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Abstract

Consider the minimum problems of obstacle type

min

{∫
Ω
|Du|2dx : u ≥ ψε on P, u = 0 on ∂Ω

}
,

as ε→ 0. Here ψε is a periodic function of period ε, constructed from
an appropriately rescaled fixed function and P ⊂⊂ Ω ⊂ Rn is a subset
of the hyper-plane {x ∈ Rn : x ·η = 0}. We assume n ≥ 3 and that the
normal η satisfies a generic condition that guarantees certain ergodic
properties of the quantity

#
{
k ∈ Zn : P ∩ {x : |x− εk| < εn/(n−1)}

}
.
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Under these hypotheses we compute explicitly the limit functional of
the obstacle problem above, which is of the type

H1
0 (Ω) 3 u 7→

∫
Ω
|Du|2dx+

∫
P
G(u)dσ.

1 Preliminaries and Main Result

1.1 Introduction of the Problem

We consider an obstacle problem in a domain Ω ⊂ Rn for n ≥ 3. The
obstacle is the restriction to a hyper-plane of a rescaled, periodically extended
function. The given data in the problem is

1. A domain Ω in Rn, n ≥ 3, i.e. a bounded, open, connected subset of
Rn.

2. A continuous function ψ with compact support in B1/2 = {x ∈ Rn :
|x| < 1/2}.

3. A hyper-plane Π = {x ∈ Rn : x · η = 0} with unit normal η =
(η1, . . . , ηn) such that en 6∈ Π⇐⇒ ηn 6= 0.

Note that for any E ⊂ Rn, P := E ∩ Π can be represented as

P = {(x′, αx′) : x′ ∈ H}, (1)

where x′ = (x1, . . . , xn−1), x = (x′, xn),

H = projRn−1P

and

α = (α1, . . . , αn−1), αi =
−ηi
ηn

.

Let Qε = (−ε/2, ε/2), and for any k ∈ Zn, let Qk
ε = Qε + εk. Similarly, Bk

rε

denotes the ball of radius rε and center εk, i.e. Bk
rε = Brε + εk. From ψ we

construct the oscillating function ψε, given by

ψε(x) =

{
ψ(a−1

ε (x− εk)), if x ∈ Qk
ε ∩ Π,

−∞, otherwise,
(2)

where
aε = εn/(n−1). (3)
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Remark 1. From the definition of ψε it can be seen that ψε(x) > −∞ if and
only if

x ∈ {aε{y : ψ(y) > −∞}+ εk} ∩ Π, for some k ∈ Zn.

For this reason it needs to be determined how often Π intersects a neigbour-
hood of size comparable to aε of the lattice points {εk}k∈Zn. This is possible
in n ≥ 3 dimensions, using the theory of uniform distribution of sequences.
In general, this is possible when aε is not ”too small”. When n = 2 we would
have to choose a much smaller aε, due to the logarithmic nature of the fun-
damental solution of the laplacian. For this reason we cannot include the two
dimensional case.

For any Borel subset B of Ω and u ∈ H1
0 (Ω), set

Fψε(u,B) =

{
0, if u ≥ ψε q.e. on B,
∞, otherwise,

(4)

where q.e. is short for quasi everywhere, i.e. everywhere except for a set of
zero capacity. Note that B 7→ Fψε(u,B) only depends on B ∩ Π. Our main
goal is to determine the asymptotic behaviour, as ε → 0, of minimizers of
the functional

Jε(u) =

∫
Ω

|Du|2dx+ Fψε(u,B). (5)

1.2 The Notion of Γ-convergence

Definition 1 (Γ-convergence). A sequence of functionals Jε on a topological
space V is said to Γ-converge to the functional J0 if the following hold for all
v ∈ V :

(i) whenever vε → v in V ,

J0(v) ≤ lim inf
ε→0

Jε(vε),

(ii) there exists a sequence {vε}ε such that vε → v in V and

J0(v) ≥ lim sup
ε→0

Jε(vε).

The functional J0 is called the Γ-limit of Jε.
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Remark 2. It follows easily from this definition that if Jε Γ-converges to J0,
if vε ∈ V solves infV Jε(v) = Jε(vε) and if vε → v0 in V , then J0(v0) =
infV J0(v). Indeed, J0(v0) ≤ lim infε→0 Jε(vε) by (i), and for any other
v ∈ V , there exists according to (ii) a sequence {v̄ε}ε converging to v in
V such that J0(v) ≥ lim supε→0 Jε(v̄ε). Since Jε(vε) ≤ Jε(v̄ε), J0(v0) ≤
lim infε→0 Jε(vε) ≤ lim supε→0 Jε(v̄ε) ≤ J0(v), which proves the claim.

Next we quote a theorem of De Giorgi, Dal Maso and Longo from [4]. It is
a compactness result for quadratic functionals of obstacle type and states that
there is a representation theorem for the Γ-limits of these functionals. The
compactness part of the theorem is valid for obstacle functionals for which
there exists a sequence uε ∈ H1

0 (Ω) such that both Jε(uε) and ‖uε‖H1
0 (Ω) are

bounded. This will be true if we assume that the set B in (4) is compactly
contained in Ω. For the formulation below we refer to Attouch and Picard
[1].

Theorem 1 ([4]). There is a rich family R of Borel subsets of Ω such that
for every B ∈ R satisfying B ⊂⊂ Ω, the sequence of functionals

Jε(u) =

∫
Ω

|Du|2dx+ Fψε(u,B) (6)

has a subsequence that Γ-converges to

J0(u) =

∫
Ω

|Du|2dx+

∫
B
f(x, u)dµ+ ν(B), (7)

where µ and ν are positive Radon measures, µ ∈ H−1(Ω) and f(x, u) is
convex and monotone non-increasing with respect to u.

Remark 3. It may be assumed that ν = 0, c.f. [1], Theorem 4.1. We refer
to [1] for the definition of a rich family of Borel sets. However, we would
like to point out that a rich family R of the Borel sets of Ω is dense in the
Borel sets, in the sense that for any Borel sets A,B such that A ⊂ intB,
there exists E ∈ R such that A ⊂ intE ⊂ E ⊂ intB.

1.3 Main Theorem

Next we define the functional that is the Γ-limit of Jε in (5). For any λ ∈ R,
let

ψλ(x) =

{
ψ(x), x ∈ {P + λη},
−∞, otherwise,

(8)
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and set

gλ(t) = min

{∫
Rn
|Dv|2dx : v − t ∈ D1,2(Rn), v ≥ ψλ q.e. on Rn

}
, (9)

where t is any real number and

D1,2(Rn) = {v ∈ L2∗(Rn) : Dv ∈ L2(Rn)}, 1

2∗
=

1

2
− 1

n
.

Theorem 2. Let Π = {x ∈ Rn : x · η = 0}. Then the following holds for a.e.
η ∈ Sn−1: There is a rich family R of Borel subsets of Ω such that for every
B ∈ R satisfying B ⊂⊂ Ω, the sequence of functionals

Jε(u,B) =

∫
Ω

|Du|2dx+ Fψε(u,B)

Γ-converges in the weak topology of H1
0 (Ω) to

J0(u,B) =

∫
Ω

|Du|2dx+

∫
Π∩B

(∫
gλ(u(x))dλ

)
dσ(x). (10)

In particular, the sequence of minimizers uε of Jε converges weakly in H1
0 (Ω)

to the minimizer u of J0.

On the right hand side of (10), σ denotes surface measure on Π.

1.4 Related Results

In the paper [6] a problem similar to the present one was solved. In [6] the
obstacle is given by

ψχΠε ,

where ψ is a fixed function and Πε is the intersection between a hyper-plane
Π and the set ⋃

k∈Zn
{aεT + εk},

where T is a fixed subset of the unit ball. Thus in both problems the obstacle
is defined on the intersection between the hyper-plane Π and a neighborhood
of size aε of the lattice points {εk}k∈Zn . It is a crucial part of the problem
to estimate the number of lattice points at a given distance from a subset of
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Π. For the necessary results in this direction, which come from the theory of
uniform distribution, we refer to [6].

However, a main difference between the present problem and that of [6]
is that the obstacle in (2) varies on a much smaller scale, of size aε. For this
reason the techniques used in [6] (essentially those developed in [2]) are not
fit to deal with this problem. Instead we use the methods of [3], which are
more adapted to the situation at hand.

2 Proofs

We start by establishing some continuity properties of a certain approxi-
mation of the function gλ in (9), that appears naturally in the proof of
Theorem 2.

Lemma 1. Let

gλR(t) = min

{∫
BR

|Dv|2dx : v − t ∈ H1
0 (BR), v ≥ ψλ q.e. on BR

}
. (11)

Assume |ψ| ≤ A and that ψ has modulus of continuity ρ (|ψ(x) − ψ(y)| ≤
ρ(|x− y|)). Then limR→∞ g

λ
R(t) = gλ(t) and for any 2 ≤ R0 < R1 ≤ ∞ and

any λ ∈ R,
|gλR1

(t)− gλR2
(t)| ≤ C(A− t)2

+(R2−n
0 −R2−n

1 ), (12)

and

|gλ+δ
R (t)− gλR(t)| ≤ C1(A− t)2

+((R− δ)2−n −R2−n) + C2ρ(δ), (13)

where C,C1, C2 depend only on n.

Proof. We may assume t ≤ A, for otherwise gλR(t) = 0. Let Kλ and Kλ
R be

the set of constraints appearing in the definition of gλ and gλR respectively.
That is,

Kλ =
{
v − t ∈ D1,2(Rn), v ≥ ψλ q.e. on Rn

}
and

Kλ
R =

{
v − t ∈ H1

0 (BR), v ≥ ψλ q.e. on BR

}
.

Since Kλ
R0
⊂ Kλ

R1
⊂ Kλ for R0 < R1, we immediately obtain gλ(t) ≤ gλR1

(t) ≤
gλR0

(t). The claim limR→∞ g
λ
R(t) = gλ(t) follows from the fact that C∞c (Rn)

is dense in D1,2(Rn).
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Fix a smooth cut-off function ζ with compact support in B2 such that
ζ ≡ 1 on B1. Then (A− t)ζ + t ∈ Kλ

R for any R ≥ 2, λ ∈ R and any t ≤ A.
Thus

gλR(t) ≤ (A− t)2

∫
B2

|Dζ|2dx ≤ C(A− t)2
+. (14)

Let v ∈ Kλ satisfy
∫
Rn |Dv|

2dx = gλ(t), and let vR ∈ Kλ
R satisfy

∫
BR
|DvR|2dx =

gλR(t). To estimate v − vR we construct a barrier h that is the solution to
∆h = 0 in Rn \ B1, h − t ∈ D1,2(Rn) and h = A on B1. In Rn \ B1, h − v
is harmonic, on B1, h − v ≥ 0 and h − v → 0 at infinity. It follows from
the maximum principle that v ≤ h in Rn. The function h is spherically
symmetric and has the explicit expression

h(r) = (A− t)r2−n + t,

for r > 1, where r = |x|. It follows that

v(x) ≤ (A− t)R2−n + t on Rn \BR.

Thus
v̂R = max

(
t, v − (1− ζ)(A− t)R2−n)

belongs to Kλ
R. Hence

gλR(t) ≤
∫
BR

|Dv̂R|2dx

≤
∫
BR

|Dv|2 dx+ 2(A− t)R2−n
∫
BR

DζDvdx+ ((A− t)R2−n)2

∫
BR

|Dζ|2dx

≤ gλ(t) + 2(A− t)R2−n‖Dζ‖L2(BR)

√
gλ(t) + ((A− t)R2−n)2

∫
BR

|Dζ|2dx.

Hence we obtain, using (14),

|gλ(t)− gλR(t)| ≤ C(A− t)2R2−n. (15)

If 2 < R0 < R1, we find in a similar way that

vR1 ≤ hR1 = (A− t)r
2−n −R2−n

1

1−R2−n
1

+ t on BR1 \B1,

and that

v̂R0 = max

(
t, vR1 − (1− ζ)(A− t)R

2−n
0 −R2−n

1

1−R2−n
1

)
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belongs to Kλ
R0

. From this we obtain the estimate

|gλR1
(t)− gλR2

(t)| ≤ C(A− t)2(R2−n
0 −R2−n

1 ). (16)

Next we prove the continuity w.r.t. λ. For any γ > 0 there exists a δ > 0
(δ = ρ−1(γ)) such that

ψλ(x+ δη)− γ < ψλ+δ(x) ≤ ψλ(x+ δη) + γ.

Let

hR =
r2−n −R2−n

1−R2−n ,

for r = |x| > 1, hR = 1 on B1. Let vλR−δ ∈ Kλ
R−δ satisfy

∫
BR−δ

|DvλR−δ|2dx =

gλR−δ. Then wR(x) = vλR−δ(x+ δη) + γhR(x) belongs to Kλ+δ
R . Hence,

gλ+δ
R (t) ≤

∫
BR

|DwR|2dx

=

∫
BR

|DvλR−δ(x+ δη)|2dx+ γ2

∫
BR

|DhR|2dx+ 2γ

∫
BR

DhRDv
λ
R−δdx

≤ gλR(t) + C(A− t)2((R− δ)2−n −R2−n)

+ γ2

∫
BR

|DhR|2dx+ 2γ‖DvλR−δ‖L2(BR)‖DhR‖L2(BR).

It is easy to check that
∫
BR
|DhR|2dx is bounded uniformly in R. In fact,

as R → ∞,
∫
BR
|DhR|2dx → cap(B1), the capacity of the unit ball. By

interchanging the roles of gλ+δ
R (t) and gλR(t) we obtain a lower bound on

gλ+δ
R (t)− gλR(t). Thus for any γ > 0, we have (assuming γ < 1)

|gλ+δ
R (t)− gλR(t)| ≤ C1(A− t)2((R− δ)2−n −R2−n) + C2γ. (17)

We now turn to the

proof of Theorem 2. Let wkε be the solution to

min

{∫
Qkε

|Dw|2dx : w ≥ ψε q.e. on Qk
ε , w = t on Qk

ε \Bk
ε/2

}
. (18)

The following definition will be important in the sequel. In order to simplify
notation we set P = Π ∩ B.
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Definition 2. Let λkε be the unique real number such that

Qk
ε ∩ P = Qε ∩ {P + λkεη} (mod ε), if Qk

ε ∩ P 6= ∅.

If Qk
ε ∩ P = ∅ we set λkε =∞.

Let y = x− εk. Then

y + εk ∈ Qk
ε ∩ P ⇐⇒ y ∈ Qε ∩ {P + λkεη}.

Thus ∫
Qkε

|Dwkε |2dx

= min

{∫
Qε

|Dw|2dx : w ≥ ψλ
k
ε
ε q.e. on Qε, w = t on Qε \Bε/2

}
,

where ψ
λkε
ε is ψε with P + λkεη in place of P . Clearly, wkε = t if ψ

λkε
ε ≤ t. In

particular, wkε = t if Qk
ε ∩ (Ω ∩ P ) = ∅. Let z = a−1

ε y. Then, noting that
aεz = y ∈ Qε ∩ {P + λkεη} ⇐⇒ z ∈ Qε/aε ∩ {P + (λkε/aε)η},∫

Qkε

|Dwkε |2dx = min

{
an−2
ε

∫
Qε/aε

|Dw|2 dx : w ≥ ψλ
k
ε/aε q.e. on Qε/aε ,

and w = t on Qε/aε \Bε/2aε

}
.

Let Rε = ε/2aε. The choice of aε implies that limε→0Rε = ∞. Since w − t
has its support in BRε and ψλ

k
ε/aε = −∞ outside B1 ⊂ BRε , we have

min

{
an−2
ε

∫
Qε/aε

|Dw|2 dx : w ≥ ψλ
k
ε/aε q.e. on Qε/aε ,

and w = t on Qε/aε \Bε/2aε

}
=

= min

{
an−2
ε

∫
BRε

|Dw|2 dx : w ≥ ψλ
k
ε/aε q.e. on BRε ,

and w − t ∈ H1
0 (BRε)

}
= an−2

ε g
λkε/aε
Rε

(t).
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It is clear that ψλ
k
ε/aε ≡ −∞ for small enough ε > 0 if aε = o(λε). Choose

λ0 < λ1 such that B1 ∩ {P + λη} = ∅ if λ 6∈ [λ0, λ1]. Let δ > 0 be a
small number such that λ1 = λ0 + Mδ for some positive integer M , and let
λj = λ0 + jδ. Now set λε,j = aελj and let

Iε,j = {Qε ∩ {P + λη} : λε,j ≤ λ ≤ λε,j+1},
Ikε,j = {Iε,j + εk}, k ∈ Zn.

Let Aε,j be the number of k ∈ Zn for which P and Ikε,j has non-empty
intersection. This is precisely the number of k = (k′, kn) such that εkn and
αεk′ belong to the same cube Qk

ε , and λkε ∈ Iε,j, where we use the notation
in (1). Let

Pε = {k ∈ Zn : Qk
ε ∩ P 6= ∅}.

Thus if
Kε,j = {k ∈ Pε : λkε ∈ Iε,j},

then
Aε,j = #Kε,j.

It was proven in [6], Lemma 5.2.2, that for a.e. η ∈ Sn−1,

Aε,j = |P |δaε
εn

+ o(aεε
−n). (19)

To make the statement more precise we introduce

Nε = #{k′ ∈ Zn−1 ∩ projRn−1ε−1P}.

Then, since the intersection between P and Ikε,j is completely determined by
the value of εαk′ at a point (εk′, αεk′) ∈ P , we have

Aε,j = #
{
k′ ∈ Zn−1 ∩ projRn−1ε−1P : αk′/Z ∈ [pj, pj + δaε/(ηnε)]/Z

}
,

where pj is chosen such that

P ∩ Ikε,j 6= ∅ iff αk′/Z ∈ [pj, pj + δaε/(ηnε)]/Z.

Note that the distance δaε in η (normal) direction between two planes, cor-
responds to the distance δaε/ηn in en direction between these planes. Using
tools from the theory of uniform distribution mod 1, it can be shown that∣∣∣∣Aε,jNε

− δaε
εηn

∣∣∣∣ = o(εs), for any s ∈ (0, 1).
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This implies (19) since aε/ε ≥
√
ε for n ≥ 3. Define wε by wε = wkε on Qk

ε .
Since wkε = t on ∂Bk

rε , wε ∈ H
1(Ω) and, noting that wkε ≡ t if k 6∈ Kε,j for

some j, ∫
Ω

|Dwε|2dx =
M∑
j=0

∑
k∈Kε,j

∫
|Dwkε |2dx (20)

=
M∑
j=0

∑
k∈Kε,j

an−2
ε

(
g
λkε/aε
Rε

(t)− gλjRε(t)
)

+
M∑
j=0

an−2
ε Aε,j g

λj
Rε

(t). (21)

Since |λkε/aε − λj| ≤ δ when k ∈ Kε,j, we have for such k that∣∣∣gλkε/aεRε
(t)− gλjRε(t)

∣∣∣ ≤ C1(A− t)2
+((Rε − δ)2−n −R2−n

ε ) + C2ρ(δ) =: E(ε, δ),

by (13) in Lemma 1. Hence the first term in (21) is bounded by

M∑
j=0

Aε,ja
n−2
ε E(ε, δ) ≤ C

M∑
j=0

|P |δa
n−1
ε

εn
E(ε, δ) ≤ C|P |E(ε, δ), (22)

where we used (19), the fact that an−1
ε /εn = 1 by the choice of aε in (3) and

that M = 1/δ. The right hand side of (22) clearly tends to zero as ε, δ → 0

in any order. The term an−2
ε Aε,j g

λj
Rε

(t) converges to |P |δgλj(t) as ε → 0.
Hence,∫

|Dwε|2 dx =
M∑
j=0

∑
k∈Kε,j

∫
|Dwkε |2dx = O(ρ(δ)) +

M∑
j=0

Aε,jg
λj
Rε

(t)

→
M∑
j=0

δ|P |gλj(t),

as ε→ 0. Letting δ → 0, we obtain∫
Ω

|Dwε|2dx =
∑
k

∫
Ω

|Dwkε |2dx→ |P |
∫ λ1

λ0

gλ(t)dλ. (23)

The next step is to show that wε ⇀ t in H1(Ω). Since wε− t ∈ H0(Bk
ε/2),

Poincare’s inequality implies that∫
Bk
ε/2

|wkε − t|2dx ≤ ε

∫
Bk
ε/2

|Dwkε |2dx.
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Indeed, the Poincare constant of a ball of radius R does not exceed R. Thus∫
Ω

|wε − t|2dx =
∑
k

∫
Bk
ε/2

|wkε − t|2dx (24)

≤ ε
∑
k

∫
Bk
ε/2

|Dwkε |2dx = ε2

∫
Ω

|Dwε|2 dx. (25)

By (23) {wε}ε is bounded in H1
0 (Ω) and hence has a weakly convergent subse-

quence. From (24)-(25) it follows that every weakly convergent subsequence
must converge to t, thus the entire sequence {wε}ε converges weakly to t.

By Theorem 1, Jε(u) =
∫

Ω
|Du|2dx + Fψε(u,B) has a subsequence that

Γ-converges to a functional of the type J0(u) =
∫

Ω
|Du|2dx +

∫
B f(x, u)dµ.

We will prove that for each t ∈ R,∫
B
f(x, t)dµ = σ(Π ∩ B)

∫
gλ(t)dλ. (26)

Let us show that the theorem follows from (26). Due to (26) and the fact
that the family of sets R 3 B is dense in the Borel subsets of Ω, f(x, t)dµ is
a measure on Π, absolutely continuous w.r.t. σ. Hence f(x, t)dµ = h(x, t)dσ
for some h(x, t) ∈ L1

loc(Π, σ). But∫
Π∩B

h(x, t)dσ = σ(Π ∩ B)

∫
gλ(t)dλ

for all t ∈ R and all B ∈ R implies that h is independent of x, thus h(x, t) =
h(t) =

∫
gλ(t)dλ.

We now prove (26). Choose v ∈ C∞c (Ω) such that v = t on a neigbourhood
of B. Let

vε(x) =

{
wε(x), if x ∈ B,
v(x), if x ∈ Ω \ B. (27)

Then clearly vε ⇀ v in H1(Ω). According to Definition 1 (i),∫
Ω

|Dv|2dx+

∫
B
f(u, x)dµ =

∫
Ω\B
|Dv|2dx+

∫
B
f(t, x)dµ

≤ lim inf
ε→0

∫
Ω

|Dvε|2dx =

∫
Ω\B
|Dv|2dx+ σ(B ∩ Π)

∫
gλ(t)dλ.
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It remains to prove that∫
B
f(x, t)dµ ≥ σ(B ∩ Π)gλ(t)dλ. (28)

Let zε be a sequence given by Definition 1 (ii), i.e. zε ⇀ v and lim supε Jε(zε) ≤
J0(v). By (i) in the same definition, we have limε→0 Jε(zε) = J0(v). Since v
is bounded we may assume zε is bounded. To see this we assume |v| ≤ C
and claim that

z̄ε = min(z+
ε , 2C)−min(z−ε , 2C) ⇀ v.

Indeed, z̄ε is uniformly bounded in H1(Ω) and therefore has a weak limit in
this space. Moreover,∫

Ω

|z̄ε − v|2dx =

∫
Ω\{|zε|>2C}

|zε − v|2dx−
∫
{zε>2C}

|2C − v|2dx

−
∫
{zε<−2C}

| − 2C − v|2dx.

Since zε → v strongly in L2(Ω) and∫
Ω

|zε − v|2dx ≥ C2measure({|zε| > 2C}),

measure({|zε| > 2C})→ 0 and hence z̄ε → v strongly in L2(Ω). Additionally,∫
|Dz̄ε|2dx ≤

∫
|Dzε|2dx, which implies, again by (i) in Definition 1,

lim
ε→0

Jε(z̄ε) = J0(v) =

∫
Ω\B
|Dv|2dx+

∫
B
f(t, x)dµ.

Thus if we let vε be the function given by (27), (28) follows if we prove
limε→0

∫
Ω
|Dvε|2dx ≤ limε→0

∫
Ω
|Dzε|2dx,

for all zε ∈ H1
0 (Ω) such that zε ≥ ψε,

zε ⇀ v and supε>0 ‖zε‖L∞ <∞.
(29)

By convexity of the functional v 7→
∫

Ω
|Dv|2dx, we have∫

Ω

|Dzε|2 − |Dvε|2dx ≥ 2

∫
Ω

Dvε(Dzε −Dvε)dx (30)

= 〈−∆vε, zε − vε〉 =

∫
Ω\B
−∆v(zε − v)dx+

∑
k

〈−∆wkε , zε − wkε 〉, (31)

13



where the sum is taken over

{k ∈ Zn : Π ∩ B ⊂ {aε{y : ψ(y) > −∞}+ εk} (⊂ Bk
aε/2)}.

The first term in (31) goes to zero since v is smooth and zε ⇀ v. The
Laplacian of wkε consists of two measures µkε and νkε such that

−∆wε = µkε − νkε ,

where

νkε (E) = −
∫
E∩Qkε

∂wkε
∂n

dS,

and
suppµkε ⊂ {wkε = ψε} ⊂ Bk

aε , (32)

which follows from the fact that wkε solves (18) (see [5]). From (32) and the
fact that zε ≥ ψε it follows that∫

Qkε

(zε − wkε )dµkε =

∫
Qkε

(zε − ψε)dµkε +

∫
Qkε

(ψε − wkε )dµkε

=

∫
Qkε

(zε − ψε)dµkε ≥ 0.

It remains to show that

lim
ε→0

∑
k

∫
Qkε

(zε − wkε )dνkε = 0.

Let W k
ε solve

min

{∫
Qkε

|DW |2dx : W − t ∈ H1
0 (Bk

ε/2) and W ≥ maxψ = A on Bk
aε

}
.

Since W k
ε = wkε on ∂Bk

ε/2, W k
ε ≥ wkε on Bk

aε and W k
ε and wkε are harmonic in

Bk
ε/2 \Bk

aε , we get W k
ε ≥ wkε in Bk

ε/2 from the maximum principle, hence

−∂W
k
ε

∂n
≥ −∂w

k
ε

∂n
on ∂Bk

ε/2.

Thus if we let

ν̂kε (E) =

∫
∂Bk

ε/2
∩E
−∂W

k
ε

∂n
dS,

14



and set ν̂ε =
∑

k ν̂
k
ε , νε =

∑
k ν

k
ε , then ν̂ε ≥ νε. In [6] (see the proof of Lemma

2.0.8 therein) it was shown that

lim
ε→0

∫
Ω

(hε − h)dν̂ε = 0, (33)

whenever hε ⇀ h in H1
0 (Ω) and supε>0 ‖hε‖L∞ < ∞. Since νε ≤ ν̂ε, it

follows that (33) holds for νε after writing (hε − h) = (hε − h)+ − (hε − h)−.
This proves (29). Since the Γ-limit J0 does not depend on the particular
Γ-convergent subsequence, the entire sequence Jε Γ-converges to J0.
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