫

E
dµ = lim

ε

∫
E

dµε =

∫
E
|∇wε|

2dx→ capν(T)σ(E ∩ Γ),

which proves the lemma.
We are now in a position to prove the key lemma of the paper.
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Lemma 2.0.8.

For a.e. ν ∈ Sn−1, there exists a sequence of functions wε satisfying

1. wε = 1 on Γε.

2. wε → 0 weakly in H1
0(Ω)

3. For every sequence zε ∈ H1
0(Ω) such that zε = 0 on Γε, ‖zε‖L∞(Ω) ≤ C and

zε → z weakly in H1
0(Ω) there holds

lim
ε→0
〈∆wε, ϕzε〉H−1,H1

0
→ capν(T)

∫
Γ

ϕzdσ, (31)

for all ϕ ∈ D(Ω).

Proof. By Lemma 5.2 there exists a pair (i, j), i , j such that νi/ν j ∈ A for
a.e. ν ∈ Sn−1. The first property (1) is clear from the construction of wε, see
(7)-(8). By Lemma 2.0.5, wε is uniformly bounded in H1

0(Ω). Thus we can
choose a subsequence wε j which converges to some w0 weakly in H1

0(Ω).
Since wε j converges w0 strongly in L2(Ω), we can select a subsequence of wε j

which converges to w0 almost everywhere. But, wε converges to 0 except
on Γ and hence w0 = 0. Now, we will show (3). By applying Lemma 2.0.6
to the function vε = zεϕ, we see that

1
ε

∫ ε/2

−ε/2

∫
Γ∩Ω

|(zεϕ)(x′, xn) − (zϕ)(x′, 0)|dx′dxn

=

∫ 1/2

−1/2

∫
Γ∩Ω

|(zεϕ)(x′, εxn) − (zϕ)(x′, 0)|dx′dxn → 0

and thus

(zεϕ)(x′, εxn) =: vε(x′, xn)→ v(x′, xn) := (zϕ)(x′, 0),

a.e. on S := (Γ ∩Ω) × (−1/2, 1/2). By Egoroff’s theorem we can assert the
existence of a set Sδ such that

vε → v uniformly on Sδ, |S \ Sδ| < δ,

for any δ > 0. Upon rescaling we find:

There exists ε0 > 0 such that
|(zεϕ)(x′, xn) − (zϕ)(x′, 0)| < δ on Sεδ, |S

ε
\ Sεδ| < εδ, for all ε < ε0,
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where, for any set E ∈ Rn, Eε = {(x′, εxn) : (x′, xn) ∈ E}. Note that since
∆wε = µε − νε with supp νε ⊂ Γε and zε = 0 on Γε,∫

Ω

∆wεϕzεdx =

∫
Ω

ϕzεdµε.

This allows us to compute∣∣∣∣∣∫
Ω

(zεϕ − zϕ)dµε

∣∣∣∣∣ ≤ ∫
Sε
δ

|zεϕ − zϕ|dµε + 2‖zϕ‖L∞
∫

Sε\Sε
δ

dµε. (32)

According to Lemma 2.0.7 the first integral on the right hand side of
(32) is bounded by

δ

∫
Ω

dµε → δcapν(T)σ(Γ). (33)

For the other term, we may cover S \ Sδ by a countable union of cubes
Qi such that

∑
i |Qi| < 2δ and, say, |Qi| = ηn

i . Let Q′i = {x′ : (x′, xn) ∈ Qi} and
note that Qi = Q′i × (x0

n, x0
n +ηi) and Qε

i = Q′i × (εx0
n, εx0

n +εηi), for some x0
n. To

estimate the second integral in (32) it is convenient to construct a barrier
for µε. Let Br ⊃ T and let wε satisfy

wε = 1 on Braε
wε = 0 on ∂Bε/2
∆wε = 0 in Bε/2 \ Braε

(Note that Braε ⊂ Bε/2 if ε is small enough). Then since Braε ⊃ Tε, the
maximum principle tells us that wε ≥ wε in Bε/2. This implies that

0 ≤ −
∂wε

∂n
|∂Bε/2 ≤ −

∂wε

∂n
|∂Bε/2 ≤ Cε1−n(aε)n−2.

It follows that ∫
A

dµε ≤ C
∑

k

∫
∂Bε/2(εk)∩A

ε1−n(aε)n−2dS,

for any measurable A ⊂ Ω. In particular,∫
Qε

i

dµε ≤ C
∑

k

∫
∂Bε/2(εk)∩Qε

i

ε1−n(aε)n−2dS

≤ C′ηi

∑
k

∫
∂Bε/2(εk)∩Q′i×(−ε/2,ε/2)

ε1−n(aε)n−2dS,
(34)
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where ∫
∂Bε/2(εk)∩Q′i×(−ε/2,ε/2)

ε1−n(aε)n−2dS ≤ Cηian−2
ε .

This follows from the fact the xn axis is scaled by ηi:

Area(∂Bε/2(εk) ∩Qε
i ) = Area(∂Bε/2(εk) ∩Q′i × (εx0

n, εx0
n + εηi))

≤ Area(∂Bε/2(εk) ∩Q′i × (−ηiε/2, ηiε/2))
≤ Cηi Area(∂Bε/2(εk) ∩Q′i × (−ε/2, ε/2))

≤ Cηiε
n−1,

where Area(E) =
∫

E
dS. Moreover we know that, for small ε, the sum in

(34) has approximately ε−naεηn−1
i terms, by Lemma 5.2.2. Thus

∫
Qε

i
dµε ≤

Cηn
i = C|Qi|, ε small. In conclusion,∫

Sε\Sδε

dµε ≤ C
∑

i

|Qi| ≤ 3Cδ.

It follows that ∣∣∣∣∣∫
Ω

(zεϕ − zϕ)dµε

∣∣∣∣∣ ≤ Cδ.

Thus, according to (32)-(33), it remains to prove that

lim
ε→0

∫
Ω

zϕ(x′, 0)dµε

exists. Since ϕz is a measurable function on Γ there exists by Lusin’s
theorem a set Γδ such that |Γ \ Γδ| < δ and ϕz is continuous on Γδ. By
extending the function ϕz(x′, 0) and Γ to Ω by ϕz(x′, xn) = ϕz(x′, 0), it
follows from Lemma 2.0.7 that

lim
ε→0

∫
Γδ

ϕzdµε = capν(T)
∫

Γδ

ϕzdσ.

Using (32) and Lemma 2.0.7 we obtain

lim
ε

∫
Ω

zεϕdµε = capν(T)
∫

Γδ

zϕdσ + lim
ε

∫
Γ\Γδ×(−ε/2,ε/2)

zϕdµε.

Since the second term is O(δ) this completes the proof.
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3. Proof of Theorem 1.3.3

Having established Lemma 2.0.8, Theorem 1.3.3 follows in a standard
way. The arguments are very similar to those in [5], and we will just
indicate the necessary modifications that have to be made. We always
assume that the normal ν satisfies νi/ν j for some i , j, so that Lemma 2.0.8
may be applied.

Lemma 3.0.9 (l.s.c. of the energy). Let zε ∈ H1
0 be a uniformly bounded se-

quence which is bounded uniformly in ε satisfies zε ⇀ z in H1
0 and zε = 0 on Γε.

Then, we have

lim inf
∫

Ω

|∇zε|2dx ≥
∫

Ω

|∇z|2dx + capν(T)
∫

Γ

z2dσ.

Proof. Identical to that of [5].

Lemma 3.0.10. Let uε be the solution of equation (3). Then, we have the following
estimate:

lim sup
∫

Ω

1
2
|∇uε|2 − f uεdx

≤ inf
v∈H1

0 , v≥0

∫
Ω

1
2
|∇v|2 − f vdx +

1
2

capν(T)
∫

Γ

((ψ − v)+)2dσ.
(35)

Proof. Let v ∈ C∞c (Ω) and v ≥ 0. Define

vε = (wε − 1)(ψ − v)+ + (ψ − v)− + ψ

and let us prove that vε ∈ Kψε . If x ∈ Γε and v(x) > ψ(x), then vε =
−(ψ− v)(x) +ψ(x) = v(x) > ψ(x). If x ∈ Γε and v(x) ≤ ψ(x), then vε(x) = ψ(x),
since wε = 1 on Γε. It remains to show that vε ≥ 0 in Ω \ Γε. If ψ(x) < v(x),
vε(x) = v(x) ≥ 0. If ψ(x) ≥ v(x), then

vε(x) = wε(ψ − v)(x) + v(x) ≥ 0.

Note also that vε ⇀ v weakly in H1
0(Ω). From the definition of uε we have

J(uε) ≤ J(vε).

We refer to [5] for the rest of the proof.
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Lemma 3.0.11.

lim inf
∫

Ω

1
2
|∇uε|2 ≥

∫
Ω

1
2
|∇u|2 + capν(T)

∫
Γ

((ψ − u)+)2dσ.

Proof. We use the identity

uε = −(ψ − uε) + ψ = −(ψ − uε)+ + (ψ − uε)− + ψ.

Since uε ≥ ψ on Γε, (ψ−uε)+ = 0 on Γε. Now consider
∫

Ω
|∇uε|2dx and apply

Lemma 3.0.9 on the term (ψ − uε)+.
Proof. [Proof of Theorem 1.3.3] Let uε be the solution of (3) and let v ∈ H1

0(Ω)
be any function such that v ≥ ψ+ in Ω. Then v ∈ Kψε for all ε and one easily
obtains a uniform bound of ‖uε‖H1

0(Ω) by using v in (3). Thus uε ⇀ u in
H1

0(Ω) for a subsequence. From Lemma 3.0.10 and Lemma 3.0.11,∫
Ω

1
2
|∇u|2 − f udx + capν(T)

1
2

∫
Γ

((ψ − u)+)2dσ

≤ lim inf
ε→0

∫
Ω

1
2
|∇uε|2 − f uεdx ≤ lim sup

ε→0

∫
Ω

1
2
|∇uε|2 − f uεdx

≤

∫
Ω

1
2
|∇v|2 − f vdx + capν(T)

∫
Γ

((ψ − v)+)2dσ,

for all v ∈ H1
0(Ω), v ≥ 0. This proves that u minimizes Jν over {v ∈

H1
0(Ω) : v ≥ 0}, from which the uniqueness of the limit follows. Thus

all subsequential limits agree and this implies that the entire sequence
{uε}ε converges to u, weakly in H1

0(Ω).
The fact that u solves (6) follows from standard considerations in vari-

ational inequalities.

4. The Case of General Hyper-Surfaces

In this section we consider again problem (3), but for a more general
class of surfaces than hyper-planes. Our assumptions are that Γ is a hyper-
surface inRn of class C2 with a unit normal-field ν(x) such that νn(x) ≥ λ > 0.
Thus

Γ ∩Ω = {(x′, h(x′)) : x′ ∈ Γ′Ω}, ‖h‖C2(Γ′
Ω

) ≤ C, (36)

for some h ∈ C2(Γ′
Ω

). We recall that Γ′
Ω

= projRn−1Γ∩Ω. As before we define

α(x) = (α1(x), . . . , αn−1(x)), αi = νi/νn. (37)
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The idea is to locally approximate Γ by its tangent-plane in a neigbourhood
of each x ∈ Γ ∩ Ω. This can be compared to the theory developed in
[11]. The diameter of this neigbourhood has to be small enough in order
for the tangent-plane to be close to Γ, but still large enough in order for
some averaging to occur. This leads to two necessary conditions on these
neigbourhoods. For any xi ∈ Γ, let Qrε(xi) be the cube of side rε and center
xi, and denote by πε(xi) the restriction to Qrε(xi) of the tangent-plane to Γ at
xi.

The first condition comes from the fact that the distance between Γ and
πε(xi) has to small enough in order for the intersections between πε(xi) and
Tε to be the same as those between Γ and Tε, up to a small error. Since the
size of the perforations are of order aε = εn/(n−1) and the distance between
Γ and πε(xi) in Qrε(xi) is controlled by Cr2

ε, according to (36) and Taylor
expansion, it is necessary that r2

ε = o(aε). If we assume rε = εq, then

r2
ε = o(aε) if and only if q >

n
2(n − 1)

. (38)

The second condition comes from the discrepancy of the sequence

ωrε = ωrε(xi) = {k′ · α(xi) : k′ ∈ ε−1Q′rε(xi) ∩Zn−1
}. (39)

The cardinality of the set ε−1Q′rε(xi) ∩Zn−1 is

N(ε) =
(rε
ε

)n−1

= ε(q−1)(n−1). (40)

We need to determine the number

A(εp) = #{k′ ∈ ε−1Q′rε(xi) ∩Zn−1 : k′ · α/Z ∈ [t, t + εp]/Z}, (41)

for p = 1/(n − 1) and any t ∈ (0, 1), compare Section 5.2, equation (67). If
we assume αi ∈ A for some 1 ≤ i ≤ n − 1, then an application of step 1 in
Lemma 5.2.2 leads to the estimate∣∣∣∣∣A(εp)

N(ε)
− εp

∣∣∣∣∣ ≤ Dε(xi) = o
( 1
ε(q−1)s

)
, for any s ∈ (0, 1), (42)

where Dε(xi) is the discrepancy of the sequence ωrε(xi) defined in (39).
Solving (42) for A(εp) we find

A(εp) = N(ε)εp + N(ε)o(εs(1−q)). (43)
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Clearly, this information has value only if ε1−q = o(εp), or equivalently
p < 1 − q. This leads to the condition

q <
n − 2
n − 1

. (44)

In conclusion, we should locally approximate the hyper-surface Γ by
its tangent-plane in cubes Qεq(xi) where q has to satisfy both (38) and (44),
i.e.

n
2(n − 1)

< q <
n − 2
n − 1

. (45)

This is possible if and only if n ≥ 5.

4.1. Effective equations
The correctors wε constructed in Section 2 are defined in precisely the

same way for the hyper-surface case. We shall start by characterizing those
surfaces for which we are able to generalize our homogenization result,
Theorem 1.3.3. Fix s ∈ (0, 1). Let

Γ j = {x ∈ Γ : Dε(x) ≤ jεs(1−q)
}, (46)

where Dε(x) is the discrepancy of ωrε(x). The sequence ωrε(x) is defined in
(39). If αi(x) ∈ A for some 1 ≤ i ≤ n − 1, then x ∈ Γ j for large enough j, by
(42). In fact, σ - a.e. x ∈ Γ ∩Ω belongs to Γ j for large enough j. This can be
proved in the same way as Lemma 5.2. To prove a homogenization result
for Γ, we need the following hypothesis on Γ:

lim
j→∞

cap((Γ \ Γ j) ∩Ω) = 0. (47)

Lemma 4.1.1. Let u j
ε solve (3) with Γ j in place of Γ. Then as ε → 0, u j

ε ⇀ u j

where u j is the unique minimizer of

J j
ν(v) :=

∫
Ω

1
2
|∇v|2 − f vdx +

1
2

∫
Γ j

capν(x)(T)((ψ − v)+)2dσ(x), v ≥ 0. (48)

In particular, u j is the solution of

−∆u j = capν(x)(T)(ψ − u)+dσ|Γ j + fχ{u j>0}. (49)

That is, capν(x)(T) depends in general on the point x ∈ Γ j.
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Proof. To indicate the dependence of the correctors on Γ j, we write wε, j for
the corrector and µε, j for the corresponding measure, given by (29)-(30).

Fε(x) =
1

σ(Qεq(x) ∩ Γ j)

∫
Qεq (x)

|∇wε, j|
2dy

converges to F(x) = capν(x)(T) as ε → 0, by Lemma 2.0.5. Furthermore
this convergence is uniform by definition of Γ j. The generalization of
Lemma 2.0.6 to a hyper-surface of class C2 is strainght forward. It thus
remains only to determine the weak limit of µε, j. For any ε > 0, we may
cover Γ j by a finite number of disjoint sets

Qεp(xi
ε) ∩ Γ j, xi

ε ∈ Γ j.

Thus, if E ⊂ Rn, then

µ j(E) = lim
ε→0

∫
E
|∇wε, j|

2dx = lim
ε→0

∑
i

σ(Qεp(xi
ε) ∩ Γ j)Fε(xi

ε)

=

∫
Γ∩E

capν(x)(T)dσ(x),

due to the uniform convergence of Fε. The result follows exactly as in the
hyper-plane case, but equation (31) is replaced by

lim
ε→0
〈∆wε, j, ϕzε〉 →

∫ j

Γ

capν(x)(T)ϕzdσ(x). (50)

Theorem 4.1.2. Let uε solve (3) and suppose Γ satisfies assumption (47). Then
as ε→ 0, uε ⇀ u in H1

0(Ω) where u is the unique minimizer of

Jν(v) :=
∫

Ω

1
2
|∇v|2 − f vdx +

1
2

∫
Γ

capν(x)(T)((ψ − v)+)2dσ(x), v ≥ 0. (51)

In particular, u is the solution of

−∆u = capν(x)(T)(ψ − u)+dσ + fχ{u>0}. (52)
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Proof. Let C = ‖ψ‖L∞ and let v j be the capacity potential of Γ \ Γ j. Then
−∆v j

≥ 0 and v j
≥ χΓ\Γ j . By our assumption, (47), v j ⇀ 0 in H1

0(Ω). Since
ψ j
ε = ψχ

Γ
j
ε
≤ ψχΓε = ψε we have u j

ε ≤ uε. Let g j
ε = u j

ε + Cv j. Then g j
ε ≥ ψε

and −∆g j
ε ≥ 0 in Ω. Therefore g j

ε ≥ uε in Ω. Indeed, otherwise min{g j
ε,uε}

would be a supersolution of (3) that is smaller than uε on some set of
positive capacity, contradicting the minimality of uε. Thus

u j
ε ≤ uε ≤ u j

ε + v j.

Taking first ε→ 0, then j→∞, we see that

u j ⇀ u.

Since ∫
Ω

1
2
|∇u j
|
2 + f u jdx +

1
2

∫
Γ j

capν(x)(T)((ψ − u j)+)2dσ(x) (53)

≤

∫
Ω

1
2
|∇v|2 + f vdx +

1
2

∫
Γ j

capν(x)(T)((ψ − v)+)2dσ(x), (54)

for all v ∈ H1
0(Ω), v ≥ 0, (55)

the conclusion follows after passing to the limit j→∞ in (53), and using the
weak lower semicontinuity of the norm on H1

0(Ω) for the term
∫

Ω
1
2 |∇u j

|
2dx.

We conclude by giving an example of a hyper-surface Γ that satisfies
(47).

Example 4.1.3. Let θ be a real number such that tanθ ∈ A and set e =
(cosθ, sinθ, 0, · · · , 0) ∈ Rn and e⊥ = (sinθ,− cosθ). Let g be a smooth real
valued function depending on the n − 2 variables x3, . . . , xn and define the graph

G = {g(x3, . . . , xn)e + (0, 0, x3, . . . , xn)}.

Then a hyper-surface in Rn is constructed by

Γ = G + te⊥, t ∈ R.

The normal vector ν(x) to Γ at x is always orthogonal to e⊥ and thus ν2(x)/ν1(x) =
tanθ ∈ A for all x ∈ Γ. This means that Γ = Γ j when j is large enough, which
clearly implies (47).
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5. Appendix: Uniform distribution mod 1

This section contains a general discussion of uniform distribution mod
1, and builds up the necessary theory for the present homogenization
problem. An excellent introduction to the theory of uniform distribution
is the book by Kuipers and Niederreiter, [10]. For the readers convenience
we have gathered the basic theory of uniform distribution, in particular
discrepancy, here. Most of the material, except possibly Lemma 5.2.2, is
standard.

A fundamental problem already encountered in the introduction was
that of estimating the error in the approximation

Aε

Nε
≈

dε − cε
ε

,

where Nε is the number of k′ ∈ Zn−1 such that

(k′, k′ · α) ∈ ε−1Ω,

and Aε the fraction of these points that intersect Tε, see (13). Thus we are
led to study the distribution mod 1 of sequences of this type. We start
by considering sequences kα with k ∈ Z and α ∈ R. This will then be
generalized to the higher dimensional case.

5.1. Known Result for the 1-dimensional sequence {kα}
First we define the notion of uniform distribution.

Definition 5.1.1 (Uniform distribution mod 1).

1. Let {x j}
∞

j=1 be given sequence of real numbers. For a positive integer N and

a subset E of [0, 1], let the counting function A
(
E; {x j}; N

)
be defined as the

numbers of terms x j, 1 ≤ j ≤ N, for which x j ∈ E (mod 1).

2. The sequence of real numbers {x j} is said to be uniformly distributed modulo
1 if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1 we have

lim
N→∞

A
(
[a, b); {x j}; N

)
N

= b − a. (56)
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Since
∫

[0,1]
χ[a,b)dx = b − a, we can deduce

lim
N→∞

1
N

N∑
n=1

χ[a,b)(xn) =

∫
[0,1]

χ[a,b)dx, (57)

where we have extended χ[a,b) to a 1-periodic function in R.
This simple observation and approximation technique lead to the fol-

lowing criterion.

Theorem 5.1.2. The sequence {x j}
∞

j=1 is uniformly distributed mod 1 if and only
if for every real-valued continuous function f defined on the closed unit interval
I = [0, 1], we have (upon extending f periodically to R)

lim
N→∞

1
N

N∑
n=1

f (xn) =

∫
[0,1]

f dx. (58)

Fourier expansion of the function f above leads to a useful criterion for
uniform distribution.

Lemma 5.1.3 (Weyl’s criterion). A sequence {x j}
∞

j=1 is uniformly distributed
mod 1 if and only if

1
N

N∑
j=1

e2πilx j → 0, as N→∞,

for any nonzero l ∈ Z.

Let us start by assuming that α ∈ R and k ∈ N. Then it follows from
Weyl’s criterion that the sequence {kα}k is uniformly distributed if and only
if α is irrational.

In fact, it turns out that we will need more information than ”the se-
quence {kα}k has uniform distribution”. If a sequence {x j} is uniformly
distributed the above definition implies that

A([a, b); {x j},N) = (b − a)N(1 + ρ(N−1)),

where ρ(0+) = 0. However, if, for example a = 0 and b = N−
1
2 , we cannot

assert that

A([0,N−
1
2 ); {x j},N) = N−

1
2 N(1 + ρ(N−1)), ρ(0+) = 0. (59)
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This is a much stronger result that relies on deeper arithmetic properties
of of α.

To proceed, we recall the discrepancy of a sequence {x j}
∞

j=1.

Definition 5.1.4. Let {x j}
∞

j=1 be a sequence of real numbers. The discrepancy of
its N first elements is the number

DN({x j}
N
j=1) = sup

0≤a<b≤1

∣∣∣∣∣A([a, b); {kα},N)
N

− (b − a)
∣∣∣∣∣ .

If x j = jα, we simply write DN(α).
Note that

|A([0,N−
1
2 ); {x j},N) −N−

1
2 N| = N

∣∣∣∣∣∣∣A([0,N−
1
2 ); {x j},N)
N

−N−
1
2

∣∣∣∣∣∣∣
≤ NDN(α),

by definition of the discrepancy. Thus if DN = o(N−
1
2 ) we obtain (59). The

discrepancy of sequences {kα}∞k=1, α ∈ R has been studied extensively. Here
are some strong results:

Theorem 5.1.5. [9]
NDN(α)

log N log(log N)
→

2
π2 (60)

in measure w.r.t. α as N → ∞. In particular, this result is true for a.e. α in a
bounded set.

Theorem 5.1.6. [10] For a.e. α ∈ R holds

DN(α) = O

 log2+δ N
N

 ,
for any δ > 0.

Theorem 5.1.5 is due to Harry Kesten, [9], and Theorem 5.1.6 can be found
as an exercise in [10]. The importance of these theorems to the application
at hand is that

DN(α) = o
( 1
Np

)
, for and any 0 < p < 1. (61)

In view of Theorem 5.1.6, the condition (61) holds for a.e. α ∈ R.

Definition 5.1.7. If α ∈ R satisfies the condition of (61) we write

α ∈ A.
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5.2. Application to the sequence {k′ · α}
Let us describe how to apply the theory of uniform distribution mod 1

to our homogenization problem. Let Γ = {x · ν = x0 · ν}. Then the limiting
energy of the correctors,

lim
ε→0

∫
Ω

|∇wε|
2dx,

determines the character of the limit problem, as described in the outline.
As soon as we know how many times Γ intersects a certain portion of Tε,
this energy may be computed. By assuming νn , 0, Γ can be represented
by a graph of an affine function as follows:

Γ = {(x′, α · x′ + c)},

where

αi = −νi/νn for i = 1, . . . ,n − 1, (62)
c = x0 · ν/νn, (63)

x′ ∈ Rn−1.

We assume c = 0, but see Remark 5.2.1.
To make our problem more precise, we introduce a few notations first.

Let Γ′
Ω

be the projection of Γ ∩Ω on Rn−1
× {0}, i.e.

Γ′Ω = {x′ ∈ Rn−1 : (x′, xn) ∈ Ω ∩ Γ for some xn ∈ R} (64)

and let
Zε = ε−1Γ′Ω ∩Z

n−1. (65)

As we saw in the introduction, for any fixed k′ ∈ Zε, there exists a
unique kn ∈ Z such that

α · k′ − kn ∈

[
−

1
2
,

1
2

)
. (66)

We shall only consider k = (k′, kn) ∈ ε−1Ω ∩ Zn such that (66) holds and
k′ ∈ Zε. Then the number α · k′ − kn determines where Γ intersects Qε(εk).
Since the perforations

Tk
ε = aεT + εk, aε = ε

n
n−1
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have decay rate aε, we have to determine the number of points α · k′ − kn in
any interval of length proportional to

aε/ε = εp, p = 1/(n − 1). (67)

We recall that, for [t, t + εp) ⊂ [−1/2, 1/2),

α · k′ − kn ∈ [t, t + εp) if and only if α · k′/Z ∈ [t, t + εp)/Z.

For this reason we define

N(ε) := #Zε = #
(
ε−1Γ′Ω ∩Z

n−1
)
, (68)

A(εp, t) := #{k′ ∈ ε−1Γ′Ω ∩Z
n−1 : α · k′/Z ∈ [t, t + εp)/Z}. (69)

Note that A(εp, t) and N(ε) depend on α and the set Γ′
Ω

. Our aim is to prove
that whenever some αi ∈ A,

A(εp, t) = (1 + ρ(ε))N(ε)εp, ρ(0+) = 0,

for some modulus of continuity ρ(ε) that is independent of t.

Remark 5.2.1. If c , 0 in (63) we get

A(εp, t) = #{k′ ∈ ε−1Γ′Ω ∩Z
n−1 : (αk′ + c/ε)/Z ∈ (t, t + εp)/Z}.

But if this is asymptotically independent of t for c = 0, then the same holds for
any c. The set Γ′

Ω
will however depend on c.

For notational convenience we prove the next lemma for a set E ⊂ Rm,
replacing Γ′

Ω
by E in (68) and (69). The result then follows by taking E = Γ′

Ω
,

m = n − 1. We remark that Lemma 5.2.2 below could possibly be found in
the litterature, but we have not been able to retrieve it. However, Step 1 is
essentially a consequence of Theorem 2.6 in [10].

Lemma 5.2.2. Let E ⊂ Rm be Lebesgue measurable and have positive measure.
Let α = (α1, . . . , αm) and assume αi ∈ A, for at least one i ∈ {1, . . . ,m}. Let

N(ε) = #
(
ε−1E ∩Zn−1

)
, (70)

A(εp, t) := #{k′ ∈ ε−1E ∩Zn−1 : α · k′/Z ∈ [t, t + εp)/Z}. (71)

Then for any 0 < p < 1,

A(εp, t) = (1 + ρ(ε))N(ε)εp, for some ρ such that ρ(0+) = 0.
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To prove the lemma we will use a Fubini-type summation argument
and the classical result concerning the distribution mod 1 of sequences of
the type {kα}k∈N, (61). The idea is to control E(εp) in (??) by a quantity of
the type

Dε−1(αi),

where Dε−1(αi) is the discrepancy of the sequence { jαi
}, 1 ≤ j ≤ ε−1, and

αi
∈ A.

Proof. [Proof of Lemma 5.2.2] Step 1. Suppose first that E is a cube,
E = x + (a, b)m. Without loss of generality we may assume αm ∈ A. Let

S′ε := {k′ ∈ Zm−1 : (k′, km) ∈ ε−1E, for some km ∈ Z}. (72)

If k′ ∈ S′ε, there exist integers mε,Mε such that

(k′, km) ∈ (ε−1E) ∩Zm, for mε ≤ km ≤Mε. (73)

Hence
N(ε) = (#S′ε)Hε, Hε = Mε −mε.

Let

Ak′(εp, t) = #{km : α′ · k′ + αmkm ∈ [t, t + εp]/Z,mε ≤ km ≤Mε},

where α′ = (α1, . . . , αm−1). Then

A(εp, t) =
∑
k′∈S′ε

Ak′(εp, t).

From (73) we conclude that

Ak′(εp, t)
= #{km : α′ · k′ + αmkm ∈ [t, t + εp]/Z,mε ≤ km ≤Mε}

= #{km : α′ · k′ + (mε − 1)αm + kmαm ∈ [t, t + εp]/Z, 1 ≤ km ≤ Hε + 1}
= #{km : kmαm ∈ [t̃, t̃ + εp]/Z, 1 ≤ km ≤ Hε + 1}

for some t̃ where Hε = Mε −mε. So, for fixed k′ ∈ S′ε we can apply (61)
to the sequence

{km : kmαm ∈ [t̃, t̃ + εp]/Z, 1 ≤ km ≤ Hε}.
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Hence we have the following estimate which is uniform in t and t̃:∣∣∣∣∣Ak′(εp, t))
Hε

−

∣∣∣[t̃, t̃ + εp]
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣Ak′(εp, t)
Hε

− εp
∣∣∣∣∣ ≤ DHε(αm) = o

(
H−p
ε

)
, 0 < p < 1.

From the above estimate, we have∣∣∣∣∣A(εp, t)
N(ε)

− εp
∣∣∣∣∣ ≤ Hε

Nε

∑
k′∈S′ε

∣∣∣∣∣Ak′(εp, t)
Hε

− εp
∣∣∣∣∣

≤
Hε

Nε

∑
k′∈S′ε

DHε(α
m) = DHε(α

m) = o(εp), as ε→ 0.
(74)

Step 2. Suppose E is the union of a finite number of disjoint cubes,

E =

M⋃
j=1

Q j, Q j
∩Qi = ∅ if i , j.

Let

N j(ε) = #
(
ε−1Q j

∩Zn−1
)
,

A j(εp, t) := #{k′ ∈ ε−1Q j
∩Zn−1 : α · k′/Z ∈ [t, t + εp)/Z}.

Then

N(ε) =
∑

j

N j(ε),

A(εp, t) =
∑

j

A j(εp, t).

Hence we obtain ∣∣∣∣∣A(εp, t)
N(ε)

− εp
∣∣∣∣∣ =

∑
j

N j(ε)
N(ε)

∣∣∣∣∣∣A j(εp, t)
N j(ε)

− εp

∣∣∣∣∣∣ .
By Step 1. each term in this sum is o(εp).
Step 3. For the general case, the fact that the Lebesgue measure is

regular allows us, for any given δ > 0, to choose domains L and U consisting
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of a finite number of disjoint cubes such that L ⊂ E ⊂ U and |U−L| < δ. Let
AL(εp, t), NL(ε) and AU(εp, t), NU(ε) be given by (70)-(71), with E replaced
by L and U respectively. Then, from the relation L ⊂ E ⊂ U, we have

ε−p

(
AL(εp, t)
NU(ε)

− εp

)
≤ ε−p

(
A(εp, t)

N(ε)
− εp

)
≤ ε−p

(
AU(εp, t)

NL(ε)
− εp

)
.

The third term of above can be written as

ε−p

(
AU(εp, t)

NL(ε)
− εp

)
= ε−p NU

NL

(
AU(εp, t)

NU(ε)
− εp

)
+

(NU

NL
− 1

)
.

Since lim
NU

NL
=
|U|
|L|

, we have

lim sup
ε→0

ε−p

(
A(εp, t)

N(ε)
− εp

)
≤ lim sup

ε→0
ε−p NU

NL

(
AU(εp, t)

NU(ε)
− εp

)
+

(
|U|
|L|
− 1

)
≤ (1 + 2δ) lim

(
AU(εp, t)

NU(ε)
− εp

)
+
δ
|L|

≤
δ
|L|

Similarly, we have

lim inf
ε→0

ε−p

(
A(εp, t)

N(ε)
− εp

)
≥ −

δ
|L|
,

and the convergence is uniform with respect to t. This completes the proof.
For a plane Γ = {x ·ν = c}we have shown that if ν j , 0, α = (α1, . . . , αn−1),

αi = νi/ν j, i , j and if αi ∈ A for some i, then

A(εp, t)
N(ε)

= εp + o(εp), 0 < p < 1.

It is clearly desirable to determine the set of directions ν ∈ Sn−1 for which
this holds.

Lemma 5.2.3. For a.e. ν ∈ Sn−1, there is a pair νi, ν j such that νi/ν j ∈ A.
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Proof. Fix a set E j ⊂ Sn−1 and suppose ν j ≥ λ > 0 on E j. Let Ẽ j = {ν ∈ E j :
νi/ν j < A for i , j}. If we prove mSn−1(Ẽ j) = 0 we are done, since Sn−1 may
be covered by sets {E j}1≤ j≤n such that ν j > λ on E j, for some small λ. Let
Φ : Sn−1

→ Rn−1 be a local diffeomorphism such that

mSn−1(Ẽ j) =

∫
Φ(Ẽ j)

A(Φ−1(u))detDΦ−1(u)du,

du Lebesgue measure on Rn−1.

Define a new diffeomorphism Ψ : E j → Rn−1 by Ψ(ν) = (νi/ν j)i, j. Then∫
Φ(Ẽ j)

A(Φ−1(u))detDΦ−1(u)du

=

∫
Ψ(Ẽ j)⊂{v:vi<A, i, j}

A(Ψ−1(v))|detDΨ−1
|dv = 0,

since meas({vi ∈ R : vi < A}) = 0 for any i , j.
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