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Abstract. The main result of this paper is that separated Deligne–
Mumford stacks in characteristic zero can be compactified. In arbitrary
characteristic, we give a necessary and sufficient condition for a tame
Deligne–Mumford stack to have a tame Deligne–Mumford compactifi-
cation. The main tool is a new class of stacky modifications — tame
stacky blow-ups — and a new étalification result which in it simplest
form asserts that a tamely ramified finite flat cover becomes étale after
a tame stacky blow-up. This should be compared to Raynaud–Gruson’s
flatification theorem which we extend to stacks.

Preliminary draft!

Introduction

A fundamental result in algebraic geometry is Nagata’s compactification
theorem which asserts that any variety can be embedded into a complete
variety [Nag62]. More generally, if f : X → Y is a separated morphism of
finite type between noetherian schemes, then there exists a compactification
of f , that is, there is a proper morphism f : X → Y such that f is the
restriction of f to an open subset X ⊆ X [Nag63].

The main theorem of this paper is an extension of Nagata’s result to sep-
arated morphisms of finite type between quasi-compact Deligne–Mumford
stacks of characteristic zero and more generally to tame Deligne–Mumford
stacks. The compactification result relies on several different techniques
which all are of independent interest.

• Tame stacky blow-ups — We introduce a class of stacky modifica-
tions, i.e., proper birational morphisms of stacks, and show that this
class has similar properties as the class of blow-ups. A tame stacky
blow-up is a composition of root stacks and ordinary blow-ups.
• Flatification — We generalize M. Raynaud and L. Gruson’s flat-

ification theorem by blow-ups [RG71] to stacks with quasi-finite
diagonals.
• Étalification — We show that a generically étale and “tamely ram-

ified” morphism f : X → Y of Deligne–Mumford stacks becomes
étale after tame stacky blow-ups on X and Y . This is the étale

Date: 2011-05-17.
2010 Mathematics Subject Classification. 14E25, 14E22, 14A20, 14D23.
Key words and phrases. Deligne–Mumford stacks, Nagata compactification, Kummer

blow-up, push-outs, Riemann–Zariski spaces, tame stacks, tame ramification, root stacks,
flatification, tame étalification.

Supported by grant KAW 2005.0098 from the Knut and Alice Wallenberg Foundation
and by the Swedish Research Council.

1



2 DAVID RYDH

analogue of the flatification theorem and useful even for morphisms
of schemes.
• Riemann–Zariski spaces — Riemann–Zariski spaces was introduced [Zar40,

Zar44] by Zariski in the 1940’s. Classically, Riemann–Zariski spaces
have been used in the context of resolution of singularities but have
also been used in rigid geometry [FK06, Tem00, Tem04, CT09], for
compactification problems [Nag62, Tem08] and in complex dynam-
ics [FJ04].

Precise statements of the above results are given in Section 1. A crucial tool
in this paper is the étale dévissage method described in [Ryd11]. The étale
dévissage and stacky blow-ups are used to construct a compactification of
f : X → Y after the compactification has been accomplished étale-locally on
a suitable compactification of Y . An important consequence of Raynaud–
Gruson’s flatification theorem is that blow-ups are cofinal among modifica-
tions. Similarly, it follows from the étalification theorem that tame stacky
blow-ups are cofinal among tame stacky modifications. This is the salient
point in the proof of the compactification theorem.

Other compactification results for stacks. It is possible that the com-
pactification result extends to non-tame stacks with finite automorphisms
groups. For example, any normal Deligne–Mumford stack that is a global
quotient can be compactified by a Deligne–Mumford stack that is a global
quotient (proven by D. Edidin) although in this case we do not have any
control of the stabilizers on the boundary (e.g., starting with a tame stack
the compactification may be non-tame).

Another result in this vein is that quasi-projective DM-stacks in charac-
teristic zero can be compactified by projective DM-stacks [Kre09]. These
results suggest that any Deligne–Mumford stack can be compactified by a
Deligne–Mumford stack. In a subsequent article we will prove that this is
indeed the case, at least in equal characteristic.

A general compactification result for Deligne–Mumford stacks was an-
nounced in [Mat03]. However, the proof is severely flawed as the morphism
[V/G] → X in [Mat03, Cor. 2.2] is not representable as asserted by the
author.

Pushouts. The actual construction of the compactification is accomplished
through three different kinds of push-outs. The first is the push-out of an
open immersion and an étale morphism and is used in the étale dévissage [Ryd11].
The second is the push-out of a closed immersion and a finite morphism [Fer03,
Rao74b, Art70, Kol09, CLO09], cf. Appendix A, which is used to prove the
compactification theorem for non-normal algebraic spaces. The third is the
push-out of a closed immersion and an open immersion used in the con-
text of Riemann–Zariski spaces. The last kind is the most subtle and these
push-outs are, except in trivial cases, non-noetherian.

Compactification of schemes and algebraic spaces. Nagata’s original
proof of the compactification theorem for schemes uses Riemann–Zariski
spaces and valuation theory. More modern and transparent proofs have
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subsequently been given by P. Deligne and B. Conrad [Con07] and W. Lütke-
bohmert [Lüt93]. There is also a modern proof by M. Temkin [Tem08] using
Riemann–Zariski spaces.

Nagata’s theorem has also been extended to a separated morphism f : X →
Y of finite type between algebraic spaces. This is essentially due to J.-
C. Raoult, who treated the case where either X is normal and Y is a
scheme [Rao71] or Y is the spectrum of an excellent ring [Rao74a, Rao74b].
A proof for general X and Y has been announced by K. Fujiwara and F.
Kato [FK06, 5.7], using rigid geometry and Riemann–Zariski techniques.
The general case is also treated, without RZ-spaces, in an upcoming pa-
per [CLO09]. We give an independent and simple proof in §6.

Blow-ups. All proofs of Nagata’s theorem for schemes relies heavily on the
usage of blow-ups and, in particular, on the first and the last of the following
crucial properties of blow-ups:

(i) A blow-up on an open subset U ⊆ X can be extended to a blow-up
on X (extend by taking the closure of the center).

(ii) A blow-up on an closed subscheme X0 ⊆ X can be extended to a
blow-up on X (extend by taking the same center).

(iii) Given an étale morphism X ′ → X, then a blow-up on X ′ can be
dominated by the pull-back of a blow-up on X.

(iv) Any proper birational representable morphismX → Y has a section
after a blow-up on Y , cf. Corollary (5.1).

The first two properties are trivial, the third is proven via étale dévissage,
cf. Proposition (4.14), and the last property follows from Raynaud–Gruson’s
flatification theorem. The compactification theorem for tame Deligne–Mumford
stacks relies on analogous properties for tame stacky blow-ups. Here the first
two properties are again trivial, the third property follows from a rather
involved étale dévissage argument and the last property follows from the
étalification theorem.

It should also be noted that the third property is used in the proof of the
flatification and étalification results for algebraic spaces and stacks. Non-
tame étalification and compactification of Deligne–Mumford stacks follow if
we find a suitable “stackier” class of blow-ups having properties (i), (iii), (iv).
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1. Terminology and statement of results

1.1. Terminology. All algebraic stacks and algebraic spaces are assumed
to be quasi-separated, that is, that the diagonal and the double-diagonal
are quasi-compact. We do not require that the diagonal of an algebraic
stack is separated but it is permissible for the reader to assume this. The
main results on compactifications are valid for Deligne–Mumford stacks, or
equivalently, stacks with unramified diagonal. Some of the results, notably
flatification results are also valid for stacks with quasi-finite diagonals. To
facilitate we use the terminology quasi-Deligne–Mumford stacks as in [SP].
To be able to use étale dévissage, we impose that quasi-Deligne–Mumford
stacks have locally separated diagonals:

Definition (1.1). An algebraic stack X is quasi-Deligne–Mumford if ∆X is
quasi-finite and locally separated.

A morphism f : X → Y of algebraic stacks is étale (resp. unramified) if f
is formally étale and locally of finite presentation (resp. formally unramified)
and locally of finite type. A useful characterization is the following:

f is étale ⇐⇒ f , ∆f and ∆∆f
are flat and loc. of finite pres.

f is unramified ⇐⇒ f is loc. of finite type and ∆f is étale.
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For a thorough discussion of étale and unramified morphisms of stacks,
see [Ryd09a, App. B]. A morphism f : X → Y of algebraic stacks is quasi-
finite if f is of finite type, every fiber of f is discrete and every fiber of the
diagonal ∆f is discrete.

Definition (1.2). Let f : X → S be a morphism of Deligne–Mumford stacks
and let ψ : IX/S → X be the inertia group scheme. We say that f is tame if
for every point x : Spec(k) → X, the group scheme ψ−1(x) → Spec(k) has
rank prime to the characteristic of k. We say that f is strictly tame if for
every point x : Spec(k) → X and specialization y : Spec(k′) → S of f ◦ x,
the group scheme ψ−1(x)→ Spec(k) has rank prime to the characteristic of
k′.

Note that in characteristic zero, every morphism of Deligne–Mumford
stacks is strictly tame. If S is equicharacteristic, then f : X → S is tame if
and only if f is strictly tame.

1.2. Statement of main results. Our first result is the generalization
of Raynaud–Gruson’s flatification by blow-up to quasi-Deligne–Mumford
stacks.

Theorem A (Flatification by blow-ups). Let S be a quasi-compact quasi-
Deligne–Mumford stack and let U ⊆ S be a quasi-compact open substack.
Let f : X → S be a morphism of finite type of algebraic stacks such that
f |g−1(U) is flat and of finite presentation. Then there exists a U -admissible
blow-up S̃ → S such that the strict transform f̃ : X̃ → S̃ is flat and of finite
presentation.

Proof. See Section 4. The idea is to use étale dévissage.

Theorem B (Compactification of representable morphisms). Let S be a
quasi-compact quasi-Deligne–Mumford stack and let f : X → S be a rep-
resentable and separated morphism of finite type. Then there exists a fac-
torization f = f ◦ j where j is an open immersion and f is proper and
representable.

Proof. See Section 6. The proof follows Raoult’s ideas, using Nagata’s
compactification theorem for schemes and Raynaud–Gruson flatification by
blow-ups. Étale dévissage is used to pass to the case where S is a scheme.

Theorem C (Tame étalification). Let f : X → S be a morphism of finite
type between quasi-compact Deligne–Mumford stacks. Let U ⊆ S be a quasi-
compact open substack such that f |U is étale. Assume that f is tamely
ramified outside U , e.g., that X is of characteristic zero. Then there exists
a U -admissible tame stacky blow-up S̃ → S and an f−1(U)-admissible blow-
up X̃ → X ×S S̃ such that X̃ → S̃ is étale.

Proof. See Section 11. The proof uses Riemann–Zariski spaces and valuation
theory. Tame stacky blow-ups are defined in Section 9.

Corollary D (Extensions of finite étale covers). Let X be a quasi-compact
Deligne–Mumford stack and let U ⊆ X be a quasi-compact open substack.
Let EU → U be a finite étale cover which is tamely ramified outside U (e.g.,
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assume that EU/U has degree prime to p). Then there exists a U -admissible
tame stacky blow-up X̃ → X such that EU → U extends to a finite étale
cover Ẽ → X̃.

Proof. See Section 12.

Corollary D is closely related to the generalized Abhyankar lemma. In-
deed, the corollary follows from the generalized Abhyankar’s lemma when X
is regular and X \ U is a simple normal crossings divisor. Riemann–Zariski
spaces and non-discrete valuation theory is used to tackle the non-regular
case. A partial generalization of Corollary D in the regular case has been
given by M. Olsson [Ols09]. In loc. cit., EU/U is a G-torsor for a finite tame
non-étale group scheme G.

Corollary E (Cofinality of tame stacky blow-ups among tame stacky modi-
fications). Let S be a quasi-compact Deligne–Mumford stack and let f : X →
S be a proper tame morphism of stacks which is an isomorphism over an
open quasi-compact subset U ⊆ S. Then there exists a U -admissible tame
stacky blow-up X ′ → X such that X ′ → X → S is a U -admissible tame
stacky blow-up.

Proof. See Section 12.

Theorem F (Compactification of strictly tame morphisms). Let f : X →
S be a separated morphism of finite type between quasi-compact Deligne–
Mumford stacks. The following are equivalent

(i) f is strictly tame.
(ii) There exists a proper tame morphism f : X → S of Deligne–Mumford

stacks and an open immersion X ↪→ X over S.
Moreover, it is possible to choose X such that for any x ∈ |X|, we have
that stabX/S(x) = A ×

∏n
i=1 stabX/S(xi) where A is an abelian group and

x1, x2, . . . , xn ∈ |X|. Here stab(x) and stab(xi) denote the geometric stabi-
lizer groups.

Proof. See Section 13. The key ingredients in the proof are Riemann–Zariski
spaces and the usage of tame stacky blow-ups together with Corollaries D
and E.

When S is Deligne–Mumford, then Theorem B follows from Theorem F
as we can replace a compactification X by its relative coarse moduli space.
However, Theorem B is an essential ingredient in the proof of Theorem F.

2. Étale dévissage

The étale dévissage method reduces questions about general étale mor-
phisms to étale morphisms of two basic types. The first type is finite étale
coverings. The second is étale neighborhoods or equivalently pushouts of
étale morphisms and open immersions — the étale analogue of open cov-
erings consisting of two open subsets. This method was, to the author’s
best knowledge, introduced by Raynaud and Gruson in [RG71, 5.7] to re-
duce statements about algebraic spaces to statements for schemes. It is
applied several times in this paper as well as in the paper [Ryd09b]. For the
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reader’s convenience, we summarize the main results of [Ryd11] in this sec-
tion. Twice, in Propositions (4.14) and (7.9), we will also use the dévissage
method in a form that is not directly covered by Theorem (2.5).

Definition (2.1). Let X be an algebraic stack and let Z ↪→ |X| be a closed
subset. An étale morphism p : X ′ → X is an étale neighborhood of Z if p|Zred

is an isomorphism.

Theorem (2.2) ([Ryd11, Thm. A]). Let X be an algebraic stack and let
U ⊆ X be an open substack. Let f : X ′ → X be an étale neighborhood of
X \ U and let U ′ = f−1(U). The natural functor

(|U , f∗) : QCoh(X)→ QCoh(U)×QCoh(U ′) QCoh(X ′)

is an equivalence of categories.

Theorem (2.3) ([Ryd11, Thm. B]). Let X be an algebraic stack and let
j : U → X be an open immersion. Let p : X ′ → X be an étale neighborhood
of X \ U and let j′ : U ′ → X ′ be the pull-back of j. Then X is the pushout
in the category of algebraic stacks of p|U and j′.

Theorem (2.4) ([Ryd11, Thm. C]). Let X ′ be a quasi-compact algebraic
stack, let j′ : U ′ → X ′ be a quasi-compact open immersion and let pU : U ′ →
U be a quasi-compact étale morphism. Then the pushout X of j′ and pU

exists in the category of quasi-compact algebraic stacks. The resulting co-
cartesian diagram

U ′ j′
//

pU

��

X ′

p

��

U
j

// X

�

is also cartesian, j is a quasi-compact open immersion and p is an étale
neighborhood of X \ U .

Theorem (2.5) ([Ryd11, Thm. D]). Let X be a quasi-compact algebraic
stack and let E be the 2-category of quasi-compact étale morphisms Y → X.
Let D ⊆ E be a full subcategory such that

(D1) if Y ∈ D and (Y ′ → Y ) ∈ E then Y ′ ∈ D,
(D2) if Y ′ ∈ D and Y ′ → Y is finite, surjective and étale, then Y ∈ D,

and
(D3) if j : U → Y and f : Y ′ → Y are morphisms in E such that j is

an open immersion and f is an étale neighborhood of Y \ U , then
Y ∈ D if U, Y ′ ∈ D.

Then if (Y ′ → Y ) ∈ E is representable and surjective and Y ′ ∈ D, we
have that Y ∈ D. In particular, if there exists a representable and surjective
morphism Y → X in E with Y ∈ D then D = E.

Note that the morphisms in E are not necessarily representable nor sep-
arated. In Theorem (2.4), even if X ′ and U have separated diagonals, the
pushout X need not unless pU is representable. We are thus naturally led
to include algebraic stacks with non-separated diagonals.



8 DAVID RYDH

The étale dévissage is sufficient for Deligne–Mumford stacks. For quasi-
Deligne–Mumford stacks we will use a combination of étale dévissage and
the following structure result.

Proposition (2.6). Let S be a quasi-compact quasi-Deligne–Mumford stack.
Then there exists:

(i) a representable, étale and surjective morphism S′ → S.
(ii) a finite, faithfully flat and finitely presented morphism U ′ → S′

where U ′ is affine.
In particular, S′ admits an affine coarse moduli space S′cms. If S is of finite
type over a noetherian scheme S0, then S′cms is of finite type over S0 and
S′ → S′cms is quasi-finite and proper.

Proof. The existence of U ′ → S′ → S with U ′ quasi-affine is [Ryd11,
Thm. 7.2]. The existence of a quasi-affine coarse moduli space S′cms with the
ascribed finiteness property is then classical, cf. [Ryd07, §4]. After Zariski-
localization of S′cms we may assume that U ′ and S′cms are affine. �

Part 1. Modifications, blow-ups, flatification and
compactification of algebraic spaces

3. Stackpairs and modifications

In this section we give a simple framework for (stacky) U -admissible mod-
ifications.

Definition (3.1). A stackpair (X,U) is an open immersion of quasi-compact
algebraic stacks j : U → X. We say that (X,U) is strict if U is schematically
dense, i.e., if the adjunction map OX → j∗OU is injective. A morphism of
stackpairs (X ′, U ′)→ (X,U) is a morphism f : X ′ → X of stacks such that
U ′ ⊆ f−1(U). If f, g : (X ′, U ′)→ (X,U) are morphisms, then a 2-morphism
τ : f ⇒ g is a 2-morphism of the underlying morphisms f, g : X ′ → X. We
let StackP denote the 2-category of stackpairs.

We say that a morphism f : (S′, U ′)→ (S,U) is flat, étale, proper, repre-
sentable, etc., if the underlying morphism f : S′ → S has this property. We
say that f : (S′, U ′)→ (S,U) is cartesian if f−1(U) = U ′.

The 2-category StackP has 2-fiber products. Explicitly, if p : (X,W ) →
(S,U) and f : (S′, U ′)→ (S,U) are morphism of stackpairs and we let X ′ =
X ×S S

′ and W ′ = W ×U U
′, then

(X ′,W ′) //

��

(X,W )

p

��

(S′, U ′)
f

// (S,U)

is 2-cartesian. As usual we say that (X ′,W ′) → (S′, U ′) is the pull-back of
p along f .

Given a stackpair (X,U) we let (X,U)strict = (U,U) where U is the
schematic closure of U in X. Then (−,−)strict is a right adjoint to the
inclusion functor of strict stackpairs into all stackpairs. Thus, if p and f are
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morphisms of strict stackpairs, then the square

(X ′,W ′)strict //

��

(X,W )

p

��

(S′, U ′)
f

// (S,U)

is 2-cartesian in the category of strict stackpairs. Even if the stackpairs are
not strict, the above square makes sense and we say that (X ′,W ′)strict →
(S′, U ′) is the strict transform of p. Note that if (X,W ) is strict and if f is
flat and cartesian then the strict transform of p coincides with the pull-back
of p.

If (S,U) is a stackpair and F is a quasi-coherent sheaf on S, then we let
the strictification Fstrict be the image of F → j∗j

∗F where j : U → S is the
canonical open immersion. The strict transform of F along f : (S′, U ′) →
(S,U) is the quasi-coherent sheaf (f∗F)strict.

Definition (3.2). Let (S,U) be a stackpair. A modification of (S,U)
or a U -admissible modification of S is a proper representable morphism
π : (X,U) → (S,U) such that (X,U) is strict and π−1(U) → U is an iso-
morphism.

We say that S has the completeness property if every quasi-coherent sheaf
of OS-modules is the direct limit of finitely presented OS-modules [Ryd09b,
Def. 4.2].

Definition (3.3) ([Ryd09b, Def. 4.6]). We say that an algebraic stack S is
pseudo-noetherian if S is quasi-compact (and quasi-separated) and for every
finitely presented morphism S′ → S of algebraic stacks, the stack S′ has the
completeness property.

Examples of pseudo-noetherian stacks are noetherian stacks [LMB00,
Prop. 15.4] and quasi-Deligne–Mumford stacks [Ryd09b, Thm. A]. We say
that a stackpair (S,U) is pseudo-noetherian if S is pseudo-noetherian. Then
U is pseudo-noetherian as well. Essentially all stackpairs will be pseudo-
noetherian but it is crucial to allow non-noetherian stackpairs as we will use
stackpairs (S,U) where S is the spectrum of a non-discrete valuation ring.

4. Blow-ups and flatification for stacks

In this section we extend Raynaud–Gruson’s flatification theorem [RG71,
Thm. 5.2.2] to quasi-Deligne–Mumford stacks. We also give a more general
version of the theorem involving an unramified morphism. Some of the
results are valid for more general stacks, e.g., finite morphisms of arbitrary
stacks can be flatified via Fitting ideals. We begin with the fundamental
properties of blow-ups and then use étale dévissage in Proposition (4.14) to
prove that blow-ups can be “quasi-extended” along étale (and unramified)
morphisms.

Let (S,U) be a stackpair. Recall that a morphism f : X → S is a blow-up
if X = BlZX = Proj(

⊕
d≥0 Id) for some ideal sheaf I ⊆ OS of finite type

so that f is projective. Here Z ↪→ X denotes the finitely presented closed
substack defined by the ideal I.
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A blow-up is U -admissible if I can be chosen such that I|U = OU . Then
f |U is an isomorphism. If in addition U is schematically dense in S \ V (I),
or equivalently, if (X,U) is a strict stackpair, then we say that the blow-up
is strictly U -admissible. We say that f : (X,U) → (S,U) is a blow-up if
f : X → S is a strictly U -admissible blow-up. In particular, every blow-up
of stackpairs is a modification of stackpairs.

Warning (4.1). There are two fine points here to be observed.

(i) If f : X → S is a blow-up then f may be a U -admissible mod-
ification without being a U -admissible blow-up. This happens if
the intersection of U and the center of the blow-up is a non-empty
Cartier divisor. This issue is settled by Corollary (4.11).

(ii) If (S,U) is not strict, then a U -admissible blow-up need not be
strictly U -admissible. This annoying detail is handled by Lemma (4.4).

We begin with two lemmas that are obvious for noetherian stacks.

Lemma (4.2). Let S be a pseudo-noetherian stack and let S′ → S be a
blow-up. Then S′ is a pseudo-noetherian stack.

Proof. Let I be a finite type ideal such that S′ is the blow-up of S in I.
Choose a finitely presented sheaf F with a surjection F � I. Then S′ =
Proj(

⊕
d≥0 Id) is a closed subscheme of T = Proj(

⊕
d≥0Fd). As T → S is

of finite presentation, we have that T is pseudo-noetherian. As S′ ↪→ T is
affine, it follows that S′ is pseudo-noetherian [Ryd09b, Prop. 4.5]. �

Lemma (4.3). Let (S,U) be a pseudo-noetherian stackpair.

(i) There exists a finitely presented closed substack Z ↪→ S such that
|Z| = |S| \ |U |.

(ii) If ZU ↪→ U is a finitely presented closed substack, then there is a
finitely presented closed substack Z ↪→ S such that Z ∩ U = ZU .

(iii) If S′ ↪→ S is a closed substack and Z ′ ↪→ S′ is a finitely presented
closed substack such that Z ′∩U = ∅, then there is a finitely presented
closed substack Z ↪→ S such that Z ∩ S′ = Z ′ and Z ∩ U = ∅.

Proof. (i) is a special case of [Ryd09b, Prop. 8.12]. In (ii), let Z1 = ZU be
the closure of ZU in S and in (iii) let Z1 = Z ′ seen as a closed substack
of S. As S is pseudo-noetherian we can write Z1 = lim←−λ

Zλ as a limit of
finitely presented closed substacks of S. For sufficiently large λ we have that
Zλ ∩ U = ZU in (ii) and that Zλ ∩ S′ = Z ′ and Zλ ∩ U = ∅ in (iii). We can
thus take Z = Zλ for sufficiently large λ. �

Lemma (4.4) (Strictification). Let (S,U) be a pseudo-noetherian stackpair.
Then there is a blow-up (S′, U) → (S,U) where, by definition, (S′, U) is
strict.

Proof. Let S′ be the blow-up of S in a center Z such that |Z| = |S|\ |U |. �

Let g : (S′, U ′)→ (S,U) be a morphism of strict stackpairs. If f : (X,U)→
(S,U) is a blow-up with center Z ↪→ S, then the strict transform f ′ : (X ′, U ′)→
(S′, U ′) is a blow-up with center g−1(Z) ↪→ S′.
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Lemma (4.5). Let (S,U) be a pseudo-noetherian strict stackpair and let
j : S′ ↪→ S be a closed substack. Then every blow-up of (S′, U ∩ S′) extends
to a blow-up of (S,U), that is, if f ′ : (X ′, U ∩S′)→ (S′, U ∩S′) is a blow-up,
then there exists a blow-up f : (X,U)→ (S,U) such that the strict transform
of f along j is f ′.

Proof. This is an immediate consequence of Lemma (4.3). �

The proofs of the following three lemmas are essentially identical to the
proofs in the case of schemes (replace quasi-compact and quasi-separated
scheme with pseudo-noetherian stack). The only difference is that we require
the blow-ups to be strictly U -admissible.

Lemma (4.6) ([RG71, Lem. 5.1.4] and [Con07, Lem. 1.2]). Let (S,U) be
a pseudo-noetherian stackpair. If f : (S′, U) → (S,U) and g : (S′′, U) →
(S′, U) are blow-ups, then so is f ◦ g.

Using Lemma (4.4) and Lemma (4.6) we will often replace non-strict
stackpairs with strict stackpairs.

Lemma (4.7) ([RG71, Lem. 5.1.5]). Let (S,U) be a pseudo-noetherian
stackpair. Let U =

∐n
i=1 Ui be a partition of U in open and closed sub-

stacks. Then there exists a blow-up (S′, U) → (S,U) such that S′ admits a
partition S′ =

∐n
i=1 S

′
i with S′i ∩ U = Ui.

Proof. After replacing (S,U) with a blow-up we can assume that it is a strict
stackpair. Then proceed as in [RG71, Lem. 5.1.5]. �

Lemma (4.8) ([RG71, Lem. 5.3.1]). Let (S,U) be a pseudo-noetherian
stackpair and let V ⊆ S be a quasi-compact open substack. Then any blow-up
of (V,U ∩ V ) extends to a blow-up of (S,U).

Proof. After replacing (S,U ∪ V ) with a blow-up we can assume that it is a
strict stackpair. The lemma then follows from Lemma (4.3). �

Lemma (4.9). Let (S,U) be a pseudo-noetherian stackpair. Let F be a
finitely presented OS-module such that F is locally generated by r elements
over U . Then there exists a blow-up (S′, U) → (S,U) such that the strict
transform of F is locally generated by r elements.

Proof. After replacing (S,U) with a blow-up we can assume that (S,U)
is strict. The construction of Fitting ideals commutes with arbitrary base
change and in particular makes sense for ideals of finite type on arbitrary
stacks. As F is of finite presentation, the Fitting ideals of F are of finite
type. The lemma is satisfied by taking the blow-up of S in the rth Fitting
ideal of F , cf. [RG71, Lem. 5.4.2]. �

Proposition (4.10) (Flatification of modules). Let (S,U) be a pseudo-
noetherian stackpair. Let F be an OS-module of finite type which is flat
and of finite presentation over U . Then there exists a blow-up π : (S′, U)→
(S,U) such that the strict transform of F along π is flat and finitely pre-
sented.

Proof. As F|U is flat and of finite presentation, it is locally free (smooth-
locally) and the rank of F is locally constant over U . Let U =

∐
i Ui be
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a partition of U in open and closed subsets such that F|Ui has constant
rank i. After replacing (S,U) with a blow-up, this partition of U extends to
a partition S =

∐
i Si by Lemma (4.7). After replacing (S,U) with (Si, Ui)

we can thus assume that F|U has constant rank r.
As S has the completeness property and F is of finite type and finitely

presented over U , there exists a finitely presented OS-module G and a sur-
jection G � F which is an isomorphism over U [Ryd09b, Rmk. 4.4]. As
the strict transforms of F and G are equal, we can thus replace F with G
and assume that F is finitely presented. The corollary then follows from
Lemma (4.9), cf. [RG71, Lem. 5.4.3]. �

The following result shows that a blow-up π : S′ → S that is an isomor-
phism over U is almost U -admissible. We will generalize this statement to
arbitrary representable modifications in Corollary (5.1).

Corollary (4.11). Let (S,U) be a pseudo-noetherian stackpair. Let I be
a finitely generated ideal defining a blow-up π : S′ → S such that π|U is
an isomorphism (i.e., I is invertible over U). Then there is a blow-up
(S′′, U) → (S′, U) such that the composition (S′′, U) → (S′, U) → (S,U) is
a blow-up.

Proof. According to Proposition (4.10), there exists a blow-up (S′′, U) →
(S,U), given by some ideal J , which flatifies I. Then IOS′′ (which equals
the strict transform of I) is invertible and hence there is a unique morphism
S′′ → S′. The morphism S′′ → S′ is the blow-up of JOS′ . �

Definition (4.12). Let S be an algebraic stack and let I1 and I2 be two
finite type ideal sheaves defining blow-ups X1 → S and X2 → S. We say
that X2 → S dominates the blow-up X1 → S if I1OX2 is invertible, so that
there is a unique morphism X2 → X1 over S.

Remark (4.13). Let X1 → S and X2 → S be two blow-ups and let S′ → S
be covering in the fpqc topology. Then X2 dominates X1 if and only if
X2×S S

′ → S′ dominates X1×S S
′ → S′. Indeed, a sheaf on X2 is invertible

if and only if its inverse image is an invertible sheaf on X2 ×S S
′ [EGAIV,

Prop. 2.5.2]. Moreover, if X2 → S is the blow-up in I2 and X2 → S
dominates X1 → S then X2 → X1 is the blow-up in I2OX1 .

Proposition (4.14). Let f : (S′, U ′) → (S,U) be a cartesian morphism of
pseudo-noetherian stacks. Let (X ′, U ′) → (S′, U ′) be a blow-up. Assume
that one of the following holds:

(a) f is a closed immersion.
(b) f is representable and étale.
(b′) f is representable, étale and f |X\U is finite of constant rank d.
(b′′) f is representable, étale and f |X\U is an isomorphism.
(c) f is representable and unramified and S is quasi-Deligne–Mumford.

Then there exists a blow-up (X,U) → (S,U) such that (X ×S S
′, U ′) →

(S′, U ′) dominates (X ′, U ′) → (S′, U ′). If (S,U) is strict, and (a) or (b′′)
holds, then it can further be arranged so that X ×S S

′ = X ′.
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Proof. Let I ′ be an ideal sheaf defining the blow-up X ′ → S′. After re-
placing S and S′ and X with the strict transforms along a blow-up as
in Lemma (4.4), we can assume that (S,U) is strict. Case (a) is then
Lemma (4.5). The reduction from case (b′′) to case (b) uses the étale
dévissage of §2 but does not immediately follow from Theorem (2.5).

Case (b′′): As I ′|U ′ equals OU ′ , it follows from Theorem (2.2) that I ′
descends to a unique ideal sheaf I on S which equals OU over U .

Case (b′): Let Z = X \ U and let SEC := SECd
Z(S′/S) ⊆ (S′/S)d be

the open substack that parameterizes d sections of S′ → S that are disjoint
over Z and let ÉT := ÉT

d
Z(S′/S) = [SEC/Sd] [Ryd11, Def. 5.1]. Then

the projections πi : SEC → X ′, i = 1, 2, . . . , d are étale and surjective and
ÉT→ X is an étale neighborhood of Z [Ryd11, Lem. 5.3].

Let I ′ ⊆ OS′ be the ideal sheaf defining the blow-up X ′ → S′ so that I ′
equals OS′ over U ′. Let J =

∏d
i=1(π

−1
i I ′). Then J is invariant under the

action of Sd on SEC and thus descends to an ideal sheaf I(d) on ÉT. By
the previous case, we have that I(d) descends further to an ideal sheaf I on
S.

By construction, the pull-back of I along SEC→ S′ → S equals J (where
SEC→ S′ is any projection). As π−1

1 I ′ divides J and π−1
1 is faithfully flat,

it follows that the blow-up defined by IOS′ dominates the blow-up defined
by I ′.

Case (b′′): Let ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = S be a filtration of open
quasi-compact subsets such that f |Si\Si−1

is finite and étale of constant rank
for every i = 1, 2, . . . , n [Ryd11, Prop. 4.4]. Let S′i = f−1(Si), Ui = U ∩ Si,
U ′

i = f−1(Ui) and X ′
i = X ′ ×S′ S′i.

We will show the result on by induction on n. The case where n = 0 is
trivial. Thus, assume that we have a blow-up (Xn−1, Un−1)→ (Sn−1, Un−1)
that after pull-back to S′n−1 dominates X ′

n−1 → S′n−1. Let V = U ∪ S′n−1.
Our purpose is now to reduce to the case where U = V .

By Lemma (4.8) we can extend the blow-up (Xn−1, Un−1)→ (Sn−1, Un−1)
to a blow-up (X,U) → (S,U). We will now construct a blow-up (Y, U) →
(X,U) such that Y ×S S

′ → X ×S S
′ → S′ dominates X ′ → S′. For this

purpose, we may replace S, S′ andX ′ with their strict transforms byX → S.
We then have that X ′ → S′ is an isomorphism over V ′ = U ′ ∪ S′n−1. After
replacing (X ′, U ′) with a blow-up we can thus, by Corollary (4.11), assume
that U = V . We conclude the induction step by case (b′).

Case (c): There is a factorization S′ ↪→ S′0 → S of f where the first
morphism is a closed immersion and the second morphism is unramified,
representable and of finite presentation [Ryd09b, Thm. D]. The second mor-
phism has a further factorization S′0 ↪→ E → S where the first morphism
is a closed immersion and the second is étale, representable and of finite
presentation [Ryd09a]. The result thus follows from cases (a) and (b). �

Let f : X → S be a morphism locally of finite type. For a point x ∈ |X|
we let dimX/S(x) := dimx(Xs) be its relative dimension. If p : U → X is
a smooth presentation, then dimX/S ◦|p| = dimU/S −dimU/X and it follows
from Chevalley’s theorem that dimX/S : |X| → Z is upper semi-continuous.
If f is of finite presentation, F is a quasi-coherent OX -module of finite type
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and n ∈ Z, then we say that F is S-flat in dimension ≥ n if there is a quasi-
compact open substack V ⊆ X containing all points of relative dimension at
least n such that F|V is S-flat and of finite presentation [RG71, Déf. 5.2.1].

Proposition (4.14) immediately give us the following generalization of [RG71,
Thm. 5.2.2] to Deligne–Mumford stacks.

Theorem (4.15). Let g : (Y, V ) → (S,U) be an unramified cartesian mor-
phism of Deligne–Mumford stackpairs. Further, let f : X → Y be a mor-
phism of finite presentation of algebraic stacks and let F be a quasi-coherent
OX-module of finite type and n an integer. If F|f−1(V ) is V -flat in dimen-
sion ≥ n, then there exists a blow-up (S̃, U) → (S,U) such that the strict
transform F̃ is Ỹ -flat in dimension ≥ n.

Proof. The question is smooth-local on X (change n accordingly) and étale-
local on Y , so we can assume that X and Y are (affine) schemes. Then,
by Lemma (4.4) and the usual blow-up theorem [RG71, Thm. 5.2.2] there
exists a blow-up (Ỹ , V ) → (Y, V ) which flatifies f in dimension ≥ n. This
gives us, by Proposition (4.14), a blow-up (S̃, U)→ (S,U) which flatifies f
in dimension ≥ n. �

Corollary (4.16) (cf. [RG71, Cor. 5.7.10]). Let (S,U) be a Deligne–Mumford
stackpair and let f : X → S be a morphism of finite type.

(i) If f |V is flat and of finite presentation, then there exists a blow-up
of (S,U) such that the strict transformation of f is flat and of finite
presentation.

(ii) If X is Deligne–Mumford and f |V is quasi-finite, then there exists
a blow-up of (S,U) such that the strict transformation of f is quasi-
finite.

Proof. By Proposition (4.14) the question is étale-local on S so we can as-
sume that S is affine. We can also replace X by a presentation and assume
that X is affine.

Then there exists a Y -scheme of finite presentation X ′
0 → Y and a closed

immersion j : X ′ → X ′
0 over Y . We then apply Theorem (4.15) to j∗OX′

and X ′
0 → Y with n = 0 and n = 1 respectively. �

Remark (4.17). The flatification theorem (4.15) is not valid relative to a
finite flat morphism g. Indeed, let S be a smooth curve and let Y be two
copies of S glued along a point so that Y → S is a ramified covering of
degree 2. Let X = S as one of the components of Y . Then X → Y
cannot be flatified relative to S. This is related to the fact that the Weil-
restriction of a proper morphism along a finite flat morphism need not be
proper. Similarly, the theorem is not valid relative to a smooth g. This
makes it difficult to directly deduce the flatification theorem for stacks from
the flatification theorem for schemes. For stacks that are étale-locally a
global quotient stack, a possible approach is to first prove an equivariant
version of the flatification theorem and then proceed by étale dévissage.

We will now proceed to prove the flatification theorem for quasi-Deligne–
Mumford stacks using Proposition (2.6).
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Corollary (4.18). Let (S,U) be a quasi-Deligne–Mumford stackpair and let
f : X → S be a finite type morphism of quasi-Deligne–Mumford stacks. If
f |U is quasi-finite, then there exists a blow-up of (S,U) such that the strict
transform of f is quasi-finite.
Proof. By [Ryd09b, Thm. D], there is a closed immersion X ↪→ X0 such
that X0 → S is of finite presentation and X0|U → U is quasi-finite. After
replacing X with X0, we can assume that X → S is of finite presentation.
By [Ryd09b], S can be approximated by quasi-Deligne–Mumford stacks of
finite type over Spec(Z). By a standard limit argument [Ryd09b, App. B], we
can thus assume that S is of finite type over Spec(Z). By Proposition (2.6)
there is a representable étale morphism S′ → S such that S′ has a coarse
moduli space S′0. We now apply [RG71, Cor. 5.7.10], cf. Corollary (4.16),
to the finite type morphism X ×S S

′ → S′ → S′0 which is quasi-finite over
the image of U and obtain a blow-up of (S′, U ×S S

′) such that the strict
transform of X×S S

′ → S′ is quasi-finite. By Proposition (4.14) we can find
a blow-up of (S,U) that does the job. �

Proof of Theorem A. By Proposition (4.14) the question is local on S with
respect to representable étale morphisms, so we can, by Proposition (2.6)
assume that S has a finite flat presentation g : S′ → S where S′ is affine. Let
U ′ = g−1(U). By Theorem (4.15) applied to X ×S S

′ → S′ with n = −∞
there is a blow-up (S̃′, U ′)→ (S′, U ′) that flatifies f ′ : X ×S S

′ → S′.
By Corollary (4.18), there is a blow-up of (S,U) such that the strict

transform of (S̃′, U ′) → (S,U) becomes quasi-finite and hence finite. As
(S̃′, U ′)→ (S,U) restricts to the flat morphism U ′ → U there is, by Propo-
sition (4.10), a blow-up of (S,U) that flatifies (S̃′, U ′)→ (S,U). After strict
transformations we have then accomplished that f : X → S is flat and of
finite presentation. �

5. Applications to flatification

The first important application of Raynaud–Gruson flatification is that
U -admissible blow-ups are cofinal among U -admissible modifications:

Corollary (5.1). Let (S,U) be a quasi-Deligne–Mumford stackpair and let
f : (X,U)→ (S,U) be a modification. Then there exist a blow-up p : (X ′, U)→
(X,U) such that the composition f ◦ p is a blow-up.
Proof. Let (S′, U) → (S,U) be a blow-up such that the strict transform
X ′ → S′ of f is a flat modification so that X ′ = S′. As X ′ → X also is a
blow-up, namely the blow-up centered at the inverse image of the center of
S′ → S, the corollary follows. �

Corollary (5.1) for schemes also follows from Nagata’s proof without using
the flatification result, cf. [Con07, Thm. 2.11]. Indeed, this result is equiv-
alent with the most important step in Nagata’s theorem [Con07, Thm. 2.4]
(with U = V ). Therefore, using Raynaud–Gruson’s flatification theorem
significantly reduces the complexity of Nagata’s proof. This explains why
Lütkebohmert’s proof [Lüt93] is much shorter.

The next result is a general form of “resolving the indeterminacy locus
via blow-ups”.
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Corollary (5.2). Let (S′, U ′) → (S,U) be a cartesian étale morphism of
quasi-Deligne–Mumford stackpairs. Let X ′ → S′ be quasi-compact étale
and let Y ′ → S′ be proper and representable. Let fU : X ′|U ′ → Y ′|U ′ be a
U ′-morphism. Then there exists a blow-up (S̃, U) → (S,U) and a unique
extension f : X ′ ×S S̃ → Y ′ ×S S̃ of fU .

Proof. After a blow-up as in Lemma (4.4) we can assume that (S,U) is
strict. Let ΓfU

↪→ X ′ ×S′ Y ′ ×S U be the graph of ΓfU
. This is a closed

immersion since Y ′ → S′ is separated and representable. Let Γ be the
schematic closure of ΓfU

in X ′ ×S′ Y ′. We note that Γ → X ′ is proper,
representable and an isomorphism over X ′|U ′ . Thus there exists a blow-up
(S̃, U) → (S,U) such that the strict transform of Γ → X ′ → S is flat.
Then Γ → X ′ is flat, proper and birational, hence an isomorphism. The
composition of the corresponding morphism X ′×S S̃ → Γ and Γ→ Y ′ is the
requested extension. The uniqueness follows from the fact thatX ′×SU ⊆ X ′

is schematically dense and Y ′ → S′ is separated and representable. �

A stacky version of the previous result for Y ′ → S′ proper but not neces-
sarily representable, is given in Corollary (12.3).

As another application, we give a strong relative version of Chow’s lemma,
showing in particular that projective morphisms are cofinal among proper
representable morphisms.

Theorem (5.3). Let S be a quasi-compact quasi-Deligne–Mumford stack
and let f : X → S be a representable morphism of finite type. Let U ⊆ X
be an open subset such that f |U is quasi-projective (a dense such U always
exists). Then there exists a projective morphism p : P → S, a U -admissible
blow-up X̃ → X and a quasi-finite flat S-morphism g : X̃ → P which is an
isomorphism over U . Moreover, if f is locally separated (resp. separated,
resp. proper) then g can be chosen to be étale (resp. an open immersion,
resp. an isomorphism).

Proof. Proven exactly as [RG71, Cor. 5.7.13] using Theorem A. To see that
there always is a dense open U ⊆ X such that f |U is quasi-projective ... �

6. Compactification of algebraic spaces

In this section, we prove Theorem B — that any finite type, separated and
representable morphism f : X → S of quasi-Deligne–Mumford stacks can be
compactified. The main argument is due to Raoult who treated the case
where S is the spectrum of an excellent ring [Rao74b, Rao74a] and the case
where X is normal and S is a scheme [Rao71]. We give a simplified version
of Raoult’s argument and also generalize the result to allow the target to be
a quasi-Deligne–Mumford stack.

Definition (6.1). A representable morphism f : X → S is compactifiable
if there exists a factorization f = f ◦ j where j is a quasi-compact open
immersion and f is proper and representable.

Remark (6.2). Every compactifiable morphism is separated and of finite
type. If there exists a factorization f = f ◦j where j is a quasi-compact open
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immersion and f : X → S is proper with finite diagonal, then f is compact-
ifiable if S is noetherian or quasi-Deligne–Mumford. In fact, if f̃ : X̃ → S

denotes the relative coarse moduli space of f and π : X → X̃ is the moduli
map, then π ◦ j is an open immersion and f̃ is quasi-compact, universally
closed, separated and representable. If S is not noetherian then f̃ need not
be of finite type but if S is quasi-Deligne–Mumford, then it is possible to
approximate f̃ with a proper representable morphism [Ryd09b].

We begin by proving that the theorem is étale-local on S.

Proposition (6.3). Let S be a quasi-compact quasi-Deligne–Mumford stack
and let f : X → S be a representable and separated morphism of finite type.
Let S′ → S be a representable, étale and surjective morphism. Then f is
compactifiable if and only if f ′ : X ×S S

′ → S′ is compactifiable.

Proof. The necessity is obvious and to prove the sufficiency we can assume
that S′ → S is quasi-compact. We will use étale dévissage in the form of
Theorem (2.5). Let D ⊆ E = Stackqc,ét/S be the full subcategory of quasi-
compact étale morphisms T → S such that X ×S T → T is compactifiable.
Then (S′ → S) ∈ D by hypothesis. If (T → S) ∈ D and (T ′ → T ) ∈ E,
then clearly (T ′ → S) ∈ D. Thus D satisfies axiom (D1) of Theorem (2.5).
That D satisfies axioms (D2) and (D3) follow from the following two Lem-
mas (6.4) and (6.5). We deduce that (S → S) ∈ D so that X → S has a
compactification. �

Lemma (6.4). Let g : S′ → S be a finite étale morphism of algebraic stacks
and let f : X → S be a representable and separated morphism of finite type.
Then f is compactifiable if f ′ : X ×S S

′ → S′ is compactifiable.

Proof. Let f ′ : X×SS
′ ↪→ Y ′ → S′ be a compactification. Consider the Weil

restriction RS′/S(Y ′) → S (which is representable by [Ryd10] as can also
be seen from the following description). By adjunction we have a morphism
X → RS′/S(X ×S S

′) → RS′/S(Y ′). This morphism is an immersion and
RS′/S(Y ′) is proper and representable over S. Indeed, this can be checked
fppf-locally on S so we can assume that S′ = Sqn is n copies of S. Then
X×S S

′ = Xqn and Y ′ = Y1qY2q· · ·qYn so that the morphism described
above becomes

X � � ∆ // Xn � � // Y1 ×S · · · ×S Yn.

The schematic closure of X in RS′/S(Y ′) is thus a compactification of X. �

Lemma (6.5). Let (S,U) be a quasi-Deligne–Mumford stackpair and let
S′ → S be an étale neighborhood of S \ U so that

U ′ j′
//

��

S′

��

U
j

// S

�

is a bi-cartesian square. Let f : X → S be a representable and separated
morphism of finite type. If the pull-backs f ′ : X ′ → S′ and f |U : X|U → U
are compactifiable, then so is f .
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Proof. Let f ′ : X ′ ↪→ Y ′ → S′ and f |U : X|U ↪→ YU → U be compactifi-
cations. To obtain a compactification of f we need to modify Y ′ and YU

so that Y ′|U ′ = YU ×U U ′. We have a quasi-compact immersion X ′|U ′ →
(YU ×U U ′) ×U ′ Y ′|U ′ . Let Z be the schematic image of this immersion so
that the two projections Z → YU ×U U ′ and Z → Y ′|U ′ are proper and
isomorphisms over the open subscheme X ′|U ′ .

By Corollary (5.1), we can assume that (Z,X ′|U ′) → (YU ×U U ′, X ′|U ′)
and (Z,X ′|U ′)→ (Y ′|U ′ , X ′|U ′) are blow-ups after replacing (Z,X ′|U ′) with a
blow-up. Moreover, by Proposition (4.14) we can assume that Z = YU×U U

′

after replacing (Z,X ′|U ′) and (YU , X|U ) with blow-ups. Finally, the blow-up
(Z,X ′|U ′)→ (Y ′|U ′ , X ′|U ′) extends to a blow-up of (Y ′, X ′) by Lemma (4.8).
After replacing Y ′ with this last blow-up we have obtained the cartesian
diagram

X|U

��

X ′|U ′oo //

��

X ′

��

YU

��

Zoo //

��

Y ′

��

U U ′oo // T ′

where the first row of vertical arrows are open immersions and the second
row are proper morphisms. The push-out Y = YU qZ Y

′ of the second row
exists by Theorem (2.4) and the natural cube diagrams are cartesian [Ryd11,
Prop. 3.2]. We thus obtain a compactification X ⊆ Y → S. �

To prove the compactification theorem we need yet another lemma similar
to the previous one. This time we use another kind of pushout that we call a
pinching, cf. Appendix A. We will only use the following two lemmas when
S is a scheme although they are stated more generally.

Lemma (6.6). Let S be a noetherian quasi-Deligne–Mumford stack. Let

Z ′ � � //

��

X ′

��

Z � � // X

�

be a cartesian diagram of stacks that are representable, separated and of
finite type over S. Further assume that Z ↪→ X is a closed immersion,
that X ′ → X is finite and that the diagram is a pinching. Then X → S is
compactifiable if and only if X ′ → S and Z → S are compactifiable.

Proof. That the condition is necessary follows easily from Zariski’s main
theorem. It is thus enough to prove sufficiency. Let Z ⊆ Z → S and
X ′ ⊆ X ′ → S be compactifications. Let Z ′ be the closure of Z ′ in Z ×S X ′.
We will now use blow-ups to achieve the situation where Z ′ → Z is finite
and Z ′ → X ′ is a closed immersion. This is the key idea in Raoult’s proof,
cf. [Rao74a, pf. Prop. 2].
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Let Z̃ ′ ↪→ X ′ be the image of Z ′ so that (Z ′, Z ′)→ (Z̃ ′, Z ′) is a modifica-
tion. We can then by Corollary (5.1) replace (Z ′, Z ′) by a blow-up and as-
sume that (Z ′, Z ′)→ (Z̃ ′, Z ′) is a blow-up. The morphism (Z ′, Z ′)→ (Z,Z)
is not a modification but it is finite over Z. We can thus by Corollary (4.18)
assume that (Z ′, Z ′) → (Z,Z) is finite after replacing the source and the
target with blow-ups. Finally, the blow-up (Z ′, Z ′) → (Z̃ ′, Z ′) extends to a
blow-up of (X ′, X ′) (use the same center) so after replacing (X ′, X ′) with a
blow-up we can assume that Z ′ → X ′ is a closed immersion. We now have
the cartesian diagram

Z

��

Z ′oo � � //

��

X ′

��

Z Z ′oo � � // X ′

where the vertical morphisms are open immersions. Taking push-outs of
the two rows gives us an open immersion X → X. The existence and the
properness of X follow from Theorem (A.4) or, as the question is fppf-local
on S, from either [Rao74a, Prop. 1] or [Art70, Thm. 6.1]. �

Lemma (6.7). Let S be a noetherian quasi-Deligne–Mumford stack and let
f : X → S be representable, separated and of finite type. Assume that

(i) There exists a finite morphism p : X ′ → X such that f ◦ p : X ′ → S
is compactifiable and p|U is an isomorphism over a non-empty open
substack U ⊆ X.

(ii) For every closed substack j : Z ↪→ X such that |Z| 6= |X| we have
that f ◦ j : Z → S is compactifiable.

Then f is compactifiable.

Proof. Let X ′′ ↪→ X be the schematic image of p so that X ′ → X ′′ is
schematically dominant and X ′′ ↪→ X is a closed immersion that is an
isomorphism over U . As the finite morphism p : X ′ → X ′′ satisfies the
conditions of the lemma, it is thus enough to prove the lemma when either
p is schematically dominant or p is a closed immersion.

Case 1: p is schematically dominant. Let J ⊆ OX be the conductor of
p : X ′ → X and let Z = V (J ). Then J → p∗(JOX′) is an isomorphism
and we have a pinching diagram

Z ′ � � //

��

X ′

p

��

Z � � // X.

Case 2: p is a closed immersion. Let I be the kernel of OX � p∗OX′

and let J be the annihilator of I. Then by Artin–Rees lemma, there is an
integer k ≥ 1 such that for all n > k we have that

J n ∩ I = J n−k(J k ∩ I) = 0.
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Let Z ↪→ X be the closed subspace defined by J n so that

Z ′ � � //
� _

��

X ′
� _

p

��

Z � � // X

is a pinching diagram.
In both cases Z ∩ U = ∅ so that Z → S is compactifiable by assumption

(ii). That X → S is compactifiable then follows from Lemma (6.6). �

Proof of Theorem B. By [Ryd09b, Thm. D], the morphism f factors as a
closed immersion X ↪→ X ′ followed by a representable and separated mor-
phism X ′ → S of finite presentation. After replacing X with X ′ we can thus
assume that f is of finite presentation.

First assume that S is Deligne–Mumford. By Proposition (6.3), we can
then assume that S is an affine scheme. The reduction to the case where
S is of finite type over Spec(Z) is then standard. We can thus assume that
S is affine of finite type over Spec(Z) (although we will only use that S is
noetherian) so that X is a separated algebraic space of finite type over S.

By noetherian induction we can assume that for every closed subspace
Z ↪→ X such that Z 6= X, the morphism Z → S is compactifiable. By
Lemma (6.7) we may then assume that X is irreducible.

It is well-known that there exists a scheme W and a finite morphism
W → X which is étale over a (dense) open subspace U ⊆ X [LMB00,
Thm. 16.6]. By the classical Nagata theorem, there is a compactification
W ⊆W → S where W is a scheme that is proper over S. Let d be the rank
of W |U → U . After replacing W and W with SECd(W/X) and its closure
in (W/S)d we have that the symmetric group Sd acts on W and W such
that U = [W |U/Sd].

Let X ′ = W/Sd and X ′ = W/Sd be the geometric quotients in the cat-
egory of separated algebraic spaces, cf. [Knu71, p. 183] and [Mat76, KM97,
Ryd07]. Then X ′ → X is finite and an isomorphism over U and X ′ is a
compactification of X ′. That X → S is compactifiable now follows from
Lemma (6.7).

Now assume that S is merely quasi-Deligne–Mumford. As before, but now
using [Ryd09b, Thm. D], we can assume that S is a quasi-Deligne–Mumford
stack of finite type over Spec(Z). By Propositions (2.6) and (6.3), we can
also assume that X and S have coarse moduli spaces X0 and S0 and that
S → S0 and X0 → S0 are of finite type.

We have already shown that X0 → S0 has a compactification X0 ⊂ X0 →
S0. The morphism X → X0 ×S0 S is quasi-finite, proper and representable,
hence finite. We can thus apply Zariski’s main theorem to the representable,
separated and quasi-finite morphism X → X0 ×S0 S and obtain a non-
representable compactification X ⊆ X → X0 ×S0 S → S. After replacing
X → S with its relative coarse moduli space we have a representable com-
pactification of X → S. �
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Part 2. Stacky modifications, stacky blow-ups, tame étalification
and compactification of tame Deligne–Mumford stacks

7. Stacky modifications

In this section we reinterpret the results on blow-ups given in Section 4 in a
more categorical language that allow us to give a transparent generalization
to stacky blow-ups and stacky modifications. A pesky detail is that while
there is at most one morphism between two modifications, there can be
several morphisms between stacky modifications. On the other hand, stacky
modifications at least constitute a 1-category — it is even a directed category
— and not a 2-category so we do not have to worry about 2-morphisms.

Definition (7.1). Let (S,U) be a stackpair. A stacky modification of (S,U)
or a U -admissible stacky modification of S is a proper morphism π : (X,U)→
(S,U) with finite diagonal such that (X,U) is strict and π−1(U)→ U is an
isomorphism.

Lemma (7.2) (cf. [FMN10, Prop. 1.2]). Let (X,U) be a strict stackpair
and let Y be an algebraic stack with finite diagonal. Let f, g : X → Y be two
morphisms and let τU : f |U ⇒ g|U be a 2-morphism.

(i) There is at most one 2-morphism τ : f ⇒ g extending τU .
(ii) There exists a universal finite U -admissible modification π : X ′ → X

such that τU extends to a 2-morphism τ : f ◦ π ⇒ g ◦ π.
(iii) If Y is an algebraic space, then f = g.

Proof. Consider the 2-cartesian diagram

Z //

h
��

Y

∆Y

��

X
(f,g)

// Y × Y

�

where Z → X is finite since ∆Y is finite. The 2-morphism τU corresponds
to a section sU : U → Z of h over U . Similarly, a 2-morphism τ : f ⇒ g
corresponds to a section of h. A section s of h is determined by its graph
Γs ↪→ Z and as U ⊆ X is schematically dense, we have that Γs is the closure
of Γs|U . It follows that there is at most one section of h extending sU and
such a section exists if X ′ := ΓsU → X is an isomorphism. Finally (iii)
follows since X ′ = X in this case. �

Definition (7.3). Let (S,U) be a stackpair. We let

Mod(S,U) ⊂Modstacky(S,U) ⊂ Stack/S

denote the full subcategories of the 2-category Stack/S with objects modi-
fications and stacky modifications of (S,U).

Lemma (7.4). Let (S,U) be a stackpair.
(i) The 2-category Modstacky(S,U) is equivalent to a 1-category.
(ii) If πi : (Xi, U)→ (S,U) are stacky modifications for i = 1, 2 and π2

is representable, then the set Hom(π1, π2) has at most one element.
In particular, the 1-category Mod(S,U) is a directed set.
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(iii) The category Modstacky(S,U) has all finite limits and equalizers are
finite modifications.

Proof. Let πi : (Xi, U)→ (S,U) be stacky modifications for i = 1, 2 and let
f, g : (X1, U)→ (X2, U) be S-morphisms. Lemma (7.2) (i) shows that there
is at most one 2-morphism τ : f ⇒ g so that the groupoid Hom(π1, π2) is
equivalent to a set. If π2 is representable, then (iii) of the lemma shows
that f = g. Finally, (ii) of the lemma shows that the equalizer of f and g
is a finite modification (X ′

1, U)→ (X1, U). The product of π1 and π2 is the
strictification of (X1×S X2, U) or, equivalently, the strict transformation of
π1 along π2. �

Let f : (S′, U ′) → (S,U) be a morphism of stackpairs. The strict trans-
form induces a functor f∗ : Modstacky(S,U) → Modstacky(S′, U ′). This
makes

Modstacky : StackP→ Cat, (S,U) 7→Modstacky(S,U)

into a 2-presheaf (or a pseudofunctor). It can be seen that this is a 2-sheaf
(or a stack in categories) for the fppf topology on StackP but we will not
make use of this.

Definition (7.5). Let P be a property of stacky modifications stable under
compositions and strict transformations. We say that a stacky modification
is a P -modification if it has property P . Let ModP ⊂ Modstacky be the
subpresheaf of P -modifications, i.e., let ModP (S,U) ⊂Modstacky(S,U) be
the full subcategory with objects P -modifications f : (S′, U ′) → (S,U) for
every stackpair (S,U).

The salient example of a property P is the property “being a blow-up”
so that ModP (S,U) ⊂Modstacky(S,U) is the directed set of blow-ups.

Note that we do not impose that ModP has any sheaf property. In
particular, we do not require that the property P can be checked étale-
locally. In fact, we do not even require that a modification p : (X,U) →
(S,U) has property P if p : (X,V ) → (S, V ) has property P for an open
substack V ⊆ U (this is false for blow-ups). Also note that ModP has
fiber products since the fiber product of two stacky modifications f and
g coincides with the composition of g and the strict transformation of f
along g.

Definition (7.6). We say that a stacky modification f : (X,U)→ (S,U) is
P -dominated by f : (Z,U) → (S,U) if there is a P -modification (X,U) →
(Z,U).

Lemma (7.7). Let pi : (Xi, U)→ (S,U) be P -modifications for i = 1, 2.
(i) If p2 is representable, then there is at most one S-morphism g : X1 →

X2 and such a morphism is necessarily a P -modification.
(ii) If p2 is arbitrary, then any S-morphism g : X1 → X2 is the com-

position of a finite modification (X1, U) → (Z,U) followed by a
P -modification (Z,U)→ (X2, U).

Proof. Let Z = X1 ×S X2 so that the projections are P -modifications and
let s = (idX1 , g) : X1 → Z be the section corresponding to a morphism g so
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that g = π2 ◦ s. If p2 is representable, then s is an isomorphism. If p2 is
arbitrary then s : (X1, U)→ (Z,U) is a finite modification. �

So, while for example a blow-up that is dominated by another blow-up
automatically is P -dominated (with P being “blow-up”), cf. Remark (4.13),
this is not the case for other properties.

We will be interested in the following properties of P -modifications:

(Ef ) Extension along f : (S′, U ′) → (S,U) — Every P -modification of
(S′, U ′) extends to a P -modification of (S,U).

(QEf ) Quasi-extension along f : (S′, U ′)→ (S,U) — Every P -modification
of (S′, U ′) that is an isomorphism over f−1(U) is P -dominated by
a P -modification of (S′, f−1(U)) that extends to a P -modification
of (S,U).

(QDf ) Quasi-descent of domination along f : (S′, U ′)→ (S,U) — If πi : (Xi, U)→
(S,U) are P -modifications for i = 1, 2 and X2×S S

′ is P -dominated
by X1 ×S S

′, then X2 is P -dominated by a P -modification of X1.
(CF) Strong cofinality — Every stacky modification is P -dominated by a

P -modification.

We have seen that blow-ups have the extension property along open im-
mersions (Lemma 4.8), the quasi-extension property for representable étale
morphisms (Proposition 4.14) and that blow-ups are strongly cofinal among
modifications (Corollary 5.1).

The following “quasi-descent” result is a stronger form of “quasi-descent
of domination”.

Lemma (7.8). Let πi : (Xi, U)→ (S,U) be P -modifications and let f : (S′, U ′)→
(S,U) be surjective étale and cartesian. Assume that X2×SS

′ is P -dominated
by X1 ×S S

′. If every blow-up has property P then X2 is P -dominated by a
blow-up of X1.

Proof. Let g′ : (X1 ×S S
′, U ′)→ (X2 ×S S

′, U ′) be a P -modification and let
g′′1 , g

′′
2 : (X1 ×S S

′′, U ′′) → (X2 ×S S
′′, U ′′) be the pull-backs of g′ along the

two projections S′′ = S′ ×S S
′ → S′. Since the equalizer of g′′1 and g′′2 is a

finite modification, there is a blow-up of (X1×SS
′′, U ′′) that equalizes them.

This blow-up can be quasi-extended to a blow-up of p : (Y1, U) → (X1, U)
so that after replacing X1 with Y1 we have that g′′1 = g′′2 . Then we obtain a
modification g : (X1, U) → (X2, U) by étale descent. By Lemma (7.7) this
modification factors as a finite modification followed by a P -modification.
By strong cofinality of blow-ups among modifications, we have that g be-
comes a P -modification after replacing X1 with yet another blow-up. �

Proposition (7.9). Let P be a property of stacky modifications of quasi-
Deligne–Mumford stackpairs. Consider the following properties of P -modifications:

(Eopen) The extension property for cartesian open immersions.
(QEadm) The quasi-extension property for (non-cartesian) open immer-

sions.
(QEétnbhd) The quasi-extension property for étale neighborhoods, i.e., étale

cartesian morphisms f : (S′, U ′) → (S,U) such that f |S\U is an
isomorphism.
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(QEGal) The quasi-extension property for Galois covers, i.e., finite étale
cartesian morphisms that are Galois.

(QEét) The quasi-extension property for representable étale morphisms.
(QEclosed) The quasi-extension property for closed immersions.
(QEunram) The quasi-extension property for representable unramified mor-

phisms.
If every blow-up has property P then the first four properties imply the fifth
property (QEét). Properties (QEét) and (QEclosed) imply (QEunram).

Note that if P is “being a blow-up” then (Eopen) and (QEadm) are Lemma (4.8)
and Corollary (4.11) and the rest of the properties are proved in Proposi-
tion (4.14). The following proof generalizes the proof of Proposition (4.14)
to stacky modifications.
Proof. Every morphism of stackpairs factors as an open immersion of the
form (S′, V ) → (S′, U) followed by a cartesian morphism. Using (QEadm)
it is thus enough to prove property (QEét) and (QEunram) for cartesian
morphisms.

Let f : (S′, U ′) → (S,U) be a representable étale cartesian morphism.
Let ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = S be a filtration of open quasi-
compact subsets such that f |Si\Si−1

is finite and étale of constant rank for
every i = 1, 2, . . . , n [Ryd11, Prop. 4.4]. Let p′ : (X ′, U ′) → (S′, U ′) be a
P -modification.

We will show that p′ is dominated by a P -modification that extends to
(S,U) by induction on n. Thus assume that we have a cartesian diagram

(Xn−1 ×Sn−1 S
′
n−1, U

′
n−1) //

��

(Xn−1, Un−1)

pn−1

��

(X ′
n−1, U

′
n−1)

p′n−1

��

(S′n−1, U
′
n−1) // (Sn−1, Un−1)

where the vertical morphisms are P -modifications and p′n−1 is the restriction
of p′. Let V = U ∪ Sn−1 and V ′ = U ′ ∪ S′n−1.

Step 1: Reduce to the case where U = V and U ′ = V ′. By (Eopen) we can
extend pn−1 to a P -modification p : (X,U)→ (S,U). After replacing (S,U),
(S′, U ′) and (X ′, U ′) with the strict transforms along p we can then assume
that p′ : (X ′, U ′)→ (S′, U ′) has a section over V ′. Let s : V ′ → X ′ denote the
section. As p′ has finite diagonal, we have that s is representable and quasi-
finite. We can thus use Zariski’s main theorem [Ryd09b, Thm. 8.6]: the
quasi-finite map V ′ → X ′ factors as a schematically dense open immersion
j : V ′ ↪→ X ′

1 followed by a finite morphism X ′
1 → X ′.

By strong cofinality for blow-ups, there is a blow-up (X ′
2, U

′)→ (X ′
1, U

′)
such that the composition (X ′

2, U
′) → (X ′

1, U
′) → (X ′, U ′) is a blow-up.

Now (X ′
2, U

′)→ (S′, U ′) is no longer necessary an isomorphism over V ′ but
(X ′

2|V ′ , U ′) → (V ′, U ′) is at least a blow-up. By (QEét) for blow-ups, there
is a blow-up (W,U)→ (S,U) such that after taking strict transforms along
W → S, the P -modification (X ′

2, U
′)→ (S′, U ′) is an isomorphism over V ′.
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By (QEadm) there is then a P -modification (X ′
3, V

′)→ (X ′
2, V

′) such that
the composition (X ′

3, V
′)→ (S′, V ′) is a P -modification and we can replace

X ′, U ′ and U with X ′
3, V

′ and V .
Step 2: Reduce to descent question. Let Z = X \U . By Step 1, we have

that f |Z is finite of constant rank d. Let SEC := SECd
Z(S′/S) ⊆ (S′/S)d be

the open substack that parameterizes d sections of S′ → S that are disjoint
over Z and let ÉT := ÉT

d
Z(S′/S) = [SEC/Sd] [Ryd11, Def. 5.1]. Then the

first projection π1 : SEC → X ′ is étale and surjective and ÉT → X is a
(surjective) étale neighborhood of Z [Ryd11, Lem. 5.3]. Then by (QEGal)
and (QEétnbhd) there is a P -modification p : (X,U)→ (S,U) that fits in the
following diagram:

(X ×S SEC, U ×S SEC) //

��

(X ×S S
′, U ′) //

{{

(X,U)

p

��

(X ′ ×S′ SEC, U ×S SEC)

p′

��

// (X ′, U ′)

��

(SEC, U ×S SEC) // (S′, U ′) // (S,U)

where all vertical morphisms are P -modifications. By Lemma (7.8) there is a
blow-up (Y ′, U ′)→ (X ′×S S

′, U ′) and a P -modification (Y ′, U ′)→ (X ′, U ′).
By (QEét) for blow-ups, we obtain a blow-up of (Y, U)→ (X,U) such that
(X ′, U ′) is P -dominated by (Y ×S S

′, U ′). �

8. Root stacks

In this section we recall some basic facts about root stacks, cf. [Cad07].
Although we will later exclusively work with ordinary Cartier divisors, we
introduce generalized Cartier divisors. Their main virtue is that they admit
pull-backs under arbitrary morphisms whereas Cartier divisors do not.

Definition (8.1). Let X be an algebraic stack. A generalized effective
Cartier divisor is a pair (L, s) where L is an invertible sheaf and s : OX → L
is a, not necessarily regular, section. A morphism (L, s)→ (L′, s′) is an iso-
morphism ϕ : L → L′ such that s′ = ϕ◦s. We let DivX denote the groupoid
of generalized effective Cartier divisors on X. We also equip the category
DivX with the symmetric monoidal structure given by the tensor product
(L, s)⊗(L′, s′) = (L⊗L′, s⊗s′). We let DivX denote the monoid of ordinary
effective Cartier divisors.

Note that DivX can be interpreted as the groupoid Hom(X, [A1/Gm]).
Let r̂ : Gm → Gm be the rth power morphism which sits in the Kummer
sequence, i.e., the exact sequence of fppf-sheaves

1 // µr
// Gm

ˆr // Gm
// 1.

The rth power morphism extends to a morphism r̂ : A1 → A1 and we let
r̂ : [A1/Gm] → [A1/Gm] denote the morphism induced by these two mor-

phisms.
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Definition (8.2). The rth root stack of X along (L, s) ∈ DivX, denoted
X(L,s),r or X(

√
(L, s), r), is the stack X ×[A1/Gm],ˆr [A1/Gm]→ X.

The rth root stack has the following modular interpretation. If f : S → X
is a morphism, then HomX(S,X(L,s),r) is the groupoid of pairs

(
(K, t), ϕ

)
where (K, t) ∈ DivS and ϕ : (K, t)⊗r → f∗(L, s) is an isomorphism. In par-
ticular, there is a universal generalized effective Cartier divisor (L1/r, s1/r) ∈
DivX(L,s),r.

If L = OX is trivial, then

X(L,s),r = [SpecX

(
OX [z]/(zr − s)

)
/µr]

where µr = Spec(Z[t]/tr−1) acts by z 7→ z⊗ t. It follows that X(L,s),r → X
is a proper and flat universal homeomorphism of finite presentation and that
X(L,s),r → X is an isomorphism over the non-vanishing locus of s.

From now on, we will restrict the discussion to ordinary Cartier divisors.
Thus, let D be an effective Cartier divisor on X and let s : OX → OX(D) be
a section corresponding to D. Then (O(D), s) is unique up to isomorphism
and we let XD,r = X(O(D),s),r be the corresponding root stack. The gen-
eralized effective Cartier divisor (O(D)1/r, s1/r) is then an ordinary Cartier
divisor, denoted 1

rD ∈ DivXD,r, such that r
(

1
rD

)
equals the pull-back of

D. Root stacks of ordinary Cartier divisors have the following properties.
(i) (XD,r, XD,r \ 1

rD)→ (X,X \D) is a stacky modification.
(ii) If f : S → X is a morphism such that f−1(D) is a Cartier divisor,

then the groupoid HomX(S,XD,r) is equivalent to the set of Cartier
divisors E ∈ DivS such that rE = f−1(D).

(iii) XD,r → X is tame and the relative coarse moduli space of XD,r →
X isX. If r is invertible onD, thenXD,r → X is Deligne–Mumford.

(iv) If D = D1 qD2 is a disjoint sum then XD,r = XD1,r ×X XD2,r.
(v) If r = 1 then XD,r = X.

Given effective Cartier divisors (Di) and positive integers (ri) for i =
1, 2, . . . n, we let

X(Di,ri) = XD1,r1 ×X XD2,r2 ×X · · · ×X XDn,rn .

By abuse of notation, we will also refer to X(Di,ri) as a root stack. If ri
is invertible on Di for every i, then we will say that X(Di,ri) is a DM root
stack. This happens exactly when X(Di,ri) → X is Deligne–Mumford. Note
that if D = D1 + D2 and r = r1 = r2, then the root stacks X(Di,ri) and
XD,r are different. There is however a canonical morphism X(Di,ri) → XD,r

induced by the Cartier divisor 1
rD1 + 1

rD2.

Remark (8.3). Let X be a regular scheme and let D =
∑n

i=1Di be a simple
normal crossings divisor. For any tuple (ri) of positive integers we then have
the root stack X(Di,ri). It is easily seen that this root stack is regular. More
generally, if we only require D to have normal crossings, then there is a
similar construction using logarithmic geometry [MO05] which étale-locally
is such a root stack. Also see [BV10] for related constructions.

Definition (8.4). If (X,U) is a stackpair then we let Div(X,U) ⊆ DivX
denote the set of Cartier divisors that are trivial over U . We say that
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a stacky modification (X ′, U) → (X,U) is a root stack (resp. a DM root
stack) if X ′ = X(Di,ri) for some Di ∈ Div(X,U) and ri ∈ Z+ (resp. ri ∈ Z+

invertible over Di).
The following lemma is strictly speaking not necessary in the sequel but

illustrates that flat, proper, birational morphism with tame abelian stabi-
lizer groups are “twisted forms” of root stacks. This includes the stacks
constructed by Olsson and Matsuki [MO05, Ols09] (but this is obvious).

Lemma (8.5). Let (S,U) be a Deligne–Mumford strict stackpair and let
π : (X,U) → (S,U) be a flat stacky modification. Further assume that the
relative stabilizer groups of π are locally diagonalizable (resp. tame, abelian
and locally constant). Then there exists an étale surjective cartesian mor-
phism (S′, U ′) → (S,U) such that (X ×S S

′, U ′) → (S′, U ′) is a root stack
(resp. a DM root stack).

Proof. Using [RG71, Cor. 2.6 and 3.4.2] it can be shown that π is finitely
presented. By a standard limit argument, we may thus assume that S =
Spec(A) where A is strictly henselian. Then there is a diagonalizable group
scheme G/S and a representable G-torsor V → X, so that V → X → S
is finite [AOV08]. Let V = Spec(B). Since S is henselian, V splits into a
disjoint union

∐
Vi of spectra of henselian local rings and we can replace

(V,G) with (Vi, Gi) for some i, where Gi ↪→ G is the stabilizer of the closed
point of Vi.

By assumption V |U → X|U = U is a G-torsor and hence V → S is flat of
rank |G| and G acts faithfully on B. Thus the free A-module B splits into
1-dimensional irreducible representations B =

⊕
χ∈G∗ Bχ where Bχ is a free

A-module of rank 1 on which G acts by the character χ. Let mA and mB

be the maximal ideals of A and B respectively and consider B/mA which
is a k = A/mA-module. Then B/mA has a filtration B/mA ⊇ mB/mA ⊇
m2

B/(mA ∩ m2
B) ⊇ . . . of k-modules stable under the action of G and this

induces a grading on the character group G∗. Let R ⊆ G∗ be the characters
of degree one (i.e., the set of characters χ such that (mB/(mA +m2

B))χ 6= 0).
Then R is a minimal generating set of G∗. Let bχ ∈ Bχ be a generator of
Bχ as an A-module, let nχ be the order of χ and let aχ = b

nχ
χ ∈ A. Then

B = A[z1, . . . , zm]/(z
nχi
i − aχi)

where R = {χ1, . . . , χm} and G acts on
∏

i z
αi
i by the character

∏
i χ

αi
i . We

thus have that X → S is the root stack along (Di, nχi) where Di = V (aχi) ∈
DivS. �

9. Tame stacky blow-ups

Definition (9.1). Let X be an algebraic stack, let Z ↪→ X be a closed sub-
stack of finite presentation and let r be a positive integer. We let BlZ,r(X)
denote the algebraic stack BlZ(X)E,r where E is the exceptional divisor.

We note that BlZ,1(X) = BlZ(X) is the usual blow-up and that there is a
canonical factorization BlZ,r(X)→ BlZ,1(X)→ X. More generally, if r = st
then there is a canonical morphism BlZ,r(X) → BlZ,s(X) which identifies
BlZ,r(X) with the root stack BlZ,s(X) 1

s
E,t.
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Definition (9.2). We say that π : X → Y is a Kummer blow-up if there is
a closed substack Z ↪→ Y and a positive integer r such that X = BlZ,r(Y ).
If r is invertible along Z, then we say that π is a DM Kummer blow-up. If
U ⊆ Y is an open substack and Z can be chosen such that Z∩U = ∅ then we
say that the Kummer blow-up is U -admissible. If U is schematically dense
in Y \Z then we say that the Kummer blow-up is strictly U -admissible. We
say that (X,U)→ (Y, U) is a (DM) Kummer blow-up if X → Y is a strictly
U -admissible (DM) Kummer blow-up.

Let (X,U)→ (S,U) be a Kummer blow-up with center Z and weight r. If
g : (S′, U ′)→ (S,U) is a morphism and (S′, U ′) is strict, then HomS(S′, X)
is equivalent to the set of effective Cartier divisors D′ ∈ DivS′ such that
rD′ = g−1(Z).

Contrarily to blow-ups, a composition of two Kummer blow-ups is not
necessarily a Kummer blow-up. We therefore make the following definition:

Definition (9.3). We say that π : X → Y is a tame stacky blow-up if π =
π1 ◦ π2 ◦ · · · ◦ πn−1 ◦ πn where each πi is a Kummer blow-up. We say that π
is DM (resp. U -admissible, resp. strictly U -admissible) if all the πi can be
chosen to be so. We say that (X,U) → (Y, U) is a tame stacky blow-up if
X → Y is a strictly U -admissible tame stacky blow-up.

Clearly, a tame stacky blow-up (X,U) → (Y, U) is a stacky modifica-
tion. We will now show that tame stacky blow-ups have the properties of
Proposition (7.9). We begin with properties (Eopen) and (QEadm), i.e., the
analogues of Lemma (4.8) and Corollary (4.11) for tame stacky blow-ups.

Lemma (9.4). Let (S,U) be a pseudo-noetherian stackpair and let V ⊆ S
be a quasi-compact open substack. Then any tame (DM) stacky blow-up of
(V,U ∩ V ) extends to a tame (DM) stacky blow-up of (S,U).

Proof. First replace (S,U ∪ V ) with a blow-up so that it becomes a strict
stackpair. We can then extend any Kummer blow-up via Lemma (4.3) and
the lemma follows. �

Lemma (9.5). Let (S,U) be a pseudo-noetherian stackpair. Let π : X → S
be a tame (DM) stacky blow-up such that π|U is an isomorphism. Then there
is a tame (DM) stacky blow-up (X ′, U)→ (X,U) such that the composition
(X ′, U)→ (X,U)→ (S,U) is a tame (DM) stacky blow-up.

Proof. Let π = π1 ◦π2 ◦ · · · ◦πn−1 ◦πn be a factorization into (DM) Kummer
blow-ups πi : Xi → Xi−1 where X = Xn and S = X0. We we will prove the
lemma by induction on n.

If we let Yi → S denote the relative coarse space of Xi → S, then Yi → S
is an isomorphism over U . In particular, if Z1 ↪→ S is a center for the
first stacky blow-up, then Z1 ∩ U is a Cartier divisor. We can thus, by
Corollary (4.11), replace (S,U) with a blow-up and assume that Z1 is a
Cartier divisor.

Then X1 = SZ1,r is a root stack for some positive integer r. Since X → S
is an isomorphism over U , it follows that there is a Cartier divisor EU ↪→ U
such that rEU = Z1 ∩ U . We can extend EU to a finitely presented closed
subscheme E ↪→ S by Lemma (4.3). By Corollary (4.11), we can then
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assume that E ↪→ S is a Cartier divisor after replacing (S,U) with a blow-
up.

It follows that Z1 = W1 + rE where W1 is a Cartier divisor disjoint from
U . After replacing (S,U) with the root stack along W1 we can thus assume
that X1 → S has a section s. The section s is a finite modification (S,U)→
(X1, U) so by Proposition (4.10) there is a blow-up (S′, U) → (S,U) such
that (S′, U) → (S,U) → (X1, U) is a blow-up. We can then assume that
(X1, U) = (S′, U) = (S,U) so that π is a composition of n − 1 Kummer
blow-ups. By induction we can then find a tame (DM) stacky blow-up
(X ′, U) → (X,U) such that (X ′, U) → (S,U) is a tame (DM) stacky blow-
up. �

The following lemma will only be used when f is representable and étale.

Lemma (9.6). Let (S,U) be a stackpair and let f : (S′, U ′) → (S,U) be
an unramified cartesian morphism of finite presentation. Let j : D′ ↪→ S′

be an effective Cartier divisor such that D′ ∩ U ′ = ∅ and such that D′ ↪→
S′ → S is finite. Then there exists a blow-up (S̃, U) → (S,U) and Cartier
divisors D1, D2, . . . , Dn ∈ Div(S̃, U) such that D′×S S̃ is a sum of connected
components of the Cartier divisors Di ×S S

′.

Proof. To illustrate the method that we are going to apply, first assume that
S′ =

∐n
i=1 S so that D′ = D′

1qD′
2q· · ·qD′

n. Then we will first blow-up the
intersection of all the D′

i’s and subtract one copy of the exceptional divisor
from the total transforms of the D′

i’s. We then continue by blowing up the
union of the intersections of n− 1 of these smaller divisors and so on.

In the general case, note that f ◦j : D′ → S is finite and of finite presenta-
tion. Let I1 ⊆ I2 ⊆ · · · ⊆ Im ( Im+1 = OS be the Fitting ideals of f∗j∗OD′

(these are of finite type) and let ∅ = Zm+1 ↪→ Zm ↪→ . . . ↪→ Z1 ↪→ S be the
corresponding closed substacks so that f ◦ j|Zk

has rank at least k. We will
prove the lemma by induction on m.

Note that (f ◦ j)|Zm has constant rank m (i.e., is flat, finite and of finite
presentation with constant rank m) and in particular (f ◦ j)|Zm is finite and
étale. Now let (S̃, U) be the blow-up of Im and let Dm = V (ImOeS) be
the exceptional divisor. Let D̃′ = D′ ×S S̃ be the total transform of D′.
Consider the pull-back of f ◦ j to Dm:

D̃′|Dm ↪→ S′ ×S Dm → Dm.

As the composition is étale and the second morphism is unramified, it follows
that the first morphism is an open and closed immersion. In particular,
we have that D̃′|Dm ↪→ S′ is a Cartier divisor. We can thus write D̃′ =
D̃′|Dm + R′. Then R′ ↪→ S̃′ → S̃ has rank strictly smaller than m. Indeed,
to show this we can assume that S is the spectrum of a strictly henselian local
ring. Then D̃′ = D̃′

1 q D̃′
2 q · · · q D̃′

m where D̃′
i ↪→ S̃ are closed subschemes.

Moreover Dm =
⋂m

i=1 D̃
′
i and D̃′

i = Dm + R′
i. But then

⋂m
i=1R

′
i = ∅ and

hence R′ =
∐m

i=1R
′
i → S̃ has rank strictly smaller than m.

By induction we have, after replacing (S̃, U) with a blow-up and S′

with the total transform, Cartier divisors D1, D2, . . . , Dm−1 such that R′
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can be written as a sum of connected components of the D1 ×S S
′, D2 ×S

S′, . . . , Dm−1 ×S S
′ and the result follows. �

We can now prove the analogue of Proposition (4.14).

Proposition (9.7). Let f : (S′, U ′) → (S,U) be a cartesian morphism of
pseudo-noetherian stacks. Let (X ′, U ′) → (S′, U ′) be a tame (DM) stacky
blow-up. Assume that one of the following holds:

(a) f is a closed immersion.
(b) f is representable and étale and S is quasi-Deligne–Mumford.
(b′) f is representable, étale and f |X\U is finite of constant rank d.
(b′′) f is representable, étale and f |X\U is an isomorphism.
(c) f is representable and unramified and S is quasi-Deligne–Mumford.

Then there exists a tame (DM) stacky blow-up (X,U)→ (S,U) and a tame
(DM) stacky blow-up (X ×S S

′, U ′) → (X ′, U ′) over (S′, U ′). If (S,U) is
strict, and (a) or (b′′) holds, then it can further be arranged so that X×SS

′ =
X ′.

Proof. It is enough to show the proposition when (X ′, U ′) → (S′, U ′) is
a (DM) Kummer blow-up so that X ′ = BlZ′,rS

′ for some closed substack
Z ′ ↪→ S′ and positive integer r. We can further assume that (S,U) is strict
using Lemma (4.4). After replacing (S,U) with a blow-up, we can further
assume that Z ′ is a Cartier divisor by Proposition (4.14) so that X ′ = S′Z′,r
is a root stack.

In case (a) the proof of Lemma (4.5) gives an extension of Z ′ ↪→ S′ to a
finitely presented closed substack Z ↪→ S, so after a blow-up we can assume
that Z ′ ↪→ S′ extends to a Cartier divisor Z ↪→ S. If we let X = SZ,r we
are then done.

In case (b′′) we let Z ↪→ S be the image of Z ′ ↪→ S′ → S. Then Z ′ =
Z ×S S

′ and X = SZ,r is the required root stack.
In case (b′) we use Lemma (9.6) and conclude that after replacing S with

a blow-up there are Cartier divisors D1, D2, . . . , Dm ↪→ Z such that Z ′ is a
sum of connected components of the Di ×S S

′. We thus have a morphism
(S(Di,r) ×S S

′, U ′)→ (X ′, U ′). This morphism is the composition of a finite
modification followed by a tame (DM) stacky blow-up, cf. Lemma (7.7). We
can thus, by Proposition (4.14) find a blow-up of (X,U)→ (S(Di,r), U) such
that (X ×S S

′, U ′) → (X ′, U ′) is a tame (DM) stacky blow-up and we are
done in this case.

Cases (b) and (c) now follow from Lemmas (9.5) and (9.4), the cases
above and Proposition (7.9). �

The following preliminary result will not be used in the sequel. Using the
tame étalification theorem, we will instead prove a stronger result for stacks
with tame but not necessarily abelian stabilizers, cf. Section 12.

Theorem (9.8). Let (S,U) be a Deligne–Mumford stackpair and let f : (X,U)→
(S,U) be a stacky modification such that the relative stabilizers of f are lo-
cally diagonalizable (resp. tame, abelian and locally constant). Then there
exists a tame stacky blow-up (resp. a tame DM stacky blow-up) (X ′, U) →
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(X,U) such that the composition (X ′, U) → (X,U) → (S,U) is a tame
stacky blow-up (resp. a tame DM stacky blow-up).

Proof. After replacing (S,U) with a blow-up, we may assume that f is
flat. Then by Lemma (8.5) there is a representable étale surjective cartesian
morphism (S′, U ′)→ (S,U) and a collection (D′

i, ri) where D′
1, D

′
2, . . . , D

′
n ∈

Div(S′, U ′) and ri ∈ Z+ such that X×S S
′ = S′(D′

i,ri)
. In particular, we have

that (X×SS
′, U ′)→ (S′, U ′) is a tame (DM) stacky blow-up and the theorem

follows by Proposition (9.7). �

For completeness we also mention the following more restrictive class of
tame stacky blow-ups that will not be used in the sequel.

Definition (9.9). A stacky modification (X,U) → (S,U) is a normalized
tame (DM) stacky blow-up if it factors as (X,U) → (S2, U) → (S1, U) →
(S,U) where

• (S1, U)→ (S,U) is a blow-up,
• (S2, U)→ (S1, U) is a (DM) root stack given by a collection (Di, ri)

where D1, D2, . . . , Dn ∈ Div(S1, U).
• (X,U)→ (S2, U) is a blow-up that is finite.

A composition of two normalized tame stacky blow-ups is not necessarily
a normalized tame stacky blow-up. However, using Lemmas (8.5) and (9.6)
together with an étale dévissage similar as in the proof of Proposition (7.9)
it can be shown that if (X,U)→ (S,U) is a tame (DM) stacky blow-up then
there exists a normalized tame (DM) stacky blow-up (X ′, U)→ (X,U) such
that the composition (X ′, U) → (S,U) is a normalized tame (DM) stacky
blow-up.

We will need the following limit result for stacky blow-ups.

Lemma (9.10). Let (S,U) be a quasi-Deligne–Mumford stackpair and let
(S′, U ′) = lim←−λ

(Sλ, Uλ) be an inverse limit of affine cartesian morphisms
(Sλ, Uλ) → (S,U). Let π′ : (X ′, U ′) → (S′, U ′) be a tame (DM) stacky
blow-up. Then there exists an index α and a tame (DM) stacky blow-
up πα : (Xα, Uα) → (Sα, Uα) such that the strict transform of πα along
(S′, U ′) → (Sα, Uα) is π′. Moreover, if we let πλ : (Xλ, Uλ) → (Sλ, Uλ)
denote the strict transform of πα then (X ′, U ′) = lim←−λ

(Xλ, Uλ).

Proof. It is enough to prove the lemma for the case where π′ is a (DM)
Kummer blow-up, i.e., X ′ = BlZ′,rS

′ for some finitely presented closed sub-
stack Z ′ ↪→ S′ disjoint from U ′. We can then find a index α and a finitely
presented closed substack Zα ↪→ Sα disjoint from Uα. Letting πλ be the
(DM) Kummer blow-up in (Zα, r) answers the first part.

To prove the second claim let X ′
λ = Xλ×Sλ

S′. We have to show that the
inverse system X ′ ↪→ X ′

α of closed immersions have limit X ′ ↪→ X ′
α. But X ′

α

is pseudo-noetherian so X ′ ↪→ X ′
α is the inverse limit of finitely presented

closed immersions X ′
γ ↪→ X ′

α that are isomorphisms over U ′. For every γ
and sufficiently large λ, we then have a closed immersion X ′

γλ ↪→ Xα×Sα Sλ

that pull-backs to X ′
γ ↪→ X ′

α and is an isomorphism over Uλ. As Xλ is the
closure of Uλ in Xα ×S Sλ, it follows that the X ′

λ’s are cofinal among the
X ′

γ ’s. �
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10. Tame ramification

We start this section with some basic facts from valuation theory, in
particular on extensions of valuations. Then we define tamely ramified ex-
tensions and morphisms and give a criterion via tame DM stacky blow-ups,
cf. Proposition (11.7).

Let V be a valuation ring. By K(V ), κ(V ), mV and ΓV we denote the
fraction field, the residue field, the maximal ideal and the value group of V .
For any ring A, we denote the group of invertible elements by A∗. Recall
that the value group ΓV is the abelian group K(V )∗/V ∗ with the total order
given by f ≥ g if f, g ∈ K(V )∗ and f/g ∈ V . Note that ΓV is torsion-free
and that ΓV is the group of Cartier divisors on Spec(V ). A small warning: V
is often not noetherian so Krull’s Hauptidealsatz do not apply. This means
that Cartier divisors on Spec(V ) often have codimension > 1!

The valuation ofK(V ) corresponding to V is the homomorphism v : K(V )∗ →
ΓV and the value of an element is the image of this map. Note that v(f) = 0
if and only if f ∈ V ∗ and v(f) ≥ 0 if and only if f ∈ V .

Valuation rings are Bézout domains, i.e., every finitely generated ideal is
principal. It follows that a module over a valuation ring is flat if and only if
it is torsion-free. We will also use that a finitely generated and flat algebra
over an integral domain is finitely presented. This is a non-trivial result due
to Raynaud–Gruson [RG71, Cor. 3.4.7].

A homomorphism of valuation rings V → W is an extension if V → W
is injective and local, or equivalently, if V → W is faithfully flat. For such
an extension we have field extensions κ(V ) ↪→ κ(W ) and K(V ) ↪→ K(W )
and a group homomorphism ΓV → ΓW . Moreover, by faithful flatness V =
W ∩K(V ) and V ∗ = W ∗ ∩K(V ) so that ΓV → ΓW is injective.

Let V be a valuation ring, let K ′/K(V ) be an algebraic field extension
and let V ′ = normK′ V be the integral closure of V in K ′. Then every
local ring of V ′ is a valuation ring and there is a one-to-one correspondence
between maximal ideals of V ′ and valuations of K ′ extending V [Bou64,
Ch. VI, §8, Prop. 6]. If K ′/K(V ) is finite, then there is a finite number of
maximal ideals of V ′ [Bou64, Ch. VI, §8, Thm. 1].

A valuation ring V is henselian if and only if the integral closure of V
in any finite field extension K ′/K(V ) is a local ring, i.e., if and only if
there exists a unique valuation of K ′ extending V . If V is a valuation ring,
then the henselization hV and the strict henselization shV are valuation
rings. The induced group homomorphisms Γ(V ) ↪→ Γ(hV ) ↪→ Γ(shV ) are
isomorphisms.

Let V ↪→ W be an extension of valuation rings. We use the standard
notation

e = e(W/V ) = |ΓW /ΓV |
f = f(W/V ) = [κ(W ) : κ(V )]

(these cardinals may be infinite). It is clear that e(W/V ) = e(hW/hV ) =
e(shW/shV ) and f(W/V ) = f(hW/hV ). If the generic degree n = [K(W ) :
K(V )] is finite, then ef ≤ n [Bou64, Ch. VI, §8, Thm. 1]. If n is finite and
W is the only valuation of K(W ) extending V , then ef |n and d = n/ef
is the defect of W/V [Bou64, Ch. VI, §8, Exer. 9a)]. For W/V such that
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[K(shW ) : K(shV )] is finite we define the defect as

d = d(W/V ) = [K(shW ) : K(shV )]/ef.

The defect is always a power of p, the exponential characteristic of the
residue field κ(V ). We say that W/V is defectless if d = 1. We note that
d(W/V ) = d(hW/hV ) = d(shW/shV ). If K ′/K(V ) is a finite field extension
and {W1,W2, . . . ,Wm} are the valuations of K ′ extending V then∑

i

d(Wi/V )e(Wi/V )f(Wi/V ) = n.

Definition (10.1). An extension of valuation rings V ↪→ W is unramified
(resp. tamely ramified) if

(i) K(shW )/K(shV ) is a finite field extension.
(ii) K(W )/K(V ) and κ(W )/κ(V ) are separable.
(iii) e = 1 (resp. e is prime to the exponential characteristic of κ(V )).
(iv) The extension is defectless.

Let P be either the property “unramified” or the property “tamely ram-
ified”. From the above considerations it follows that W/V is P if and only
if hW/hV is P and if and only if shW/shV is P . In particular, W/V is
unramified if and only if shW = shV , or equivalently, if and only if V ↪→W
is ind-étale (i.e., a limit of étale extensions). It follows that if W/V is un-
ramified and K(W )/K(V ) is finite, then W/V is essentially étale (i.e., a
localization of an étale extension).

It is also not difficult to see that if V is henselian, then W/V is tamely
ramified if and only if W/V is a composition of an unramified extension
W1/V and an extension W/W1 such that [K(W ) : K(W1)] is finite and
prime to the residue field characteristic.

For a field K, let µ(K) ⊂ K∗ denote the torsion subgroup.

Proposition (10.2). Let W/V be a tamely ramified extension of valuation
rings. Choose a decomposition ΓW /ΓV

∼= Z/q1Z⊕Z/q2Z⊕ · · · ⊕Z/qkZ and
positive elements (γi) ∈ (ΓW )k such that the image of γi is a generator of
the ith factor of ΓW /ΓV .

(i) Assume that V is strictly henselian so that d = f = 1 and n = e is
prime to p. Given elements a1, a2, . . . , ak ∈ V such that v(ai) = qiγi

in ΓW , we then have that

K(W ) ∼= K(V )[a1/q1

1 , . . . , a
1/qk

k ].

Moreover, K(W )/K(V ) is Galois and there is a natural isomor-
phism

Gal
(
K(W )/K(V )

)
→ HomZ

(
ΓW /ΓV , µ

(
κ(V )

))
.

(ii) Let Ei be the effective Cartier divisor on Spec(W ) corresponding to
γi so that qiEi is the inverse image of the effective Cartier divisor
Di on Spec(V ) corresponding to qiγi ∈ ΓV . The induced morphism
of stacks

Spec(W )→ norm
(
Spec(V )(Di,qi)

)
is essentially étale.
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Proof. (i) Choose elements b1, b2, . . . , bk ∈ W with values γ1, γ2, . . . , γk ∈
ΓW . Since n = e, we have that K(W ) is generated by b1, b2, . . . , bk over
K(V ). Moreover, we have that bqi

i = uiai for some invertible elements
u1, u2, . . . , uk ∈ W ∗. Since p - qi and W is strictly henselian, we have that
ui = vqi

i for some v1, v2, . . . , vk ∈W . Thus, we have that (biv−1
i )qi = ai and

hence an induced isomorphism

K(V )[a1/q1

1 , . . . , a
1/qk

k ]→ K(W ).

From this description it is clear that K(W )/K(V ) is Galois with Galois
group isomorphic to Z/q1Z⊕Z/q2Z⊕· · ·⊕Z/qkZ and the second statement
follows from [GR03, Cor. 6.2.14] (this is also easily to verify directly).

(ii) We have a finite étale presentation

norm
(
Spec(V [a1/q1

1 , . . . , a
1/qk

k ])
)
→ norm

(
Spec(V )(Di,qi)

)
since normalization commutes with étale morphisms. As taking root stacks
and normalizing commute with the essentially étale base change V → shV ,
we can assume that V is strictly henselian. Then W is the normalization
of V [a1/q1

1 , . . . , a
1/qk

k ] by (i) so that W is a finite étale presentation of the
normalization of the root stack. �

Definition (10.3). We say that a valuation ring V is Kummer if it is strictly
henselian and ΓV ⊗Z Z[1/p] is divisible.

Every valuation ring V has a unique (up to non-unique isomorphism)
extension V ↪→ tV , where tV is the maximal tamely ramified extension,
a Kummer valuation ring [GR03, Def. 6.2.16]. We have a factorization
V ↪→ shV ↪→ tV .

The valuative criteria for separated and universally closed morphisms are
about the uniqueness and existence of liftings of valuation rings. We will
now define tamely ramified extensions by a similar valuative criterion.

Lemma (10.4). Let S = Spec(V ) be the spectrum of a valuation ring with
generic point η and closed points s. Let f : X → S be a morphism of schemes
such that f−1(η) → Spec(k(η)) is étale. Let x ∈ |Xs| be a point and let
g : X ′ → X be the normalization of X in f−1(η). The following are equiva-
lent

(i) For every ξ ∈ f−1(η) and every valuation ring W ⊆ k(ξ) centered
on x, the extension W/V is tamely ramified.

(ii) For every x′ ∈ g−1(x) there exists a tamely ramified extension W/V
of valuation rings and an S-morphism Spec(W ) → X ′ taking the
closed point to x′.

(iii) For every x′ ∈ g−1(x) there is an S-morphism Spec(tV ) → X ′

taking the closed point to x′.
Proof. Clearly (i) =⇒ (ii) =⇒ (iii). That (iii) =⇒ (i) follows immediately
from the following two facts. If W ′/W/V are extensions of valuation rings
and W ′/V is tamely ramified, then so is W/V . The local rings OX′,x′ are
the valuation rings of k(ξ) centered on x. �

When the equivalent conditions of Lemma (10.4) hold, then we say that
f is tamely ramified at x. Let p : Z → X be an étale morphism and let
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z ∈ |Z| be a point above x. Then f is tamely ramified at x if and only if
f ◦ p is tamely ramified at z. We can thus extend the definition of tamely
ramified points to the case where X is a Deligne–Mumford stack. Also note
that criteria (ii) and (iii) applies to X a Deligne–Mumford stack and is
equivalent to the étale-local definition. We now define tamely ramified over
general bases:

Definition (10.5). Let f : X → S be a morphism of algebraic stacks that
is relatively Deligne–Mumford (i.e., the diagonal is unramified). Let U ⊆ S
be an open substack such that f |U is étale. Let x ∈ |X| be a point.

(i) We say that f is tamely ramified outside U at x if for every valuation
ring V and morphism g : Spec(V ) → S mapping the closed point
to f(x) and such that the image of g meets U , we have that X ×S

Spec(V )→ Spec(V ) is tamely ramified at all points above x.
(ii) We say that f is tamely ramified outside U if f is tamely ramified

at every point.

Let f : (X,V )→ (S,U) be a Deligne–Mumford morphism of stackpairs. We
say that f is tamely ramified if f is cartesian, if f |V : V → U is étale and f
is tamely ramified outside U .

Remark (10.6). We have that f : X → S is tamely ramified outside U if and
only if for every Kummer valuation ring V and morphism g : Spec(V )→ S
such that the image of g meets U , there are “sufficiently many liftings” to
X.

Remark (10.7). Let (S,U) be a stackpair and let f : (X,X|U ) → (Y, Y |U )
and g : (Y, Y |U )→ (S,U) be cartesian morphisms that are relatively Deligne–
Mumford.

(i) If f and g are tamely ramified then so is g ◦ f .
(ii) If f is surjective and g ◦ f is tamely ramified then so is f .
(iii) Every modification (S′, U)→ (S,U) is tamely ramified.
(iv) Let h : (S′, U ′) → (S,U) be a cartesian morphism. If g is tamely

ramified, then so is the base change g′ : (Y ′, Y |U ′)→ (S′, U ′). If h is
surjective and tamely ramified (e.g., étale or a modification), then
the converse holds.

Lemma (10.8). Let f : (X,U)→ (S,U) be a tame modification of Deligne–
Mumford stackpairs. Then f is tamely ramified. In particular, any tame DM
stacky blow-up is tamely ramified.

Proof. We can assume that S is the spectrum of a Kummer valuation ring
V . In particular, we have that f is flat and of finite presentation and that S
is strictly henselian. Then S is the coarse moduli space of X. As S is strictly
henselian we have a lifting x : Spec(k(s))→ X. Let G be the stabilizer group
of x. As S is strictly henselian we can find a scheme Z with an action of
G such that X = [Z/G]. Then Z → S is finite and of degree |G| over U .
As f is tame we have that |G| is prime to the characteristic of k(s) so that
Z → S is tamely ramified. It follows that f is tamely ramified. �
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11. Tame étalification by stacky blow-ups

Let X be a quasi-compact Deligne–Mumford stack, let U ⊆ X be an open
quasi-compact subset and let EU → U be a finite étale covering. We would
like to know when we can extend EU to a finite étale cover of X. We will
show that if EU → U is tamely ramified, e.g., if X has characteristic zero,
then this is possible after a U -admissible stacky blow-up onX (Corollary D).

Let us first make some initial remarks:
(i) If X is normal and E → X is an étale covering, then E is normal.

Thus, there is a single candidate for the extension — the normaliza-
tion of X in EU . If X is not normal, then in general the extension
is not unique but any two extensions coincide after a U -admissible
blow-up, cf. Corollary (5.2).

(ii) For arbitrary X and EU → U finite and étale, if Spec(D)→ X is a
DVR whose generic point maps to U , then the étale cover EU → U
comes with a ramification index over D (1 if D is centered on U).
This is the obstruction to extending the étale cover over the closed
point of Spec(D): if D → Spec(D) is an rth root of the closed point,
then there is extension of EU over D if and only if r is a multiple
of the ramification index.

The étalification theorem is motivated by the following stacky version
of Abhyankar’s lemma based upon the previous remarks, cf. [SGA1, XIII],
[GM71], [Bor09, Prop. 3.2.2], [LO10, App. A] and [KL10, §3].

Theorem (11.1) (Generalized Abhyankar Lemma). Let X be a regular
scheme and let U ⊆ X be an open subscheme such that the complement
D = (X \U)red =

∑n
i=1Di is a simple normal crossings divisor. Let Z be a

normal scheme and Z → X a finite morphism such that Z|U → U is étale.
For every codimension one point z ∈ Z we let e(z) be the ramification index.
Assume that Z → X is tamely ramified, i.e., that for every i = 1, 2, . . . , n
and point z above Di

(i) The ramification index e(z) is invertible over Di.
(ii) The field extension k(z)/K(Di) is separable.

Choose positive integers ri such that e(z)|ri for every z above Di. Then
norm

(
Z ×X X(Di,ri)

)
is étale over the regular scheme X(Di,ri).

Proof. Follows immediately from the above remarks and the Zariski–Nagata
purity of branch locus. �

Remark (11.2). Tame G-torsors — Theorem (11.1) can be partly general-
ized to non-étale coverings as follows. Let G→ X be a tame group scheme
(e.g., µp) and let EU → U be a G|U -torsor. Then there exists integers (ri)
such that EU → U extends to a G-torsor over the root stack X(Di,ri) [Ols09].
When D has non-simple normal crossings, there is a similar canonical con-
struction which étale-locally is a root stack [MO05, Ols09].

Remark (11.3). Alterations — Note that it is trivial that EU extends after
an alteration of X. Indeed, we have the following stronger result (similar to
the flatification of proper morphisms using Hilbert schemes). Let E → X
be a finite morphism compactifying EU → U as exists by Zariski’s main
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theorem. Consider the dth stacky symmetric product [Symd(E/X)] which
parameterizes finite étale families Z → T of rank d together with a map
Z → E, cf. [Ryd10, §5]. The family EU → U induces a quasi-finite morphism
U → [Symd(E/X)] and Zariski’s main theorem gives a stacky U -admissible
modification X̃ := U → [Symd(E/X)] → X. By the universal property we
have a finite étale cover Ẽ → X̃ which restricts to EU → U . To obtain a
generically étale alteration instead of a stacky modification, we replace X̃
with the pull-back of the étale presentation (E/X)d → [Symd(E/X)].

Exactly as in the flatification theorem, the merit of the étalification the-
orem is not mainly that we can handle the non-proper case but that the
solution is given by a stacky blow-up X̃ → X and not merely a proper
birational morphism.

Remark (11.4). If we have strong resolution of singularities, e.g., if X is of
characteristic zero, and U is regular, then we can first resolve (X,U) by a
blow-up (X̃, U)→ (X,U) so that X̃ is regular and X̃ \U is a simple normal
crossings divisor. We can then apply the generalized Abhyankar lemma as
above. When U is not regular it seems difficult to reduce to the regular case.
Using valuation theory, we do not need resolution of singularities and can
both treat the singular case and the tame case in positive characteristic.

From now on we will leave the proper case and prove Theorem C. We
begin with showing that the theorem is étale-local, that it behaves well
under limits and that it can be solved when the base is the spectrum of a
valuation ring. The theorem is then proved using Riemann–Zariski spaces.

Lemma (11.5). Let f : (X,W )→ (S,U) be a cartesian morphism of finite
type between quasi-Deligne–Mumford stackpairs such that f |U is étale. Let

(X ′,W ′) //

f ′

��

(X,W )

f

��

(S′, U ′) // (S,U)

◦

be a commutative diagram where the horizontal morphisms are representable,
étale, surjective and cartesian. Assume that there exists a tame (DM) stacky
blow-up (S̃′, U ′) → (S′, U ′) and a blow-up (X̃ ′,W ′) → (X ′ ×S′ S̃′,W ′) such
that X̃ ′ → S̃′ is étale. Then there exists a tame (DM) stacky blow-up
(S̃, U)→ (S,U) and a blow-up (X̃,W )→ (X ×S S̃,W ) such that X̃ → S̃ is
étale.

Proof. By Proposition (9.7), there is a tame (DM) stacky blow-up (S̃, U)→
(S,U) and stacky blow-up (S̃ ×S S

′, U ′) → (S̃′, U ′). After replacing (S,U)
with (S̃, U) we can thus assume that S̃′ = S′.

By Proposition (4.14) there is then a blow-up (X̃,W ) → (X,W ) and a
blow-up (X̃ ×S S

′,W ′) → (X̃ ′,W ). Since X̃ ′ → S′ → S is étale, we can by
the same proposition find a blow-up (S̃, U)→ (S,U) such that after passing
to strict transforms, we have that the blow-up (X̃ ×S S

′,W ′)→ (X̃ ′,W ) is
an isomorphism so that X̃ → S is étale. �
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Lemma (11.6). Let f : (X,W )→ (S,U) be a cartesian morphism of finite
type between quasi-Deligne–Mumford stackpairs. Let S′ = lim←−λ

Sλ be an
inverse limit of affine morphisms Sλ → S and let Uλ = U ×S Sλ, U ′ = U ×S

S′, (Xλ,Wλ) = (X,W )×(S,U)(Sλ, Uλ) and (X ′,W ′) = (X,W )×(S,U)(S′, U ′).
Assume that there exists a tame (DM) stacky blow-up (S̃′, U ′) → (S′, U ′)
and a blow-up (X̃ ′,W ′) → (X ′ ×S′ S̃′,W ′) such that X̃ ′ → S̃′ is étale.
Then for every sufficiently large λ, there exists a tame (DM) stacky blow-
up (S̃λ, U) → (Sλ, U) and a blow-up (X̃λ,W ) → (Xλ ×Sλ

S̃λ,W ) such that
X̃λ → S̃λ is étale.

Proof. First approximate the stacky blow-up (S̃′, U ′)→ (S′, U ′) to a stacky
blow-up (S̃α, Uα) → (Sα, Uα) for some index α and then for every λ ≥ α

let (S̃λ, Uλ) → (Sλ, Uλ) denote the strict transform so that S̃′ = lim←−λ
S̃λ,

cf. Lemma (9.10). We can then replace S, Sλ and S′ with S̃α, S̃λ and S̃′

respectively and assume that S̃′ = S′.
Next, approximate the étale morphism X̃ ′ → S′ with an étale morphism

X̃λ → Sλ. After increasing λ we can also assume that (X̃λ,Wλ)→ (Xλ,Wλ)
is a (finite) modification. There is a blow-up (Yλ,Wλ)→ (X̃λ,Wλ) such that
the composition (Yλ,Wλ)→ (Xλ,Wλ) is a blow-up. By Proposition (4.14),
we can replace (Sλ, Uλ) with a blow-up so that Yλ → X̃λ becomes an iso-
morphism after strict transforms and we are done. �

Proposition (11.7). Let (S,U) be a stackpair where S = Spec(V ) is the
spectrum of a valuation ring V with closed point s. Let f : (X,W )→ (S,U)
be a finite cartesian morphism such that f |U is étale. Then f is tamely
ramified if and only if there exists a commutative diagram

(X̃,W ) h //

ef &&MMMMMMMMMMM
(X ×V S̃,W ) //

��

(X,W )

f

��

(S̃, U)
g

// (S,U)

�

where g is a tame DM stacky blow-up, h is a blow-up and f̃ is finite and
étale.

Proof. The sufficiency follows from Lemma (10.8). To see the necessity, let
X ′ → X be the normalization of X in W and let x′1, x

′
2, . . . , x

′
k ∈ X ′ be the

closed points of X ′. By assumption, the valuation ring OX′,x′i
is a tamely

ramified extension of V for every i = 1, . . . , k. For each i we can thus, by
Proposition (10.2) choose divisors Di1, Di2, . . . , Dini ∈ Div(S,U) and posi-
tive integers ri1, ri2, . . . , rini such that there is an essentially étale morphism
Spec(OX′,x′i

) → normS(Dij ,rij)j
for every i. Let S̃ = normS(Dij ,rij)ij

. As

norm
(
Spec(OX′,x′i

)(Dij ,rij)j

)
→ Spec(OX′,x′i

) is an isomorphism, we then

have that X̃ := norm(X ′ ×S S̃)→ S̃ is finite étale.
We have that (S̃, U) is the inverse limit of all finite modifications (S̃λ, U)→

(S(Dij ,rij)ij
, U). Every modification of (S(Dij ,rij)ij

, U) is finite since every
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modification is quasi-finite over S. As blow-ups are cofinal among modifica-
tions, we can write (S̃, U) as the inverse limit of blow-ups (S̃λ, U)→ (S,U).
The proposition thus follows by Lemma (11.6). �

Proof of Theorem C. By Lemma (11.5), the theorem is étale-local on S and
X so we can assume that S is an (affine) scheme. After flatification, we can
also assume that f : X → S is flat, quasi-finite and of finite presentation.
After further étale-localization, using [EGAIV, Thm. 18.12.1], we can assume
that f is also finite.

Now consider the Riemann–Zariski space RZ of (S,U) and let (V, f) be
a point of RZ. Recall that the local ring A of RZ at (V, f) is given by the
bi-cartesian diagram

k(u) OU,u
oooo

V
?�

OO

A.oooo
?�

OO

By assumption, the morphism X×S Spec(V )→ Spec(V ) is tamely ramified.
By Proposition (11.7), we can thus find a stacky blow-up ỸV → Spec(V )
and a blow-up X̃V → X ×S ỸV such that X̃V → ỸV is étale.

By Corollary (C.15), we can extend the stacky blow-up to a stacky blow-
up ỸA → Spec(A) and the blow-up to a blow-up X̃A → X ×S ỸA. Then
X̃V → ỸV is étale by Proposition (C.9).

The local rings of the Riemann–Zariski space are inverse limits of lo-
cal rings of modifications (or equivalently, of blow-ups) so using the quasi-
compactness of the Riemann–Zariski space and Lemma (11.6) we obtain a
blow-up (S′, U) → (S,U), an open covering S′′ → S′, a stacky blow-up
(S̃′′, U ′′)→ (S′′, U ′′) and a blow-up (X̃ ′′,W ′′)→ (X ×S S̃′′). Finally we use
Lemma (11.5) to eliminate the open covering S′′ → S′. �

12. Applications to tame étalification

In this section we give some applications to the tame étalification theorem.
We begin with proving Corollaries D (extension of finite étale covers) and E
(cofinality of stacky blow-ups).

Proof of Corollary D. Recall that we are given a Deligne–Mumford stack-
pair (X,U) and a finite étale cover EU → U tamely ramified over X \ U .
Choose a finite compactification E → X so that (E,EU )→ (X,U) is tamely
ramified. Then by the tame étalification theorem, there exists a stacky blow-
up (X̃, U) → (X,U) and a blow-up (Ẽ, EU ) → (E ×X X̃, EU ) such that
Ẽ → X is étale. �

Proof of Corollary E. Recall that we are given a stacky tame (DM) mod-
ification f : (X,U) → (S,U). By the tame étalification theorem there is
a stacky blow-up (S̃, U) → (S,U) and a blow-up (X̃, U) → (X ×S S̃, U)
such that f̃ : X̃ → S̃ is étale. Then f̃ is an isomorphism so that (X̃, U) →
(X,U)→ (S,U) is a stacky blow-up. �



40 DAVID RYDH

Corollary (12.1) (Extension of tame étale group schemes). Let (X,U) be
a Deligne–Mumford stackpair. Let GU → U be a finite étale and tame
group scheme. Then there exists a stacky blow-up (X̃, U) → (X,U) such
that GU → U extends to a finite étale and tame group scheme G̃ → X̃.
Similarly, if RU

//
// U is a finite étale and tame groupoid, there is a stacky

blow-up and a finite étale tame groupoid R̃ //
// X̃ extending RU

//
// U .

Proof. This follows immediately from Corollary D and Corollary (5.2). �

Let FÉT(X) denote the category of finite étale morphisms E → X and
let FÉTtame(X,U) ⊆ FÉT(U) denote the category of finite étale morphisms
EU → U that are tamely ramified over X \ U .

Corollary (12.2). Let (X,U) be a Deligne–Mumford stackpair. Then

lim−→
( eX,U)

FÉT(X̃)→ FÉTtame(X,U)

is an equivalence of categories. Here the limit is over all tame DM stacky
blow-ups (X̃, U)→ (X,U). In particular, if u : Spec(k)→ U is a point, then
we have an isomorphism of pro-finite groups

πtame
1 (U ;u)→ lim←−

( eX,U)

π1(X̃;u).

We have the following non-representable version of Corollary (5.2).

Corollary (12.3). Let (S′, U ′) → (S,U) be a cartesian étale morphism of
Deligne–Mumford stackpairs. Let X ′ → S′ be quasi-compact étale and let
Y ′ → S′ be proper and tame (and Deligne–Mumford). Let fU : X ′ ×S U →
Y ′ ×S U be a morphism. Then there exists a tame (DM) stacky blow-up
(S̃, U)→ (S,U) and an extension1 f : X ′ ×S S̃ → Y ′ ×S S̃ of fU .
Proof. By Proposition (9.7) we can assume that S = S′. Consider X|U →
X×S Y → X. This is a quasi-finite morphism which is an isomorphism over
U . ThusX|U → X×SY is quasi-finite, and finite over the inverse image of U .
Zariski’s Main theorem then gives a factorization X|U ⊆ Γ→ X×S Y where
the first morphism is an open immersion which is an isomorphism over U
and the second is a finite morphism. In particular, (Γ, U)→ (X,U) is a tame
(DM) stacky modification. By cofinality of stacky blow-ups, Corollary E,
and Proposition (9.7), there is a stacky blow-up of (S,U) such that after
passing to the strict transform, Γ→ X has a section s. The composition of
s with Γ→ X ×S Y → Y is an extension of fU . �

Remark (12.4). There is also another similar result. Let f, g : X ′ → Y ′

be two morphisms and τU ′ : f |U ′ → g|U ′ a 2-isomorphism. Then there is a
stacky blow-up such that τU ′ extends to a 2-isomorphism between f and g.

13. Compactification of tame Deligne–Mumford stacks

Definition (13.1). A morphism f : X → S of stacks is tamely DM-compactifiable
if there exists a factorization f = f ◦ j where j is a quasi-compact open im-
mersion and f is proper, tame and Deligne–Mumford.

1Add something about (non-)uniqueness.
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The proof of the following proposition is almost identical to Proposi-
tion (6.3) using stacky blow-ups instead of blow-ups.

Proposition (13.2). Let f : X → S be a separated morphism of finite type
between quasi-compact Deligne–Mumford stacks. Let S′ → S be a repre-
sentable, étale and surjective morphism. If f ′ : X ×S S

′ → S′ is tamely
DM-compactifiable then so is f .

Proof. We will use étale dévissage [Ryd11, Thm. D]. Let D ⊆ E = Stackqc,ét/S

be the full subcategory of quasi-compact étale morphisms T → S such
that X ×S T → T has a tame Deligne–Mumford compactification. Then
(S′ → S) ∈ D by hypothesis. That D satisfies axioms (D1) and (D2) fol-
lows exactly as in Proposition (6.3) and Lemma (6.4) with one modification.
The morphism X×ST → RT ′/T (X×ST

′) is not a closed immersion but only
finite (and unramified but we do not need that). We thus obtain a quasi-
finite representable morphism X ×S T → RT ′/T (Y ) where RT ′/T (Y ) → T
is proper, tame and Deligne–Mumford. Using Zariski’s main theorem, we
obtain a compactification of X ×S T → T . Axiom (D3) follows from the
following lemma and we deduce that (S → S) ∈ D and the proposition
follows. �

Lemma (13.3). Let (S,U) be a Deligne–Mumford stackpair and let S′ → S
be an étale neighborhood of S \ U so that

U ′ j′
//

��

S′

��

U
j

// S

�

is a bi-cartesian square. Let f : X → S be a separated morphism of finite
type. If the pull-backs f ′ : X ′ → S′ and f |U : X|U → U are tamely DM-
compactifiable, then so is f .

Proof. Let f ′ : X ′ ↪→ Y ′ → S′ and f |U : X|U ↪→ YU → U be compactifi-
cations. We have a quasi-finite representable morphism X ′|U ′ → (YU ×U

U ′) ×U ′ Y ′|U ′ . By Zariski’s main theorem, there is a factorization X ′|U ′ ⊆
Z → (YU ×U U ′) ×U ′ Y ′|U ′ where the first morphism is an open immersion
and the second is finite. The two projections Z → YU ×U U

′ and Z → Y ′|U ′

are thus proper and isomorphisms over the open subscheme X ′|U ′ .
X ×S U

′-admissible
By Corollary E we can replace (Z,X ′|U ′) with a tame DM stacky blow-up

and assume that the induced morphisms (Z,X ′|U ′)→ (YU×U U
′, X ′|U ′) and

(Z,X ′|U ′)→ (Y ′|U ′ , X ′|U ′) tame DM stacky blow-ups. By Proposition (9.7),
we can further assume that Z = YU ×U U ′ after replacing (Z,X ′|U ′) and
(YU , X|U ) with tame DM stacky blow-ups. We can then extend (Z,X ′|U ′)→
(Y ′|U ′ , X ′|U ′) to a tame DM stacky blow-up of (Y ′, X ′) by Lemma (9.4) and
assume that Z = Y ′|U ′ . We then obtain a compactification of f : X → S by
taking the pushout Y = YU qZ Y

′.
As YU and Y ′ are tame and Deligne–Mumford and Y ′ → Y is an isomor-

phism over the closed substack Y \ YU it follows that Y → T is tame and
Deligne–Mumford so that f is tamely DM compactifiable. �
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Before proving Theorem F, let us first study various compactifications of
uniformizable stacks, i.e., stacks which admit a finite étale presentation.

Lemma (13.4). Let (S,U) be a Deligne–Mumford stackpair. Let π : X → U
be a proper morphism of Deligne–Mumford stacks and let Z → X be a finite
étale surjective morphism such that Z → U is finite. Let Z → S be a
compactification (e.g., as given by Zariski’s main theorem). Then:

(i) If X = [Z/G] where G→ S is a constant group scheme (or constant
on the connected components of S), then X = [Z/G] can be com-
pactified by a stack [Z̃/G] where Z̃ → Z is a Z-admissible blow-up.

(ii) If X = [Z/G] where G→ U is a finite étale and tame group scheme,
then there is a tame DM stacky blow-up (S̃, U) → (S,U), a finite
étale and tame group scheme G̃ → S̃, a blow-up (Z̃, Z) → (Z ×S

S̃, Z) and a compactification [Z̃/G̃].
(iii) If Z → X is tame (resp. is tamely ramified over S), then there is

a tame DM stacky blow-up (Z̃, Z)→ (Z,Z) and a compactification
X̃ of X with a finite étale and tame (resp. finite étale) presentation
Z̃ → X̃.

(iv) In general, there is a compactification [W/Sd] where d is the rank
of Z → X.

The situation in mind is when U is the coarse moduli space of a uni-
formizable stack X with presentation Z → X. Note the decreasing control
of the compactification. In particular, if Z → X is tame then the compact-
ification is tame in (i)–(iii) but in (iv) we have almost no control over the
compactification except that we know that it is uniformizable.
Proof of Lemma (13.4). For (i), we note that the action G ×S Z → Z ex-
tends to an action G ×S Z → Z after replacing (Z,Z) with a blow-up by
Corollary (5.2).

For (ii), the extension of G/U to G̃/S̃ follows from Corollary (12.1) and
the compactification is obtained as in (i).

In (iii), we use Corollary (12.1) to extend the groupoid Z ×X Z //
// Z to

a finite étale groupoid R̃ //
// Z̃ and let X̃ be the quotient.

Finally in (iv), we can take W = SECd(Z/X) so that X = ÉT
d
(Z/X) =

[W/Sd] and the result follows from (i). �

Lemma (13.5). Let k be a field and let G be a tame Deligne–Mumford
gerbe over k. Then there exists a tame separable field extension k′/k, i.e.,
p - [k′ : k], such that G (k′) 6= ∅.

Proof. Let K/k be a normal separable field extension such that G has a
K-point x : Spec(K) → G and such that Aut(x) is constant, i.e., G =
[Spec(K)/G] for a constant étale group G. Let N C G be the inertia sub-
group and let H = G/N = Gal(K/k). Since G is tame, we have that p - |N |.
Let Gp < G be a Sylow p-group. Then N ∩Gp = 0 and thus Gp → G � H
is injective and such that [H : Gp] is prime to p. Since N ∩Gp = 0, we have
that Gp acts freely on K so that [Spec(K)/Gp] = Spec(k′) where k′ = KGp .
The natural morphism [Spec(K)/Gp] → [Spec(K)/G] = G gives a k′-point
of G and [k′ : k] = [H : Gp] is prime to p. �



COMPACTIFICATION OF TAME DELIGNE–MUMFORD STACKS 43

Note that the lemma only states that we can neutralize G as an abstract
gerbe after a tame field extension, not trivialize it as a G-gerbe. That is,
we do not claim that that the automorphism group scheme of the point
x : Spec(k′)→ G is constant.

Lemma (13.6). Let X be a separated Deligne–Mumford stack with coarse
moduli space X and moduli map π : X → X.

(i) Let x : Spec(k′) → X be a point. Then there exists an étale mor-
phism U → X, a lifting y : Spec(k′) → U of π ◦ x, a finite étale
tame group scheme G→ U and a G-torsor T → X ×X U such that
T is a scheme.

(ii) Let x : Spec(k) → X be a point. Then there exists an étale mor-
phism U → X, a lifting y : Spec(k) → U of x and a finite étale
presentation T → X ×X U such that T is a scheme.

Proof. (i) follows from rigidity of reductive groups: First consider the reduc-
tive group scheme Stab(x) → Spec(k′). This extends to a reductive group
scheme G → U for some étale U → X as in (i). By rigidity, the Stab(x)-
torsor x : Spec(k′)→ (X×X Spec(k′))red extends to a G-torsor V → X×XU
and V is a scheme in a neighborhood of x.

(ii) Either reason as in the Keel–Mori lemma (using Hilbert schemes to
produce finite étale coverings) or first take any U → X as in (i) and then
replace U with ÉT

d
(U/X) where d is the rank of U → X at the point x. �

Proof of Theorem F. Let X → S be a separated morphism of Deligne–
Mumford stacks. If X → S has a tame Deligne–Mumford compactification
then it is obvious that X → S is strictly tame. Conversely, assume that
X → S is strictly tame.

By Proposition (13.2) the question whether X → S has a tame compact-
ification is étale-local so we can assume that S is affine. Using approxi-
mation [Ryd09b, Thm. D], we can reduce to the case where X → S is of
finite presentation and the reduction to the case where S is of finite type
over Spec(Z) is then standard2. Finally, let X → Xcms → S be the coarse
moduli space of X. Recall that Xcms → S is separated, representable and
of finite type and that X → Xcms is proper. We now apply the compacti-
fication theorem for algebraic spaces, Theorem B, and obtain a compactifi-
cation Xcms ⊆ Y → S. We may now replace S with Y and hence assume
that X → S is quasi-finite and that there exists an open U ⊆ S such that
X → U is a coarse moduli space. Applying Proposition (13.2) once again,
we can continue to assume that S is an (affine) scheme.

We will now use the Riemann–Zariski space RZ of (S,U). Let (V, f) be
a point of RZ so that the local ring A at (V, f) is given by a bi-cartesian

2The details about strictly tameness and approximation should be written out. For
tameness, which coincides with strict tameness in the equicharacteristic case, this is done
in [Ryd09b].



44 DAVID RYDH

diagram

k(u) OU,u
oooo

V
?�

OO

A.oooo
?�

OO

Note that the stack X ×U Spec(OU,u) has coarse moduli space Spec(OU,u).
By Lemma (13.5) there is a tame separable field extension k/k(u) such that
Xu has a k-point. By Lemma (13.6), there is an affine étale morphism EU →
Spec(OU,u) with Eu = Spec(k), a tame étale group scheme G → EU and a
G-torsor T → X ×U EU with T an (affine) scheme. In particular we have a
tame étale cover Eu = Spec(k)→ Spec(k(u)). By the étalification theorem,
there is a tame DM stacky blow-up (Ỹ , u) → (Y, u), where Y = Spec(V ),
and an extension of Eu → Spec(k(u)) to a finite étale cover EeY → Ỹ .

Now, since V is a valuation ring, any blow-up of Y = Spec(V ) is trivial.
By the flatification theorem, it follows that the stacky blow-up (Ỹ , u) →
(Y, u) is flat, quasi-finite and of finite presentation. By Corollary (C.15), this
stacky blow-up descends to a tame DM stacky blow-up W̃ →W = Spec(A)
that is flat, quasi-finite and of finite presentation. Moreover, the cartesian
diagram

Spec(k(u)) � � //

��

Spec(OU,u)

��

Ỹ � � // W̃

is bi-cartesian. By Proposition (C.9), the affine étale morphisms EeY → Ỹ

and EU → U glue to an affine étale morphism E → W̃ .
By a limit argument (W is the inverse limit of local rings of blow-ups

of (S,U)) using Lemma (9.10), there is a blow-up (S(V,f), U) → (S,U),
a cartesian open immersion (S′(V,f), U

′) ⊆ (S(V,f), U), a stacky blow-up

(S̃′(V,f), U
′) → S′(V,f) an étale surjective morphism E(V,f) → S̃′(V,f), a finite

étale tame group scheme G(V,f) → E(V,f)×S U and a representable G-torsor
T(V,f) → X ×S E(V,f).

By the quasi-compactness of the RZ space and Lemma (9.4), we thus
obtain a tame DM stacky blow-up (S′, U) → (S,U), an étale surjective
morphism E′ → S′, a finite tame étale group scheme G → E′ ×S U and a
representable G-torsor T → X ×S E

′. By Lemma (13.4) (ii), there is then a
tame compactification of X ×S E

′ over E′ by a quotient stack [T/G] (here
G is a tame étale group scheme over a stacky blow-up of E′). Finally, by
Proposition (13.2) we obtain a tame compactification X ′ of X ×S S

′. Since
(S′, U)→ (S,U) is a tame DM stacky blow-up, X ⊆ X ′ → S′ → S is a tame
compactification of X. �

Remark (13.7). In characteristic zero, we can take a field extension k/k(u)
such that Xu has a point x with Stab(x) a constant group scheme. We
can then assume that G is a constant group scheme and we can compactify
X×SE

′ = [T/G] by a stack of the form [T/G]. With this approach we can do
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without the stacky blow-up needed to extend the group scheme G→ E′×SU

to a group scheme G→ Ẽ′.

Remark (13.8). Non-tame DM-stacks — First note that, for any DM-stack,
we can get a compactification “étale-locally on the Riemann–Zariski space”.
Indeed, by Lemma (13.6) (ii) there is an étale neighborhood E → Spec(OU,u)
(i.e., Eu = Spec(k(u))) such that X ×U E has a finite étale presentation by
a scheme T . This gives us a blow-up (S′, U)→ (S,U) and an étale covering
E′ → S′ such that X ×S E

′ has a finite étale presentation. We can then
compactify X ×S E

′ → E′ by Lemma (13.4) (iv).
In the tame case, this is not sufficient since we have no control over this

compactification and cannot assert that it is tame so that Proposition (13.2)
applies. However, granted a non-tame analogue of Proposition (13.2) (where
we could also assume that the compactification of X ×S S

′ → S′ is uni-
formizable and in particular a global quotient stack) the compactification of
arbitrary DM-stacks follows.

Corollary (13.9). Let (X,U) be a Deligne–Mumford stackpair. Let EU →
U be a tame étale gerbe. Then there is a tame DM stacky blow-up (X̃, U)→
(X,U) and a tame étale gerbe Ẽ → X̃ extending EU → U .

Proof. Choose a tame DM compactification EU → X and étalify it to an
étale morphism Ẽ → X̃. The étale morphism Ẽ → X̃ is automatically an
étale gerbe since the diagonal ∆ eE/ eX is finite and étale, and the restriction
to the open dense subset U is surjective so that ∆ eE/ eX is surjective. �

Remark (13.10). Note that unless EU is uniformizable, it is a priori not at
all obvious that a compactification of EU exists and the fact that EU → U
is a gerbe does not seem to help very much.

Appendix A. Pinchings of algebraic stacks

In this appendix we show that pinchings — the push-out of a closed
immersion and a finite morphism — exist in the category of algebraic stacks.
As an exception, we do not assume that all stacks are quasi-separated.

The following is a standard lemma for which we have not found a suitable
reference.

Lemma (A.1). Let f : Z ′ → Z be a finite morphism of algebraic stacks. Let
V ′ → Z ′ be smooth and surjective. Then there exists a smooth presentation
W → Z and a smooth morphism W ×Z Z

′ → V ′ over Z ′.

Proof. First let W → Z be a smooth presentation and let W ′ = W ×Z Z
′.

We may then replace Z ′, Z and V ′ with W ′, W and W ′ ×Z′ V ′ respectively
and assume that Z is a scheme. Then Z ′ is also a scheme.

Let z ∈ Z be any point so that f−1(z) = {z′1, z′2, . . . , z′n} is a finite set of
points in Z ′. It is enough to construct a smooth neighborhood W → Z of z
such that W ×Z Z

′ → Z ′ factors via a smooth map W ×Z Z
′ → V ′.

For every point z′i choose a preimage v′i in V ′, an open neighborhood
v′i ∈ V ′

i ⊆ V ′ and an étale morphism V ′
i → Ari

Z′ over Z ′. We may replace V ′
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with the disjoint union
∐
V ′

i after replacing Z with an open neighborhood
of z such that V ′ → Z ′ remains surjective.

Now let r be an integer greater than all the ri’s and choose smooth maps
Ar

Z′ → Ari
Z′ . We may then replace V ′

i with V ′
i ×Ari

Z′
Ar

Z′ and assume that
V ′ → Z ′ factors through Ar

Z′ . After replacing Z ′ and Z with Ar
Z′ and Ar

Z
respectively, we can then assume that V ′ → Z ′ is étale.

Let Zz denote the strict henselization of Z at z so that Z ′×ZZz =
∐n

i=1 Z
′
z′i

is a disjoint union of spectra of strictly local rings. It follows that the étale
morphism V ′×Z Zz → Z ′×Z Zz has a section. By a limit argument, there is
thus an étale neighborhood W → Z of z such that V ′×Z W → Z ′×Z W has
a section. The composition of this section (which is open) and the projection
V ′ ×Z W → V ′ gives the required étale morphism W ×Z Z

′ → V ′. �

Lemma (A.2) ([Rao74a, Lemme]). Let Z ′ ↪→ X ′ be a closed immersion
and let f : Z ′ → Z be a finite morphism of algebraic stacks. Then there
exists disjoint unions of affine schemes W,W ′, U ′ and smooth presentations
W → Z, W ′ → Z ′ and U ′ → X ′ such that

W

��

W ′oo � � //

��

U ′

��

Z Z ′oo � � //

�

X ′

�

is cartesian.

Proof. It is enough to construct, for every point z ∈ Z, smooth morphisms
W → Z, W ′ → Z ′ and U ′ → X ′ with W , W ′ and U ′ affine such that the
image of W → Z contains z. Indeed, we can then take the disjoint union of
all these neighborhoods and add a presentation of X ′ \ Z ′ to U ′.

Let U ′ → X ′ be a smooth presentation. Then by the previous lemma,
there exists a smooth presentation W → Z and a smooth morphism W ′ =
W ×Z Z

′ → U ′ ×X′ Z ′. Let w ∈ W so that f−1(w) = {w′i} is a finite set of
points in W ′. After replacing W with an étale neighborhood of w, we can
assume that the W ′ =

∐
iW

′
i such that w′i ∈W ′

i .
For every i, there is an open neighborhood V ′

i ⊆W ′
i of w′i such that there

exists a smooth morphism U ′
i → U ′ which restricts to V ′

i ⊆W ′ → U ′×X′ Z ′

over Z ′ [EGAIV, Prop. 18.1.1]. Replace U ′
i and V ′

i with affine neighborhoods
of w′i. After replacing W with an open affine neighborhood of w, we can
finally assume that V ′

i = W ′
i and we are done. �

Lemma (A.3). Let A be a ring and let B ↪→ C be an extension of A-
algebras such that C is integral over B. If C is noetherian and an A-algebra
of finite type, then B is noetherian and an A-algebra of finite type.

Proof. Let c1, c2, . . . , cn be generators of C and let B0 ⊆ B be a finitely gen-
erated A-algebra containing the coefficients of the integral equations of the
ci’s so that B0 ↪→ C is finite. Since B0 ↪→ C is finite and injective it follows
that B0 is noetherian by the Eakin–Nagata theorem [EGAI, Prop. 0.6.4.9].
Thus B0 ↪→ B is finite and the lemma follows. �
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Theorem (A.4) (Existence of pinchings). Let S be an algebraic stack and
let X ′, Z ′, Z be algebraic stacks over S. Let j′ : Z ′ ↪→ X ′ be a closed immer-
sion and let f ′ : Z ′ → Z be a finite morphism. Then the push-out X of j′

and f ′ exists in the category of algebraic stacks and fits into the bi-cartesian
diagram

Z ′ � � j′
//

f ′

��

X ′

f
��

Z � � j
// X.

Furthermore,
(i) f is integral, j is a closed immersion and f q j : X ′ q Z → X is

integral, schematically dominant and surjective.
(ii) f is an isomorphism over X \ Z.
(iii) If I and I ′ are the ideals defining Z ↪→ X and Z ′ ↪→ X ′ respectively,

then I → f∗I ′ = f∗(IOX′) is the identity.
(iv) The square remains co-cartesian after flat base change T → S.
(v) The square of associated topological spaces is co-cartesian and this

holds after arbitrary base change T → S.
(vi) The following square of quasi-coherent sheaves on X

OZ′ OX′oooo

OZ

OO

OX
oooo

OO

is cartesian.
(vii) Let P be one of the properties: affine, AF-scheme, algebraic space,

Deligne–Mumford stack, has quasi-finite diagonal, quasi-separated,
separated, quasi-compact. Then X has P if and only if X ′ and Z
have P .

(viii) If S is locally noetherian and X ′ and Z are locally of finite type
(resp. of finite type, resp. proper) over S, then so is X.

Proof. (v) and (vi): The questions are smooth-local, so we can assume that
X is affine. The statement is then [Fer03, Thm. 5.1].

(vii) The condition is clearly necessary. If Z, Z ′ and X ′ are affine, then
by construction X is affine (as also follows from Chevalley’s theorem). If Z,
Z ′ and X ′ are AF-schemes, then so is X by [Fer03, Thm. 5.4]. The last six
properties follow from the fact that X ′ q Z → X is finite and surjective.

(viii) If X ′ q Z → S is of finite type, then so is X → S by Lemma (A.3).
The proper case follows from the observation that ifX ′qZ → S is universally
closed then so is X → S. �

Appendix B. Riemann–Zariski spaces

Let X be a quasi-compact and quasi-separated scheme and let U ⊆ X
be an open quasi-compact subset. A U -modification is a proper morphism
π : X ′ → X of schemes such that π|U is an isomorphism. The Riemann–
Zariski space RZ = RZ(U ⊆ X) is the inverse limit of all U -modifications
in the category of locally ringed spaces. This limit is filtered as the category
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of U -modifications has fiber products. Note that the subcategory of U -
admissible blow-ups is cofinal by [RG71, Cor. 5.7.12], cf. Corollary (5.1),
and hence RZ is also the inverse limit of all U -admissible blow-ups and
again this is a filtered limit.

Note that RZ is not necessarily a scheme since the transition morphisms
are not affine (as in [EGAIV, §8]). If X = lim←−λ

Xλ is an inverse limit of
schemes with affine transition morphisms, then X is also the inverse limit
in the category of locally ringed spaces [EGAIV, Rmk. 8.2.14].

We begin by studying the topological properties of RZ. If X = lim←−λ
Xλ

is any inverse limit of locally ringed spaces, then we have that |X| =
lim←−λ

|Xλ| where |X| denotes the underlying topological space. If the Xλ’s
are quasi-compact and quasi-separated schemes then we also have the finer
constructible topology |Xλ|cons which is compact and Hausdorff. It is well-
known that |X|cons := lim←−λ

|Xλ|cons is compact and Hausdorff and it follows
that the coarser topology |X| is quasi-compact.

Recall that a topological space is quasi-separated if the intersection of
any two quasi-compact open subsets is quasi-compact. If U ⊆ X is quasi-
compact, then there exists a λ and Uλ ⊆ Xλ such that U is the inverse image
of Uλ. Since |Xλ| is generated by quasi-compact open subsets we can also
choose Uλ to be quasi-compact. It then follows that U is closed and hence
compact in |X|cons. Thus, if U and V are quasi-compact open subsets then
U ∩ V is quasi-compact and we have shown that:

Lemma (B.1). Let X be quasi-compact and quasi-separated. Then the
Riemann–Zariski space RZ(U ⊆ X) is quasi-compact and quasi-separated.

Next, we will describe the points of RZ(U ⊆ X). Let V be a valuation
ring and let f : Spec(V ) → X be a morphism such that the generic point
ξ ∈ Spec(V ) maps into U . Then f lifts uniquely to any U -modification
and hence lifts to a unique map Spec(V ) → RZ (of locally ringed spaces).
Conversely, we have the following result:

Proposition (B.2) ([Tem08, Cor. 3.4.7]). There is a one-to-one correspon-
dence between points of RZ and pairs (V, f) where V is a valuation ring
and f : Spec(V )→ X is a morphism such that f−1(U) = {ξ} is the generic
point and the residue field extension k(f(ξ)) ↪→ k(ξ) is trivial.

Proof. The open immersion U ⊆ X is decomposable (after a blow-up of the
complement of U , the inclusion U → X is affine) and hence [Tem08, Cor.
3.4.7] applies. �

Finally, let us describe the local rings of RZ. If X = lim←−λ
Xλ is an

inverse limit of locally ringed spaces then the local ring at x ∈ X is OX,x =
lim−→λ

OXλ,xλ
where xλ is the image of x by X → Xλ.

We have the following descriptions of the local rings of RZ:
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Proposition (B.3) ([Tem08, Prop. 2.2.1]). Let z = (V, f) be a point of RZ.
Then the local ring ORZ,z at z fits into the following bi-cartesian diagram

k(ξ) = k(u) OU,u
oooo

V
?�

OO

ORZ,z
oooo

?�

OO

where u = f(ξ).
Note that cartesian means that ORZ,z is the inverse image of V in OU,u

and co-cartesian means that k(u) is the tensor product. Also note that even
if V is a DVR, then ORZ,z is non-noetherian.

Note that the generic point {ξ} = f−1(U) is open in Spec(V ).

Appendix C. A descent result for push-outs

In this section we study various descent properties for push-outs of the
following type: Let f ′ : Z ↪→ X be a closed immersion and let g′ : Z → Y
be a flat, affine, schematically dominant, monomorphism. Equivalently, g′

is affine and OY → g′∗OY is a flat injective epimorphism of rings. The
main examples are affine schematically dominant open immersions and the
inclusion of the generic point of an integral scheme.

We will show that for such pairs (f ′, g′) of morphisms of affine schemes,
the push-out X qZ Y in the category of affine schemes is also the push-out
in the category of algebraic stacks. By base change we then deduce the
existence of similar push-outs of morphisms of stacks.

It is easily seen that, except in trivial cases, these push-outs never are
noetherian. Nevertheless, we will show that the push-outs enjoy several nice
properties. Push-outs of this kind was introduced by M. Temkin and the re-
sults in this section generalizes [Tem10, Prop. 2.4.3] and [Tem08, Lem. 2.3.1].
The main application is the push-out in Proposition (B.3) and flat base
changes of this. In these applications g′ : Z → Y is an affine schematically
dominant open immersion.

(I recently realized that most of these results can be found in [Fer03].)
Recall that the pull-back in the category of rings coincides with the pull-

back in the category of modules (and sets) and that M = N1 ×P N2 if and
only if

M // N1 ×N2
//
// P

is exact, or equivalently if and only if

0 // M // N1 ⊕N2
// P

is exact (the last morphism is the difference of the two projections). (The
first sequence makes sense in the category of rings but not the latter.) From
the exact sequence, it follows that pull-backs of modules (and rings) com-
mute with flat base change.
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Lemma (C.1). Let

D C
f ′

oooo

B
?�

g′

OO

A
f

oo

g

OO

be a cartesian diagram of rings such that f ′ is surjective and g′ is injective.
Then

(i) A = f ′−1(B), f is surjective and g is injective.
(ii) ker(f)→ ker(f ′) and coker(g)→ coker(g′) are bijective.
(iii) The diagram is co-cartesian.

If in addition g′ is an epimorphism (resp. a flat epimorphism) then so is g.

Proof. The first three statements are straight-forward to check. For the last
assertion, let I = ker(f). Then IC = I by (ii) and it follows that the
natural homomorphism I → I(C ⊗A C) is bijective. We have the following
homomorphism of exact sequences

0 // I(C ⊗A C) // C ⊗A C //

����

D ⊗B D //

����

0

0 // I // C // D // 0.

Thus g : A → C is an epimorphism if and only if g′ : B → D is an epimor-
phism. Now assume that g′ is a flat epimorphism. It is enough to check that
the epimorphism g is flat on local rings. Let p ⊆ C be a prime ideal and
let q = g−1(p). Since g is an epimorphism, we have that Cp = C ⊗A Aq. If
I * p then Dp = Dq = 0 and it follows that Bq = 0 and Aq = Cq. If I ⊆ p
then Bq ↪→ Dq is faithfully flat and hence an isomorphism and it follows
that Aq = Cq. �

Remark (C.2). If g′ is flat but not an epimorphism, then easy examples
show that g need not be flat.

(C.3) From now on, we will only consider pull-backs such that f ′ is surjec-
tive and g′ is a flat injective epimorphism, i.e., bi-cartesian squares

D C
f ′

oooo

B
?�

g′

OO

A
f

oooo
?�

g

OO

of rings where f and f ′ are surjective and g and g′ are flat injective epimor-
phisms. Dually, we will consider 2-cartesian squares of algebraic stacks

Z � � f ′
//

g′

��

X

g

��

Y � � f
// W
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where f and f ′ are closed immersions and g and g′ are flat, affine, schemat-
ically dominant, monomorphisms such that

f∗g
′
∗OZ g∗OX

oooo

f∗OY

?�

OO

OW
oooo

?�

OO

is bi-cartesian.
We note that X → W is an isomorphism over W \ Y so X q Y → W is

surjective. It is not difficult to see that X q Y → W is submersive and we
will show that it is in fact universally submersive.

Definition (C.4). Let j : U → X be a flat affine schematically dominant
monomorphism. We say that a quasi-coherent sheaf F on X is U -admissible
(or simply admissible) if F → j∗j

∗F is injective. If X ′ → X is a mor-
phism (of stacks), then we say that X ′ is U -admissible if X ′ ×X U → X ′ is
schematically dominant (i.e., if OX′ → j′∗j

′∗OX′ is injective).

Lemma (C.5). Let A,B,C,D form a bi-cartesian square of rings as in (C.3).
(i) Let M be a C-admissible A-module. Then MB = M ⊗A B is D-

admissible and M = MB ×MD
MC .

(ii) Let MB be a B-module, let MC be a C-module and let θ : MB ⊗B

D → MC ⊗C D be an isomorphism of D-modules. Let MD be
a module isomorphic to this D-module so that we have canonical
induced homomorphisms MB →MD and MC →MD. If MB is D-
admissible, i.e., if MB →MD is injective, then M := MB ×MD

MC

is a C-admissible A-module such that MB = M⊗AB, MC = M⊗AC
and MD = M ⊗A D.

Proof. We have an exact sequence

0 // A // B ⊕ C // D // 0.

If M is a C-admissible A-module, i.e., if M →M ⊗A C is injective, then

(C.5.1) 0 // M // MB ⊕MC
// MD

// 0

is exact so that M = MB ×MD
MC . The injectivity of MB → MD then

follows from the injectivity of M →MC . This settles (i).
In (ii), the equation (C.5.1) is exact by assumption. After tensoring with

the flat monomorphism A ↪→ C, we obtain the exact sequences

0 // M //

��

MB ⊕MC
//

� _

��

MD
// 0

0 // M ⊗A C // MD ⊕MC
// MD

// 0

which shows that M⊗AC →MC is bijective and that M →MC is injective.
Now applying (i) to M , we obtain the exact sequence

0 // M // M ⊗A B ⊕MC
// MD

// 0

which shows that M ⊗A B = MB. �
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Lemma (C.5) says that there is an equivalence between C-admissible A-
modules and triples (MB,MC , θ) where MB is a D-admissible B-module,
MC is a C-module and θ : MB ⊗B D →MC ⊗C D is an isomorphism. This
is most vividly expressed as follows: Spec(B×C)→ Spec(A) is a morphism
of effective descent for admissible quasi-coherent sheaves. To abbreviate, we
say that a triple (MB,MC , θ) as above is admissible.

Also note that if A′ is an admissible A-algebra, then the pull-back of the
bi-cartesian square along A→ A′ remain bi-cartesian.

The following proposition follows from [Fer03, Thm. 5.1, Thm. 7.1]:

Proposition (C.6). Let A,B,C,D form a bi-cartesian square of rings as
in (C.3). Then Spec(B × C)→ Spec(A) is universally submersive.

Proof. By [Pic86, Thm. 37] it is enough to check that Spec((B×C)⊗AV )→
Spec(V ) is submersive for every valuation ring V and ring homomorphism
A→ V . If C⊗AV = 0 then Spec(V )→ Spec(A) factors through Spec(B) ↪→
Spec(A) and it is obvious. If C⊗AV 6= 0, then V is admissible and we obtain
a bi-cartesian square

V ⊗A D V ⊗A Coooo

V ⊗A B
?�

OO

Voooo
?�

OO

where the vertical homomorphism are flat injective epimorphisms. It follows
that the vertical homomorphisms are localizations and that all four rings
are valuation rings. Since V ⊗A D 6= 0, it follows that Spec((B × C) ⊗A

V )→ Spec(V ) is submersive. Indeed, if Z ⊆ Spec(V ) is a subset such that
Z ∩ Spec(V ⊗A C) and Z ∩ Spec(V ⊗A B) are closed, then Z is closed. �

Most parts of the following proposition follows from [Fer03, Thm. 2.2].

Proposition (C.7). Let A,B,C,D form a bi-cartesian square of rings as
in (C.3) and let M , N and P be C-admissible A-modules and let R be a
C-admissible A-algebra. Then

(i) A homomorphism M → N is surjective if and only if MB → NB

and MC → NC are surjective.
(ii) If 0 → M → N → P → 0 is an exact sequence and PC is a flat

A-module, then 0→ MB → NB → PB → 0 and 0→ MC → NC →
PC → 0 are exact.

(iii) M is of finite type if and only if MB and MC are of finite type.
(iv) Assume that MC is flat, then M is of finite presentation if and only

if MB and MC are of finite presentation.
(v) R is of finite type if and only if RB and RC are of finite type.
(vi) Assume that RC is flat, then R is of finite presentation if and only

if RB and RC are of finite presentation.
(vii) M is flat if and only if MB is a flat B-module and MC is a flat

C-module.

Proof. (i) Let I = ker(A → B) = ker(C → D) and assume that MB → NB

and MC → NC are surjective. Since IM = ker(M → MB) = ker(MC →
MD) = IMC and IN = ker(N → NB) = ker(NC → ND) = INC we have
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that IM → IN is surjective. It thus follows from the exact sequences

0 // IM //

����

M //

��

MB
//

����

0

0 // IN // N // NB
// 0

that M → N is surjective.
(ii) Since C is flat over A, we have that 0 → MC → NC → PC → 0 is

exact. Since PC is a flat A-module, we have that 0→MD → ND → PD → 0
is exact as well. Since M is admissible, we have that MB ↪→MD is injective
and it follows that MB ↪→ NB.

(iii) If MB and MC are of finite type, then by an easy limit argument
there exists a free A-module F of finite rank and a homomorphism F →M
such that FB → MB and FC → MC are surjective. It follows that M is of
finite type by (i).

(iv) By (iii) we know that M is of finite type. Let F be finite free A-
module with a surjection onto M and let K be the kernel so that 0→ K →
F → M → 0 is exact. It then follows from (i) and (ii) that K is of finite
type and hence that M is of finite presentation.

(v) Reason as (iii).
(vi) Reason as in (iv).
(vii) Assume that MB and MC are flat and let N be a, not necessarily

admissible, A-module. The exact sequence 0→ A→ B⊕C → D → 0 shows
that TorA

i (B,N) → TorA
i (D,N) is injective for all i ≥ 1 and bijective for

i ≥ 2. We note that

TorA
i (B,N)⊗A M = TorA

i (B,N)⊗B MB = TorA
i (MB, N)

TorA
i (D,N)⊗A M = TorA

i (D,N)⊗D MD = TorA
i (MD, N)

since MB and MD are flat. Also since MB is a flat B-module it follows that
TorA

i (MB, N) → TorA
i (MD, N) is injective for all i ≥ 1 and bijective for

i ≥ 2. As MC is a flat C-module, and a fortiori a flat A-module, the exact
sequence 0→M →MB ⊕MC →MD → 0 gives us the long exact sequence

// TorA
i (M,N) // TorA

i (MB, N) // TorA
i (MD, N) //

and it follows that TorA
i (M,N) = 0 for all i ≥ 1, hence that M is a flat

A-module. �

We now reformulate the above results for schemes and stacks:

Definition (C.8). Consider a bi-cartesian square as in (C.3). An admissible
triple is a triple (G,H, θ) where G is a quasi-coherent OX -module, H is a
quasi-coherent Z-admissible OY -module and θ is an isomorphism f ′∗G →
g′∗H.

Proposition (C.9). Consider a bi-cartesian square as in (C.3).
(i) The morphism X q Y →W is universally submersive.
(ii) The pull-back functor F 7→ (f∗F , g∗F , θ) (where θ is the gluing iso-

morphism on X ×W Y = Z) induces an equivalence between the
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category of X-admissible quasi-coherent sheaves on W and admis-
sible triples. Moreover, F is flat (resp. of finite type, resp. flat and
of finite presentation) if and only if f∗F and g∗F are so.

(iii) The pull-back functor T 7→ (T ×W X,T ×W Y, θ) induces an equiv-
alence between the category of affine admissible morphisms T →W
and affine admissible triples (TX → X,TY → Y, θ). Moreover,
T →W is flat (resp. of finite type, resp. flat and of finite presenta-
tion, resp. finite, resp. étale, resp. smooth, resp. unramified) if and
only if TX → X and TY → Y are so.

Proof. Follows easily from the affine case, noting that being étale (resp.
smooth, resp. unramified) can be checked on fibers (since we have the descent
result for flatness and finite type/presentation) and that X q Y → W is
surjective. �

Remark (C.10). M. Temkin claims in [Tem08, Lem. 2.3.1] that XqY →W
satisfies effective descent for the category of quasi-compact strongly repre-
sentable morphisms. This question reduces to quasi-affine morphisms but
there appears to be a crucial error in the proof for quasi-affine morphisms.
D. Ferrand has a necessary and sufficient condition in [Fer03, Thm. 7.1].

Definition (C.11). Let f : Z ↪→ X be a closed immersion. We say that a
quasi-coherent sheaf of ideals J ⊆ X is Z-admissible if f∗J � JOZ is an
isomorphism (i.e., if f∗J is an ideal of OZ). We say that a closed subscheme
X0 ↪→ X is admissible if it is defined by an admissible ideal sheaf.

If Z is defined by the ideal sheaf I then J is Z-admissible if and only if
IJ = I ∩ J .

Proposition (C.12). Consider a bi-cartesian square as in (C.3). There is
a one-to-one correspondence between Y -admissible ideals of OW and pairs
(JX ,JY ) such that JX ⊆ OX is a Z-admissible ideal and JY ⊆ OY is an
ideal such that JY |Z = JX |Z (as ideals of OZ). Under this correspondence
an ideal J ⊆ OW is of finite type if and only if J |X and J |Y are of finite
type. If J |X is flat then J is of finite presentation if and only if J |X and
J |Y are of finite presentation.

Proof. Since g : X → W is flat and schematically dominant, every ideal
J ⊆ OW is X-admissible and every ideal J |Y ⊆ OY is Z-admissible. Thus
if (JX ,JY ) is a pair as in the proposition, then they glue to an ideal J ⊆ OW

such that J |Y = JY and hence J is Y -admissible. Conversely, if J is Y -
admissible, then J |Z is an ideal and hence J |X is X-admissible. The last
assertions follow from Proposition (C.7). �

Corollary (C.13). Consider a bi-cartesian square as in (C.3). There is
a one-to-one correspondence between Y -admissible ideals J ⊆ OW such
that J |X = OX and ideals JY ⊆ OY such that (JY )|Z = OZ . Under
this correspondence J is of finite type (resp. of finite presentation, resp.
invertible) if and only if JY is so.

Remark (C.14). Note that under the correspondence of the previous Corol-
lary, a closed subscheme Y0 ↪→ Y corresponds to a closed subscheme W0 ↪→
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W such that Y0 = W0 ∩ Y and Y0 → W0 is a nil-immersion (a bijective
closed immersion). In general, Y0 ↪→ Y ↪→ W is not of finite presentation
and Y0 6= W0.

Corollary (C.15). Consider a bi-cartesian square as in (C.3). There is
a one-to-one correspondence between X-admissible blow-ups (resp. stacky
blow-ups) W̃ →W and Z-admissible blow-ups (resp. stacky blow-ups) Ỹ →
Y . This correspondence sends W̃ to W̃ ×W Y (there is no need to take the
strict transform). Under this correspondence W̃ → W is of finite presenta-
tion if and only if Ỹ → Y is of finite presentation.

Corollary (C.16). Consider a square as in (C.3). Then W is a push-out
in the category of algebraic stacks (with quasi-affine diagonals).

Proof. This is a standard argument: Let T be a stack with morphisms X →
T and Y → T such that Z ↪→ X → T coincides with Z → Y → T (up
to a 2-isomorphism?). We want to show that there is a unique morphism
W → T . This question is fppf-local on W so we can assume that W is
affine and that T is quasi-compact. Let T ′ → T be a smooth (or flat)
presentation with T ′ affine so that T ′ → T is quasi-affine. Let T ′aff be the
affine hull of T ′ in T so that T ′ ⊆ T ′aff is an open immersion. By pull-back
we obtain Z ′ ⊆ Z ′aff → Z, X ′ ⊆ X ′aff → X and Y ′ ⊆ Y ′aff → Y . We note
that Y ′ is admissible but not necessarily Y ′aff . After replacing Y ′aff with
the schematic closure of Z ′aff we obtain two admissible triples (X ′, Y ′, Z ′)
and (X ′aff , Y ′aff , Z ′aff). The second is affine and hence glues to an affine
morphism W ′aff → W . The first triple is an open substack of the second
and hence glues to an open substack W ′ of W ′aff . Since W ′ →W is smooth,
we can replace W with W ′ and T with T ′ and the result follows from the
affine case and fppf descent. �
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1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de deux exposés
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